The University of Arizona

An appraisal of the Serra da Cangalha impact structure using the Euler deconvolution method

A. A. Adepelumi, J. M. Flexor, S. L. Fontes


The applicability of the Euler deconvolution method in imaging impact crater structure vis- vis delineation of source depth of the circular magnetic anomaly and/or basement depth beneath the crater is addressed in this paper. The efficacy of the method has been evaluated using the aeromagnetic data obtained over the Serra da Cangalha impact crater, northeastern Brazil. The analyses of the data have provided characteristic Euler deconvolution signatures and structural indices associated with impact craters. Also, through the interpretation of the computed Euler solutions, our understanding of the structural features present around the impact structure has been enhanced. The Euler solutions obtained indicate shallow magnetic sources that are interpreted as possibly post-impact faults and a circular structure. The depth of these magnetic sources varies between 0.8 and 2.5 km, while the Precambrian basement depth was found at ~1.5 km. This is in good agreement with the estimates of the Precambrian basement depth of about 1.1 km, calculated using aeromagnetic data. The reliability of the depth solutions obtained through the implementation of the Euler method was confirmed through the use of the existing information available in the area and the result of previous studies. We find that the Euler depth solutions obtained in this study are consistent with the results obtained using other methods.


Magnetic;Impact craters;Euler deconvolution;Brazil;Basement

Full Text: