The University of Arizona

Al-Mg systematics of CAIs, POI, and ferromagnesian chondrules from Ningqiang

W. Hsu, G. R. Huss, G. J. Wasserburg

Abstract


We have made aluminum-magnesium isotopic measurements on 4 melilite-bearing calcium-aluminum-rich inclusions (CAIs), 1 plagioclase-olivine inclusion (POI), and 2 ferromagnesian chondrules from the Ningqiang carbonaceous chondrite. All of the CAIs measured contain clear evidence for radiogenic 26Mg* from the decay of 26Al (τ = 1.05 Ma). Although the low Al/Mg ratios of the melilites introduce large uncertainties, the inferred initial 26Al/27Al ratios for the CAIs are generally consistent with the value of 5 x 10^(-5). There is clear evidence of 26Al* in one POI and two chondrules, but with considerable uncertainties in the value of (26Al/27Al)0. The (26Al/27Al)0 ratios for the POI and the chondrules are 0.3-0.6 x 10^(-5), roughly an order of magnitude lower than the canonical value. Ningqiang shows very little evidence of metamorphism as a bulk object and the (26Al/27Al)0 ratios in its refractory inclusions and chondrules are consistent with those found in other unmetamorphosed chondrites of several different classes. Our observations and those of other workers support the view that 26Al was widely and approximately homogeneously distributed throughout the condensed matter of the solar system. The difference in (26Al/27Al)0 between CAIs and less refractory materials seems reasonably interpreted in terms of a ~2 million year delay between the formation of CAIs and the onset of formation of less refractory objects. The POI shows clear differences in 25Mg/24Mg between its constituent spinels and olivine, which confirms that they are partially reprocessed material from different sources that were rapidly quenched.

Keywords


Grove Mountains (GRV) 99027;Ion microprobe;Lherzolitic shergottite;Rare earth elements (REEs)

Full Text:

PDF