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Abstract–The thermodynamic properties of SiO2 are approximated over a range of pressures and
temperatures important under the extreme conditions achieved in impacts at typical solar system
velocities from 5 to about 70 km/s. The liquid/vapor phase curve and critical point of SiO2 are
computed using the equation of state (EOS) program ANEOS. To achieve this goal, two shortcomings
of ANEOS are corrected. ANEOS, originally developed at Sandia National Laboratories to describe
metals, treats the vapor phase as a monatomic mixture of atoms, rather than molecular clusters. It also
assumes a Morse potential for the expanded solid state. Neither of these assumptions is accurate for
geologic materials, such as SiO2, that contain molecular clusters in the vapor phase and are better
described by a Mie-type potential in the solid state. Using the updates described here, an EOS
adequate for numerical hydrocode computations is constructed that agrees well with shock data at
pressures up to at least 600 GPa and temperatures up to 50,000 K. This EOS also gives a good
representation of the liquid/vapor transition at much lower pressures and temperatures. The estimated
critical point parameters for SiO2 are Pc = 0.19 GPa, Tc = 5400K, ρc = 550 kg/m3.

INTRODUCTION

Impact cratering is now recognized as one of the
fundamental processes that shape solid bodies in our solar
system. In the past half century, a large amount of information
has been collected about impact events on the Moon, the
planets, and on Earth. Two of the most remarkable events in
Earth history, the origin of the Moon, and the extinctions at
the end of the Cretaceous era, are now attributed to large
impacts.

Numerical simulation of impacts by means of large
computer codes has become one of the major tools for
studying impact processes (experimental and field studies, of
course, remain vital sources of information). Although recent
progress in both computer hardware and the codes themselves
has greatly expanded this field, progress has lagged in the
accurate thermodynamic description of geologic materials at
the extreme pressures and temperatures encountered in
impacts. Part of this lag is due to the lack of good equation of
state (EOS) models tailored to geologic materials, rather than
metals. This paper is an attempt to narrow this gap by
focusing on one particularly well-studied geologic material,
SiO2, and one EOS model, ANEOS.

The thermodynamic properties of geological materials
are most efficiently represented on a pressure-temperature
(P-T) diagram, because these variables readily summarize

both the type of experimental conditions commonly used to
study minerals, and because they can readily be correlated
with conditions in the Earth’s interior. Figure 1a shows the
P-T phase diagram of SiO2 as it is currently known (Presnall
1995), up to pressures of about 15 GPa and temperatures of
3500 K. Figure 1b is the same data, but plotted in a form that
may be unfamiliar to earth scientists, as I have used a
logarithmic axis for pressure and raised the upper limit of
temperature to 7000 K. I have done this to capture the
probable position of the liquid-vapor phase transition and the
critical point where liquid and vapor merge indistinguishably
into one another. The computation of this curve is the main
subject of this paper, but a preview of the major results to
illustrate their relation to older work may be useful.

The upper limits of experimental investigation of earth
materials at pressures of tens of GPa and temperatures of a
few thousand K may seem extreme enough, but they are
actually very small compared to the pressures and
temperatures achieved in impacts at solar-system velocities.
At 20 km/s, which is typical of Earth-impact velocities,
impacts of silicate asteroids onto silicate target rocks typically
achieve pressures of hundreds of GPa and temperatures of
tens of thousands of degrees. These extreme conditions are
maintained only briefly, approximately for the length of time
required for a shock wave to traverse the impactor, and so
range from about 0.1 s for an impactor 1 km in diameter to
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seconds for dinosaur-killer asteroids 15 km in diameter. In
laboratory experiments, these conditions are maintained for
even briefer intervals, measured in microseconds or less,
which presents one of the challenges in relating experimental
studies to natural impacts.

