
1049 © The Meteoritical Society, 2008. Printed in USA.

Meteoritics & Planetary Science 43, Nr 6, 1049–1061 (2008)
Abstract available online at http://meteoritics.org

Characterizing and navigating small bodies with imaging data

R. W. GASKELL1*, O. S. BARNOUIN-JHA2, D. J. SCHEERES3, A. S. KONOPLIV4, T. MUKAI5, S. ABE10, 
J. SAITO9, M. ISHIGURO6, T. KUBOTA6, T. HASHIMOTO6, J. KAWAGUCHI6, M. YOSHIKAWA6, 

K. SHIRAKAWA7, T. KOMINATO7, N. HIRATA8, and H. DEMURA8

1Planetary Science Institute, 1700 E. Ft. Lowell Rd., Suite 106, Tucson, Arizona 85712, USA
2The Johns Hopkins University, Applied Physics Laboratory, Johns Hopkins Road, Laurel, Maryland 20723–6099, USA

3Department of Aerospace Engineering Sciences, Colorado Center for Astrodynamics Research,
The University of Colorado, 429 UCB, Boulder, Colorado 80309–0429, USA

4M. S. 301–121, Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, California 91109, USA
5Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan

6Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, Department of Spacecraft Engineering, 
3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510, Japan

7NEC Aerospace Systems,1–10 Nissincho, Fuchu, Tokyo 183-8551, Japan
8School of Computer Science and Engineering Ikki-machi, Aizu-Wakamatsu City, University of Aizu, Fukushima 965-8580, Japan

9Research and Development Center, PASCO Corporation, 2-8-10 Higashiyama, Meguro-ku, Tokyo 153-0043, Japan
10Graduate Institute of Astronomy, National Central University, No. 300, Jhongda Rd., Jhongli City, Taoyuan County 320, Taiwan

*Corresponding author. E-mail: rgaskell@psi.edu

(Received 30 January 2007; revision accepted 31 July 2008) 

Abstract–Recent advances in the characterization of small body surfaces with stereophotoclinometry
are discussed. The principal data output is an ensemble of landmark maps (L-maps), high-resolution
topography/albedo maps of varying resolution that tile the surface of the body. Because they can have
a resolution comparable to the best images, and can be located on a global reference frame to high
accuracy, L-maps provide a significant improvement in discriminatory power for studies of small
bodies, ranging from regolith processes to interior structure. These techniques are now being used to
map larger bodies such as the Moon and Mercury.

L-maps are combined to produce a standard global topography model (GTM) with about
1.57 million vectors and having a wide variety of applications. They can also be combined to produce
high-resolution topography maps that describe local areas with much greater detail than the GTM.
When combined with nominal predictions from other data sources and available data from other
instruments such as LIDAR or RADAR, solutions for the spacecraft position and camera pointing are
the most accurate available. Examples are drawn from studies of Phobos, Eros, and Itokawa,
including surface characterization, gravity analysis, spacecraft navigation, and incorporation of
LIDAR or RADAR data. This work has important implications for potential future missions such as
Deep Interior and the level of navigation and science that can be achieved.

INTRODUCTION

Missions such as Deep Interior (Asphaug et al. 2003),
which would have mapped the interior of a small asteroid
with radar tomography, require a detailed knowledge of both
shape and surface topography of the body as well as
accurate determinations of the spacecraft position. Recent
applications of stereophotoclinometry and navigation
estimation to small bodies have proven to be more than
adequate for satisfying the requirements of such missions.
During the recent Hayabusa mission to Itokawa, about 600

AMICA science images were analyzed. The asteroid's shape
and topography were determined to a resolution of about
40 cm with uncertainties of about 20 cm, and the spacecraft’s
position was found to a few meters at the home position range
of 7 km. For such small bodies, an additional data type such as
laser or radar ranging may be used to set the global scale.

A major input to the navigation filter for a spacecraft in
proximity to a small body is a set of landmarks or control
points, fixed points on the body’s surface that can be identified
in several images. If the spacecraft positions and orientations
are known for these images, the body-fixed location of such a
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point can be found through stereographic analysis. In practice,
a nominal location is chosen for the landmark and its image-
space positions predicted. The set of residuals, differences
between predicted and observed locations in the images, is
minimized in the least squares sense to estimate the landmark’s
actual location. For navigation, knowledge of the body-fixed
landmark locations is assumed, and a nominal spacecraft
state is chosen for a particular image. Residuals between the
predicted and observed image-space landmark locations are
minimized to estimate the actual spacecraft state. Of course,
neither the landmark locations nor the spacecraft states are
known precisely, and the uncertainties in these values are
included as the entire system of many landmarks in many
images is iterated to achieve a best fit. 

There are a number of schemes for choosing landmarks.
The NEAR mission used craters in this role (Owen et al.
2001) and more recent studies (Ansar et al. 2005) have
attempted to automate this process. However, craters are
only useful as landmarks if they exist, and the Hayabusa
mission to asteroid Itokawa demonstrated that this is not
always the case (Honda et al. 2006). Other techniques
(Gwinner et al. 2005) automatically identify features of
interest and correlate these between several images for
stereographic analysis. This method requires images with
similar illumination and resolution and with only moderate
stereo separation, leading to large absolute uncertainties.
Both of these techniques suffer a significant loss of
resolution relative to the imaging data since many pixels are
needed to specify a single surface point.

This paper describes a new technique that has been
developed over the last two decades (Gaskell 1988, 2001,
2002). A landmark/control point is defined as the center of a
small digital topography/albedo map (L-map) determined
from multiple images with stereophotoclinometry (SPC).
Because of their three-dimensional structure, L-maps can be
rendered over a wide range of viewing geometries,
illuminations, and ranges, and the resulting artificial image
correlated with the corresponding actual imaging data. They
therefore act as a bridge for correlating widely diverse images
and locating their common control points. Since the L-maps
are rigid structures, it is not even necessary for the entire
L-map to be contained within an image so that sometimes two
images are co-registered even though they contain no
common surface points. In addition, L-maps can be precisely
located on lit limbs, providing nearly 90° of stereo separation,
and can be cross-correlated with topography from other
L-maps for additional constraints on the solution. The control
point locations are therefore determined to a much higher
precision in the body-fixed frame, with a corresponding
reduction in spacecraft state uncertainty in the navigation
solution. Since they can represent any type of surface, the
control points can be found anywhere on the body, with the
L-maps describing the surrounding topography and albedo
variations to nearly the resolution of the best images. Finally,

since L-maps accurately describe the topography of the
surface, other data types such as laser or radar ranging can be
incorporated into the solution. 

Stereophotoclinometry (SPC) is at the heart of the
construction of an L-map. The slope and albedo at each map
pixel are determined in a linear estimation solution
minimizing the summed square brightness residuals at that
pixel in at least three to hundreds of images, each with
differing illumination and viewing conditions. The slopes are
then integrated to produce a height distribution, with sparsely
sampled heights from external sources such as stereo, limbs,
and other maps constraining the integration. In practice, these
constraining heights adjust the scale of the reflectance
function, effecting an extrapolation from known low-resolution
heights from stereography to higher-resolution topography
from SPC. The single-map problem is embedded into the
global one by solving for a set of maps that tile the entire
body. The mutual connections of the global ensemble of
overlapping maps, along with limb observations, constrain
the slope-to-height integrations and control point solutions,
and lead to very small formal uncertainties in both surface
characterization and spacecraft state. 

Errors in camera pointing, spacecraft position, control
point location, and rotational kinematics result in distortions
of the extracted imaging data used to construct the L-maps, so
the first landmarks used are the more obvious ones such as
conspicuous rocks and craters and the stereo separation is
kept small so that image sampling errors are reduced. At this
stage there is not much difference between this method and
the others, but as the geometry solution improves with iteration,
smaller-scale L-maps can be used and the stereo separations
can be increased to provide precise geometry and topography
solutions.

A final element in the iteration loop is the construction
of the global topography model (GTM). Not only is the
overall shape it provides vital for initial gravity estimates for
small body proximity operations, but it also provides nominal
estimates for new L-maps that allow for their almost
immediate convergence. Instead of the traditional triangular
plate format, we use a quadrilateral cell whose vertices are
connected according to a simple labeling scheme. This
eliminates the need for the facet table used in the triangular
model. It also allows the model to be made progressively
denser, halving the spacing between points at each step and
yielding significant computational benefits. Finally, a simple
algorithm can transform the model into the triangular form for
use in software that accommodates that format. 

Ultimately, the ensemble of L-maps is the principal data
product, representing vastly more data than the GTM. L-maps
can be manipulated to provide other data products, to acts as
navigation tie points and to enable accurate mosaics of
imaging data. It is envisioned that future small body missions
will involve a survey phase during which the surface is
characterized and thousands of landmarks are determined,
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followed by a proximity phase involving touch-and-go or
landing for which the landmarks will be crucial for surface
relative navigation. The choice of landmark type will be a
major driver for the survey part of the mission. Ordinary
stereography desires to obtain images with uniform illumination
and resolution and also requires relatively small stereo
separation, while SPC desires differing illuminations and can
deal with much larger variations in resolution and separation.
Despite the several orders of magnitude increase in
navigation and surface characterization accuracy afforded by
SPC, mission planners persist in using Sun-synchronous
orbits in deference to traditional stereography. 

TOPOGRAPHY ESTIMATION 

The basic data product of this work is the landmark map
(L-map), a digital terrain and albedo model of a portion of a
surface as in Fig. 1. It is specified by a vector V from the
center of a body fixed coordinate system to the origin of a
local surface (map) coordinate system, by the axes of that
coordinate system ui (i = 1,3), and by heights h(x) and
albedos a(x) at positions x = (x1,x2) relative to that system.
The spacecraft position W and the camera coordinate
system ci (i = 1,3) are also specified in body-fixed
coordinates. 

For a simple narrow angle camera with focal length f, the
location X = (X1, X2) of the image on the focal plane of a
point P = (x, h) on the surface is given by

(1) 

where Mij = ci•uj, Image data from X is therefore associated at
map location x. Ek(x) designates this extracted data from
image k at map location x, and is shown in Fig. 2 for a single
L-map in several images. The effects of the ortho-rectification
process are particularly evident in the second image, where
the edge has been distorted due to the height distribution in
the L-map, and in the fourth, where portions of crater bottoms
are invisible in the image so that data has been set to zero and
ignored. Shadows, as in the first two images of Fig. 2, are also
ignored.

If the landmarks are already aligned closely enough, to
within a few percent of the size of the map, then the map-
projected brightness Ik of the kth image can be fit to a simple
function of slope, albedo and phase

(2)

Since the imaging data is maximally scaled during its
extraction, the multiplier Λk is included. Moreover, due to
background or haze in some images, a positive background
term Φk can be added. R is an appropriate reflectance function
(Hapke 1981; Squyres et al. 1982). The relative albedo a(x) is
normalized so that <a> = 1 over the map, while i and e are the

angles of incidence and emission relative to the surface
normal at x. In terms of the slopes ,

/ ,

/ (3)

where s and e are the map-system components of the Sun and
spacecraft unit vectors, respectively. A simple mixture of
Lambert and Lommel-Seeliger reflectance functions, 

R(cosi, cose, α) = (1−L(α))cosi + L(α)cosi/(cosi + cose) (4)

where L(α) = e–α/60 is used, with α is in degrees, since it
represents well McEwen’s (1996) lunar function (Fig. 3). No
other phase dependence has been included because only
relative brightness is used, and the phase is nearly constant for
each L-map in an image. For high albedo surfaces, multiple
scattering effects must be included.

At each L-map pixel x, the values of t and a are estimated
by minimizing the weighted sum square residual

 between the extracted and predicted
brightness, where the measurement uncertainty σ is
determined from the brightness in the original image, as well
as the Λ and Φ. Notice that the slopes determined in this way
do not implicitly satisfy the “curl-free” condition

, which follows from .
However, the nominal values of t1 and t2 used in the
estimation are found from the height solutions described below
and are manifestly curl-free, so as the iteration proceeds, the
condition is eventually satisfied.

The height h(x) is determined from the nearest neighbor
heights at  and a possible constraining
height hc coming from the shape model, differential
stereography, limb or overlapping map data according to:

h(x) = 

(5)

where wc is a small constraining weight. This equation is

Xi f V W–( )( c• i= Mi1x1 Mi2x2 Mi3h)/
V W–( ) c3 M31x1 M32x2 M33h+ + +•( )

+ + +

Ik x( ) Λka x( )R i e α,cos,cos( ) Φk+=

Fig. 1. An L-map on Eros.
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applied repeatedly to map points chosen at random until a
converged solution is reached. The resulting L-map, viewed
with the same geometries and illuminations as the extracted
images of Fig. 2, are displayed in Fig. 4. 