Shock compression is a highly irreversible
thermodynamic process (Melosh 1989). The narrow shock
front that traverses both projectile and target conserves mass,
energy and momentum, but it does not conserve entropy.
Processes such as crushing, unreversed phase
transformations, friction, thermal conduction, and radiation
all act to deposit heat irreversibly in the compressed material.
The results of shock compression experiments are frequently
summarized by the Hugoniot curve, which is the locus of the
final states achieved after a shock wave has compressed the
initial material. Whether plotted as a function of pressure and
volume or the equivalent (through the Hugoniot equations)
particle velocity and shock velocity, the Hugoniot curve does
not represent a thermodynamic path, but simply the ensemble
of final states of a suite of shock compression events.

Once the shock compression event ends, rarefaction
waves from surrounding regions of low pressure propagate
into the compressed region and lower its pressure to ambient
conditions. This decompression is generally adiabatic and, to
a good approximation, isentropic. The series of pressures and
temperatures passed through on decompression can be
represented as a thermodynamic path on the traditional P-V or
P-T diagrams. As Fig. 2 illustrates, however, this path can be
very complex for a real substance such as SiO2, in which the
high-pressure coesite-stishovite phase transition or the liquid-
vapor transition can greatly complicate the release curve. For
this reason, a much better representation is a plot using the
unfamiliar coordinates of pressure and entropy on a P-S
diagram. To my knowledge, the first people to use such plots
were Kieffer and Delany (1979), in the context of volcanic
venting, a process that also approximates the isentropic
expansion of a complex mixture of substances. Once the

Hugoniot curve is drawn on a P-S diagram, along with the
phase boundaries of the substance it represents, the release
isentropes are simply vertical lines, and the course of
expansion subsequent to shock compression is easily
followed. Figure 7 illustrates this type of diagram for SiO2.

Knowledge of the thermodynamic cycle describing
shock compression and release is important for a number of
reasons. Understanding the aftermath of an impact, which
includes an inventory of how much material was vaporized,

Fig. 1. The phase diagram of SiO2 as currently known (data from Presnall 1995). The left diagram is plotted in conventional form with linear
pressure and temperature axes. The right contains the same data, but uses a logarithmic pressure axis that expands the low-pressure region and
permits the liquid/vapor phase curve and critical point to be shown on the same plot (but with a higher temperature limit). The ANEOS
computation from which this phase curve is derived is described later in this paper.

Fig. 2. Thermodynamic paths of the adiabatic release of shocked SiO2
from high pressure on a log P versus T diagram. The Hugoniot curve,
indicating the final result of increasingly strong shock compression
of quartz, is shown as a heavy line, while the thin solid lines are
decompression isentropes. The phase curve separating liquid and
solid phases is shown as a heavy line and the critical point by a heavy
dot. The numbers labeling the release adiabats are the particle
velocities in the shocked material in km/s. These velocities can be
interpreted as the outcome of an impact experiment between identical
materials at twice the particle velocity. Thus, the curve labeled 7 is
the release isentrope of a face-on impact between two quartz plates at
14 km/s. This isentrope approximately separates states that
decompress first to a liquid that boils when it reaches the phase curve,
from those so strongly shocked that they decompress as a vapor that
then condense when the isentrope reaches the phase curve. The gray
rectangle encompasses the entire pressure and temperature range in
Fig. 1a.
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melted, or just heated, is important to the environmental
effects of past and future impacts on the Earth or other
planets. Shocked-damaged minerals and quenched metastable
high-pressure phases such as coesite and stishovite are often
used as diagnostic indicators of impact events, but their role in
the impact process requires knowledge of how, when, and
where they formed. The thermodynamic properties of any
substance, such as SiO2, are summarized by its EOS. The goal
of this paper is to determine a reasonably accurate equation of
state of SiO2 that is valid over the entire range of conditions
that are likely to be important in an impact event. The major
reason for constructing this relationship is because it plays a
vital role in numerical modeling of impact events.

WHAT IS AN EQUATION OF STATE
AND WHY IS IT IMPORTANT?