GEOMETRY ESTIMATION

If the ensemble of landmark vectors V were known, as
well as their locations Y in the image focal plane, then the
camera orientation c and spacecraft location W could be
determined. Equation 1 predicts the image space location of
an L-map origin as Xi = f(V − W) • ci/(V − W) • c3 where W
and c are the nominal values. The corrected values W + δW,
ci + εijkcjδαk are determined by minimizing the weighted
sum square residuals  between the
observed and predicted values, where the sum is over all
landmarks in the image. The weighting matrix M is
determined from the measurement uncertainties in Y and the
formal uncertainties in the landmark vectors V. The observed
focal plane locations Y are determined by correlating
predicted brightness distributions as in Fig. 3 with extracted
ones as in Fig. 2. 

L-maps whose topographies lie on the lit limb in the
image can be used as well. A limb point on the L-map occurs
where the line of sight is tangent to the topography, and since
its location relative to the origin of the L-map is known, the
focal plane location Y of the map center can be inferred. At
present, no attempt is made to fit the details of the limb, and
M is chosen to project only the residuals normal to the limb.

Since the nominal values for W and c come from external
sources such as a star-tracker, optical navigation and
dynamics, additional terms are included in the estimation
reflecting these a priori estimates and their uncertainties.
Finally, since the spacecraft follows a dynamically determined
trajectory, a change in W will be accompanied by changes in
the positions at neighboring image times. A term reflecting
this constraint is also included in the estimation. These
contributions are summarized in Equation 6 where S, the
quantity to be minimized, is given by the standard estimation
(first term), the nominal s/c position and orientation (terms 2
and 3) and the dynamical term. 

S = 

(6)

Similarly, if the spacecraft state were known for the
ensemble of images, as well as the locations Y of a landmark
in those images, then the body-fixed vector V to that
landmark could be determined by solving a set of three
coupled linear equations arising from the minimization of the
sum square residuals . The sum is
now over all images containing the landmark, with W and c
held fixed. As before, the normal limb residuals are included
in the solution. The landmark map will generally overlap
other maps with central vectors V0. A correlation with these
maps in the overlap region allows the vector V – V0 to be
determined. This “measurement” is also included in the
estimation, and as is evident in Equation 7, it plays a role
analogous to the dynamical term in the s/c state estimation.

S =
(7)

The formal uncertainties in camera geometry coming
from the solution above feed into the determination of V, just
as the uncertainties in V feed into the determination of c and
W. The assignment of relative weights for image projections,
limb projections and map overlaps involves some qualitative
assessment of the reliability of the data types. Of course,

Fig. 2. Extracted data from several images of a landmark map.

Fig. 3. Simple fit to McEwen’s lunar L-function.
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neither the spacecraft state nor the control point locations are
precisely known and the solution process is an iterative one. 

A change in the rotation of the body alters the
components of the vectors in the body-fixed frame in a time-
dependent fashion. It does not affect the scalars  in
Equation 1 since both vectors are associated with a single
image and are transformed in the same way. The products

 will change, however, both because the components of
V and c change and because the new geometry yields a new
solution for the L-map vectors. The corrections to the
rotational parameters g and the L-map vectors V are
determined by minimizing

S =       
(8)

summed over all images and all landmarks. In order to
minimize S in Equations 6–8, we take the derivatives with
respect to the variations and set them to zero. Equation 8 is of
particular interest and the resulting equations are

 

and

 (9)

where the first two of 

A = 

(10)

are summed over all images and landmarks, and the last three
are summed over all images with the landmark fixed at k. In
practice, the dV are eliminated from Equation 9 to give

(11)

which is solved for the rotational correction δg. The spacecraft
positions W and orientations c are then expressed in the new
body-fixed frame and Equation 7 is minimized to find the new
L-map vectors V. The advantage of this approach is that it

involves inversion of a matrix equal in dimension to the
number of estimated rotational parameters, but not an
additional three times the number of landmarks, which could be
in the thousands. The minimizations from Equations 6 and 7
require inversions of six and three-dimensional matrices,
respectively. 

The solutions for spacecraft position and landmark
location contain an overall scale bias that must be resolved
with external data. For larger bodies such as Eros, the orbital
motion observed with Doppler tracking is sufficient to
provide this scale. The known velocities translate into
position differences ∆p for neighboring images which
constrains the solution of Equation 6. For smaller bodies such
as Itokawa, such a solution is still possible if the spacecraft is
allowed to fall toward the surface during Doppler tracking.
However, the combination of LIDAR and imaging
observations proved to be highly accurate. On Hayabusa, the
LIDAR provided a range to the body center that was uncertain
by about 50 meters, owing to a lack of shape knowledge. At a
range of 10 km, this represented a scale uncertainty of 0.5%.
The shape model (GTM) determined from the images
therefore had the same 0.5% size uncertainty, representing a
scale uncertainty of about a meter, and since the surface
location of the LIDAR footprint was precisely known, the
range uncertainty dropped to the meter level (0.01%) in one
iteration. Further iterations would be useless since the LIDAR
uncertainty itself is already about a meter and the GTM
surface uncertainty of 16 cm is comparable. 

The estimated position uncertainty of the NEAR spacecraft
is 10 m. With this as the nominal value and a 1 mrad
nominal pointing uncertainty, the formal s/c uncertainties of our
solution are reduced to about a meter in position and the
0.025 mrad in attitude. We have been begun including the
NLR data in the study. Using about 5000 images with NLR
ranges less than 50 km, the NLR bore-sight was located at
(259.5,133.4) in the raw images, with the CF-CM of about
10 m and an RMS range residual of 15 m, much smaller than
the average GTM resolution of 27 m.

THE GLOBAL TOPOGRAPHY MODEL

As the number of landmarks increases, a nearly rigid
network of fixed surface points constrains the solutions for
c, W, and V. Moreover, since each L-map contains about

Fig. 4. Illuminated L-map solution.
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10,000 pixels, each at a well-defined location relative to the
central vector V, the surface is described by a vast amount of
data. A common way of organizing this data is as a triangular
facet model, which covers the surface with triangular facets
whose vertices are vectors lying in the surface. The file
representing such a model consists of a numbered list of all
vectors in the model, followed by a numbered facet table
indicating which vectors form the vertices of each facet. 

A useful way of organizing the vectors is in an implicitly
connected quadrilateral (ICQ) form. The vectors are labeled
and connected to each other as though they were grid points
i,j on the faces f of a cube as in Fig. 5, so their labels are i, j,
and f where i = 0,q; j = 0,q; f = 1,6. The parameter q is
conventionally, but not necessarily, taken to be a power of
two, and models are constructed with increasing detail by
repeated doubling of q. Models with small values of q, up to
32 or so (about 6000 vectors) are called shape models, while
more detailed models are called global topography models
(GTMs). There are 6q2 + 2 independent vectors in the model,
since edges and corners share common vectors, and the vector
vi,j,f is implicitly connected to its nearest neighbors vi ± 1,j,f
and vi,j ± 1,f (if either i or j is on an edge (0 or q), then one of
the nearest neighbors will lie on a different face and its label
will change accordingly). Not only does this format not
require a facet table, making the files about a third as large, its
structure also makes it easy to solve some otherwise difficult

problems such as determining whether a surface point is
illuminated or visible to an observer, and a model is easily
interpolated to produce one of the same form with half the
point spacing. Moreover, there is a simple program that
rewrites the quadrilateral format in the triangular facet
format. 

The ICQ form is easily displayed in a vertex/facet
format with quadrilateral facets. The format begins with a
table of 6(q + 1)2 numbered vectors with vector vi,j,k labeled by
Lv(i,j,k) = 1 + i + (q + 1)j + (q + 1)2 (k−1) [(i = 0,q), (j = 0,q),
(k = 1,6)]. Appended to this is a facet table numbering the
facets and listing the vertices defining them in right-hand-
rule order. The 6q2 facet labels are Lf(i,j,k) = i + q(j − 1) +
q2 (k − 1) [(i = 1,q), (j = 1,q), (k = 1,6)] and the associated
vertex labels are Lv(i,j,k), Lv(i,j − 1,k), Lv(i − 1,j − 1,k),
Lv(i − 1,j,k). Some of the vertex labels must be changed in
the facet table because they refer to vertices that duplicate
others on the edges and corners of the cube. For n = 1,q −
1, 4q − 4 vertex labels are eliminated by replacing