A thermodynamic EOS is a functional relation that links
the thermodynamic variables describing a substance. Most
thermodynamics texts present the EOS as a relation linking
the pressure P, temperature T, and density ρ (or its inverse,
specific volume V = 1/ρ) in the form P(ρ, T). Each substance
and each state of a substance has its own unique EOS. Real
materials are so complex that it is not, in general, possible to
predict their equations of state from first principles: they must
be determined empirically, by measurement. Nevertheless, a
great deal of effort has been expended on approximating the
EOSs of real substances and in using semi-empirical fits to
extrapolate the measured data (e.g., Anderson 1995). EOS
studies form a large portion of the effort of many physicists,
geophysicists, and petrologists. However, most physicists are
interested in ideal, or especially “clean” materials
(specifically, not silicates or ices), and geophysicists and
petrologists are mostly interested in solids, or, at most,
partially molten materials. Only recently have high-speed
impacts brought the importance of the solid/liquid/vapor
transitions of silicates into prominence.

The most pressing need for better EOSs for geologic
materials comes from the use of computer codes called
“hydrocodes” (the name is mainly historical, referring to the
fact that the first such codes treated materials as strengthless
fluids. Modern “hydro”codes incorporate a variety of
sophisticated material strength models and the name is no
longer an apt description). These codes, which have been
constructed over many years, are currently used to model the
effects of impacts and explosions both at the laboratory scale
and at scales much larger than possible in laboratory
simulations (e.g., the Moon-forming impact). The use of such
codes permits prediction of the changes in temperature,
pressure, and velocity of materials involved in an impact.

The numerical simulation of impact processes rests on
two fundamental pillars. One pillar is Newton’s laws of
motion (no solar-system impact process requires
consideration of relativistic velocities!). Hydrocodes
implement these equations in various ways, depending on
whether the code is Eulerian, Lagrangian, or one of the newer
smooth particle hydrodynamics (SPH) versions, but this has
become a well-understood part of impact simulations
(Anderson 1987).

The other basic pillar is the EOS, relating the pressure P
to density ρ and internal energy E of each computational cell
or region, or P(E, ρ). This differs from the usual textbook
relation P(ρ, T) because the mechanical part of the code
computation most readily determines E, not T. Although this
structure is a bit non-standard, there is a close connection
between the two representations and it is usually possible to
translate from one to another, depending on the particular
computational method used.

Figure 3 illustrates the essentials of a hydrocode
computation. For simplicity I have chosen a one-dimensional
model (most modern codes work in three dimensions) and for
definiteness I have illustrated a Lagrangian type of
computation, in which material remains in the same cell
throughout the computation. The region to be simulated is

Fig. 3. Schematic illustration of a one-dimensional Lagrangian hydrocode computation. A single cell of this computation at an initial time t is
shaded on the left half of the figure. The cell is bounded by two vertices shown as heavy dots. Position x, velocity v, and mass m are defined
at each vertex. Cell-centered quantities are pressure P, internal energy E, and density ρ. The code advances from time t to t + Δt by using
Newton’s laws of motion to compute the acceleration of the vertices and hence the new velocity, cell volume , density, and internal
energy, after which the solution cycle begins again, each time using the EOS to relate the new pressure to density and internal energy.

x'i 1+ x'i–
P' ρ' E',( )
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divided into a large number of “cells,” which are separated by
“vertices.” Quantities in the computation are either cell-
centered, such as pressure, energy, and density, or vertex-
centered, such as position and velocity. Mass is typically
associated with both cells and vertices. In this example, the
vertex mass would equal the sum of half the mass located in
each cell adjacent to the vertex. The Newtonian dynamical
relation force = mass × acceleration is then be applied to

each vertex. At the beginning of a time cycle the velocity and
position of each vertex is known, as is the energy and density
in each cell. The pressure in the cell is then computed from
the EOS P(ρ, E). The force on each vertex is then the sum of
the pressures in each adjacent cell times the area of the
interface. New velocities and positions are computed from
acceleration = force/mass, the change in density of the cell is
computed from its initial mass and change of volume, and a
new internal energy is computed from the relation work =
force × distance. The cycle is then repeated until the final
result is achieved. Most impacts occur so quickly that thermal
conduction is not important, and the temperatures reached in
solar system impacts are not high enough to consider heat
transfer by thermal radiation.