Lv(0,n,3) with Lv(q,n,4) Lv(q,n,3) with Lv(0,n,2)
Lv(0,n,5) with Lv(q,n,2) Lv(q,n,5) with Lv(0,n,4)

Then, for n = 0,q, 8q + 8 more labels are eliminated by
replacing

Lv (n,0,2) with Lv (n,q,1) Lv (n,0,3) with Lv (0,n,1)
Lv (n,0,4) with Lv (q-n,0,1) Lv (n,0,5) with Lv (q,q-n,1)
Lv (n,q,2) with Lv (n,0,6) Lv (n,q,3) with Lv (0,q-n,6)
Lv (n,q,4) with Lv (q-n,q,6) Lv (n,q,5) with Lv (q,n,6)

This brings the number of labels down to 6q2 + 2. A format
with 12q2 triangular facets can be constructed by dividing
each quadrilateral facet along a diagonal.

The construction of a GTM begins with a low-
resolution reference shape such as the one shown in Fig. 6
or, if no previous shape estimate exists, a tri-axial ellipsoid
with the approximate dimensions of the body. From each
point vp of the reference shape, a line is run in the normal
direction np until it pierces an L-map at some height h. The
normal to the surface at i,j,f is in the direction (vi,j + 1,f − vi,j−1,f)
x(vi+1,j,f − vi–1,j,f) (in the special case where i,j,f is a corner
(i = 0 or q, j = 0 or q), there are only three nearest
neighbors, but the normal is still well defined). The
average height hp = <h> of all L-map piercing points
defines a new vector

. (12)

It is important to use this method rather than simply
averaging the radius as a function of latitude and longitude
because for many small bodies, Eros, and Itokawa in
particular, the radii can be multi-valued as a function of
direction. In practice, the reference shape is first made denser
by halving the spacing of a previous model through bilinear
interpolation in each cell. 

Fig. 5. Implicitly connected quadrilateral (ICQ) labels (q = 4).

Fig. 6. A reference shape of Eros showing its quadrilateral structure.

Vp vp nphp+=
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The typical initial reference shape has q = 32. This is
“densified” to q = 64 and the vectors determined as in
Equation 12 to produce a 24578 vector GTM constructed.
This becomes a new reference shape and the procedure is
repeated to create q = 128, 256 and 512 models, the last
having about 1.57 million vectors. Because the first tri-axial
reference surfaces were far from the true shape, the
distribution of vectors in the final model was not uniform.
An algorithm has been developed to more evenly distribute

the vectors of subsequent initial shapes. Figures 6 through 9
display images of Phobos, Eros, and Itokawa, respectively,
along with corresponding images generated from their
GTMs. 

APPLICATIONS OF THE GTM

The corner vectors defining a cell on one of the faces of
the GTM, Vi,j, Vi+1,j, Vi,j+1 and Vi+1,j+1, define an approximate

Fig. 7. Viking orbiter images of Phobos (left) and illuminated GTM.

Fig. 8. NEAR images (left) of Eros and illuminated GTM.
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prism. The area vector of the cell is

(13)

If V is the average of the four corner vectors, V is its
magnitude, then since dA << V2 for the GTM, the differential
solid angle is very nearly

. (14)
This allows for very rapid calculations of physical properties
of the model such as surface area, volume, moment of inertia
tensor, and gravity harmonics. Notice that dΩ can be negative
for some cells, indicating that a radius vector pierces the
surface multiple times. The volumes, areas and principal
moments for the three GTMs displayed above are
summarized in Table 1.

The gravity harmonics for the Eros GTM are easily
calculated, assuming a homogeneous mass distribution, and
can be compared with those determined from an analysis of
the NEAR orbit solution. The Bouguer anomaly, the difference
between these two determinations for harmonics L = 2 to L = 6
on a 16 km sphere, are shown in Fig. 10. The NEAR Laser
Ranger shape model (Zuber et al. 2000; Miller et al. 2002)
produced significant anomalies (Fig. 10, left), which ranged
from −3.2 mgal to +1.5 mgal and led to speculations of lower
densities near the ends of Eros. The anomalies from our GTM
(Fig. 10, right) range from −2.37 mgal to +0.94 mgal, suggesting
a much more homogeneous Eros, a result also supported by
the small CF-CM offset from the NLR/imaging study discussed
earlier. 