The central role of the EOS is evident from this
description. The problem is that very few accurate EOSs exist
for geological materials, and at present this is one of the main
factors limiting our ability to numerically model solar system
impacts. In Appendix II of Impact cratering: A geologic
process (Melosh 1989), I summarized the EOSs in common
use, along with their virtues and limitations. Most of the past
effort on EOSs at high pressures and temperatures has
focused on metals, because engineered structures are mostly
made from metals. In this paper, I focus on a well-defined
geologic material, SiO2, not because large parts of the Earth
and planets are made mainly of it, but because there is more
detailed thermodynamic data on SiO2 than on nearly any
other geologic material. My philosophy is that if I can achieve
an adequate description of SiO2 over the whole range of
interest for impacts, then the methods used for this specific
material may be applied more generally to other, more widely
distributed, geologic materials such as basalt or water ice
(ANEOS parameter sets already exist for these materials, as
well as for forsterite, but the older versions of ANEOS have
drawbacks that are alleviated in the work described below).
The basic foundation for this EOS is the computer code
ANEOS. I begin with a discussion of the properties of SiO2 at
high pressures and temperatures. This will provide a
foundation for understanding the modifications that must be
incorporated into ANEOS. I then present a detailed
discussion of the structure of ANEOS, its virtues, and its
drawbacks for the representation of geologic materials. This
section will also describe cures for two of its major problems.
I then show how the upgraded ANEOS provides a greatly
improved representation of the SiO2 EOS.

SiO2 AT HIGH PRESSURES AND TEMPERATURES

The currently accepted phase diagram of SiO2 is
summarized in Fig. 1. Much of the detail of the various phases
is too complex to be adequately described by a hydrocode
EOS, nor is it needed for present modeling purposes. As
shown in Fig. 5, only the large density change across the
quartz-stishovite phase transformation shows up in the

Fig. 4. Species present in the vapor phase of SiO2 as a function of
temperature for three pressures. a) P = 100 Pa. b) P = 0.1 MPa (one
bar). c) P = 0.1 GPa. Note that the vapor phase is predominantly SiO
plus O2 just above the vaporization temperature, with an admixture
of about 20 mole% of SiO2. At higher temperatures, these molecular
clusters break down into atoms so that the high-temperature limit is
a mixture of monatomic Si and O gases. Computed from the HSC
Chemistry program 5.0 (Roine 2002), assuming ideal gases in the
vapor phase.
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Hugoniot plot. On the other hand, very little is known about
the behavior of SiO2 over the very large temperature and
pressure range that includes vaporization, the critical point,
and high-pressure supercritical fluid regimes.

The best previous work on SiO2 in these regimes is the
paper by Ahrens and O’Keefe (1972). Basing their work on
the then-available thermodynamic data, they proposed that
the vapor phase of SiO2 is mainly composed of the diatomic
molecules SiO and O2. Figure 4 shows the result of a modern
equilibrium thermodynamic computation of the species in the
gas phase over liquid SiO2 for three pressures, using the
commercial HSC 5.0 chemistry package (Roine 2002). The
gas phase is treated as ideal, so the computation is not valid
near the critical point. Although the dominant species are
indeed SiO and O2, there is about 20 mole% additional SiO2
gas in the mixture. This admixture alters the slope of the
liquid/vapor phase curve in Fig. 8 below and yields an
apparent enthalpy of vaporization of 481 kJ/mole derived
from the phase curve of Hidalgo (1960), 484 kJ/mole from the
detailed analysis of Schick (1960) and 425 kJ/mole from a fit
to the low-pressure data of Mysen and Kushiro (1988), rather
than the 536 kJ/mole used by Ahrens and O’Keefe (1972).

The SiO2 phase curves of Schick (1960) and Hidalgo
(1960) deserve some comment here. The phase curve
published by Hidalgo appears only as an appendix of his
paper, which offers no information about how it was obtained.
The paper of Schick is a very careful and detailed
thermodynamic analysis of the phase curve from a
combination of theory and experimental studies. Both papers
appeared in the same year and both men worked at Avco
Corporation at the time, so there may have been some
connection between these studies. Schick explicitly included
the multispecies equilibrium in the gas phase, while Hidalgo’s
phase curve is numerically similar, but not identical, to the
SiO pressure versus temperature relation of Schick. Insofar as
Hidalgo did not describe the origin of his curve, the analysis
of Schick is preferred here.