The gravitational potential at a point R not too close to
the surface is found by summing the contributions

Table 1. Physical properties of the GTMs.

Body
Volume 
(km3)

 Area 
(km2)

 Ixx/M
(km2)

 Iyy/M 
(km2)

 Izz/M
(km2)

Phobos   5759.91   1650.40   43.79   51.49   60.53
Eros   2507.60   1137.93   15.13   73.09   74.35
Itokawa   0.01773 0.40403 0.00631 0.02128 0.02235

Fig. 9. Hayabusa images (left) of Itokawa and illuminated GTM.

Fig. 10. Eros Bouguer anomalies from NLR shape model (left) and current GTM.

dA Vi 1 j 1+,+ Vi j,–( )x Vi 1 j,+ Vi j 1+,–( ) 2.⁄=

dΩ V dA V3⁄•=
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Fig. 11. Rotational/gravitational surface potential distribution for Itokawa.

Fig. 12 Surface slope relative to local gravity for Itokawa.

Fig. 13. Local slopes (left) of a topo/albedo L-map (right) on Eros.
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(15)

However, for a point R near the surface, one or more of
the dA will subtend a significant solid angle. The
quadrilateral structure of makes it possible to divide a cell into
sub-cells by bilinear interpolation, as was done in the
“densification” step in the GTM construction. A recursive
procedure has been developed that automatically subdivides a
cell if, seen from R, it subtends an angle larger than a pre-
determined limit. An interpolated vector in the cell, with x
and y varying from 0 to 1, is 

V(x, y) = 
(16)

and the area element at x,y is given by 

da(x, y) = (∂V/y x ∂V/∂x)dxdy = (A0 + A1x + A2y)dxdy (17)

The subdivision coefficients Vk and Ak are computed and
saved for each cell of the GTM, making it possible to rapidly
compute the gravitational potential and acceleration at any
point R. The surface potential, including rotational effects, is
shown in Fig. 11 for Itokawa, calculated from the q = 256
(400000 vector) model. 

Figure 12 shows the slope distribution relative to the
local gravity. Smoother, lower slope areas correspond to lows
of the potential, indicating that loose material has migrated to
these areas, possibly due to seismic shaking. A similar
process operates on Eros, where down-slope motion exposes
fresher, brighter material underneath. Figure 13 shows the
correlation between gravity-relative slope and albedo for a
5 km square L-map on Eros.

HIGH-RESOLUTION TOPOGRAPHY MAPS

The majority of L-maps on Eros (6850 of 8995) have a
resolution of 6 m/pixel. Some L-maps have lower resolution
and provide context for the global fit, while others have
higher resolution in order to better characterize regions of
particular interest. Since the GTM has an average resolution
of about 27 m, it does not contain the full information

provided by the ensemble of L-maps. High-resolution
topography maps (HRTMs) can be constructed from the
L-map ensemble for areas of interest, such as the 6-meter
resolution 1025 × 1025 pixel topographic map of Himeros
Regio shown as a stereo pair in Fig. 14. The construction of
an HRTM is similar to that of an L-map or a GTM. At each
pixel, the heights and slopes of the contributing L-maps are
averaged. A small fraction of the averaged heights is used as
constraining heights, and the slopes are integrated as in
Equation 5. 

Since HRTMs can be constructed with almost the
resolution of the best images, they summarize that data with
very little loss of information. These new representations can
be recast in a variety of ways to assist in data analysis. The
map of Himeros Regio, processed by computing from
the HRTM data, is shown in Fig. 15. This Laplacian filter is
commonly used in analysis of medical X-ray images. It makes
craters and boulders are much easier to identify, and this may
eventually lead to an automatic cataloging capability. Another
way to display data using an HRTM is by re-sampling an image
onto its topography. Figures 16 and 17 are stereo pairs of
Tsukuba, a cracked rock on Itokawa, and the Pencil boulder,
which sticks straight up from the asteroid’s surface with a
slope of 90° relative to the local gravity. 

PROXIMITY NAVIGATION

The ensemble of L-maps was originally conceived as a
tool for optical navigation. The iterative minimizations of
Equations 6 and 7 determine the spacecraft state and the
body-fixed locations of the L-map centers during a survey
phase. During the proximity phase, the pre-existing set of
L-maps would be correlated with new images, and their
resulting focal plane locations used as inputs to determine the

Fig. 14. Stereo pair of HRTM for Himeros Regio on Eros.

dU ρG 2⁄( )dA V R–( )• V R–⁄–=

1 x–( ) 1 y–( )Vi j, x 1 y–( )Vi 1 j,+ 1 x–( )y
Vi j 1+, xyVi 1 j 1+,+ V0 V1x V2y V3xy+ + +=

+ +
+

Fig. 15. Laplacian filtered heights for Himeros Regio on Eros.∇2h

∇2h
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spacecraft state (Gaskell 2001). This technique was tested
with navigation images obtained during the November 12,
2005, approach of Hayabusa to Itokawa. Twelve of the wide-
angle Hayabusa navigation frames, with slant ranges varying
from 57 m to 740 m, were correlated with L-maps. The RMS
difference between the predicted ranges and the measured
LIDAR ranges was about 10 m. The final two images in the
sequence had the largest errors because the LIDAR was

moving off the body. When these two were removed, the
RMS residual dropped to 4 m. A display from the L-map
correlation of one of these images is shown in Fig. 18, with
alternate rows showing extracted imaging data and
corresponding L-map data. Note the spacecraft’s shadow in
the first two boxes. The shadow appeared in ten of the images,
and was used to determine the precise camera pointing.
Despite the difference in resolution, the very lossy

Fig. 16. Stereo pair of Tsukuba rock on Itokawa.

Fig. 17. Stereo pair of the Pencil boulder on Itokawa.

Fig. 18. Extracted image data from a November 12, 2005, wide-angle navigation frame and corresponding Itokawa L-maps.
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compression of the data, and significant phase changes across
the wide-angle frame, the software was able to perform the
correlations. A trajectory was fit to the data and used to solve
for the mass of Itokawa (Scheeres et al. 2006) with the result
GM = 2.36 × 10−9 ± 0.15 × 10−9 km3/s2. With the 0.0177 km3

volume from the GTM, the density becomes 2.0 g/cm3,
suggesting a porous interior.

It is certainly possible to use RADAR in the place of
LIDAR in conjunction with imaging for small body
navigation and surface characterization, and to map the
interior structure as proposed for Deep Interior. Work in this
area is currently being carried out (Safaeinili et al. 2006) and
the internal structure of Phobos probed. The model shown in
Fig. 7 is being used to remove surface reflections.   

BEYOND SMALL BODIES

Work is now under way to investigate the application of
these techniques to larger bodies such as the Moon. About 6%
of the Moon’s surface has been mapped using Clementine
data and SPC with over 14,000 L-maps at 500 and 220 m
resolution. The RMS position uncertainty of the control
points is about 240 m. The Clementine data is a case study in
how not to gather data for SPC. Most of the data near the
equator was purposely taken at low phase angle, and there
was no attempt to gather lower-resolution context images
either from higher orbits or oblique pointing. Some Lunar
Orbiter images have been used in this region to provide
variation in illumination. The situation poleward of 60° N or
S is a bit better, with larger stereo separation from oblique
viewing and occasionally some useful phase separation.
Figure 19 shows the Moon south of about 62.5° S latitude.
The left side is a digital elevation map referred to a 1737.4 km
sphere, with elevations ranging from −8.40 km to +7.76 km.

The right side shows the same data with a Laplacian filter.
Smooth areas near the pole and in some deep craters are
interpolated because of missing data due to shadowing. When
new images becomes available, data covering the existing set
of L-maps will be automatically extracted and correlated to
produce more precise topography and reduce the position
uncertainties.

Image-sequencing strategies for larger bodies differ
significantly between traditional stereo and SPC. The former
prefers Sun-synchronous orbits with both nadir pointing and
along-track off-nadir slews for stereo, in order to have a
consistent illumination. The latter requires differing
illumination, which can be accomplished in the previous
context with cross-track slews, and can handle much larger
stereo separation even out to the lit limb. Because of limited
stereo separation and a small number of images, traditional
stereo is dependent on precise knowledge of the spacecraft
state and is capable only of determining relative surface
topography at degraded resolution. SPC uses all images at all
resolutions, including those with oblique views, and provides
absolute topography at full resolution, even in featureless
areas where stereo does not work. It also yields improved
solutions for the spacecraft state.
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Fig. 19. DEM for lunar south polar region (left) and Laplacian filtered heights (right).
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