There is a long history of attempts to measure or compute
the liquid-vapor phase curve of both pure SiO2 and SiO2-rich
compositions at atmospheric pressure and below. The vapor
pressure over silicate melts of tektite compositions was
measured by Walter and Carron (1964) and Centolanzi and
Chapman (1966). Schaefer and Fegley (2004) performed
thermodynamic computations of silicate evaporation at low
pressure, using thermodynamic data from a number of Russian
investigations (Shornikov et al. 1998a, 1998b, 1998c). 

Figure 4 shows that at sufficiently high temperatures
(near 6000 K at 1 bar pressure) the gas phase becomes
predominantly monatomic, but there is a broad range of
temperature above the vaporization temperature at about
3200 K where the gas is a complex mixture of mainly
diatomic species. Figure 9 illustrates another aspect of the
HSC computation, in which the entropy of the gas phase at
1 bar is compared to the ANEOS computation described

below. The entropy also rises rather steeply above the
vaporization temperature, reflecting the dissociation of the
diatomic clusters into a monatomic gas mixture.

THE CRITICAL POINT OF SiO2

An important aspect of the EOS of any fluid is the
location of its critical point. At pressures above the critical
pressure, liquid and vapor states merge together. Separate
liquid and vapor phases can only exist at pressures below the
critical point. In a typical hypervelocity impact, the initial
shock pressures and temperatures greatly exceed the critical
point of any known substance. The adiabatic pressure release
following shock compression initially proceeds through a
supercritical fluid, and only as the pressure drops below the
critical point can separate liquid and vapor phases come into
existence. Because the gas phase can drive vigorous
expansion of the liquid/vapor mixture, it is important to know
when a vapor phase appears and how much of it forms at a
given pressure and temperature. Furthermore, any partition of
chemical species between the gas and liquid phase can take
place only when both are present, so the critical pressure Pc

and temperature Tc are of great significance for the outcome
of high-speed impact processes.

The critical point of SiO2 has never been measured
experimentally. Several estimates of its location have

Fig. 5. Comparison between the Hugoniot curve computed for SiO2
by the ANEOS equation of state described in this paper and data from
Trunin et al. (1971), Wackerle (1962), and Ahrens and Rosenberg
(1968). The Hugoniot is shown in the convenient coordinates of
shock velocity versus particle velocity, which are equivalent to the
more conventional coordinates pressure, specific volume through the
Hugoniot equations (Melosh 1989). The computed curve agrees well
with data above a particle velocity of 1 km/s (about 15 GPa), but at
low velocities it disagrees with the Trunin et al. data. This
discrepancy may be explained by the fact that the Trunin et al.
experiments used polycrystalline quartz, while the others used single
crystals, although reaction kinetics may also be playing a role (see
text for further discussion).
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appeared in the literature and, if they are correct, indicate that
the pressure and temperature of the critical point are beyond
our present ability to study experimentally. However, for a
successful EOS, a good approximation to its location is
necessary.

Ahrens and O’Keefe (Ahrens and O’Keefe 1972) used a
hard-sphere model originally derived for metals (Young and
Alder 1971) to estimate a critical pressure of 0.642 GPa and a
temperature of 13,500 K (see Table 1). They assumed that the
dominant vapor species are the diatomic molecules SiO and
O2, from which they derived an enthalpy of vaporization of
803.7 kJ/mole of SiO + 1/2O2 from the thermodynamic data
then available. A recalculation using the same method, but
with data from the current NIST/JANAF tables (Chase 1998),
gives a similar result for pressure, but a temperature about
1000 K lower (Table 1).

Several empirical methods exist for estimating the
critical point. Most of these are based on the “law of
corresponding states,” that asserts that the thermodynamic
properties of all substances are the same when expressed in
“reduced” units  of pressure divided by the critical pressure
P/Pc and temperature  divided  by  the  critical temperature,
T/Tc. Furthermore, the law implies that product of critical
parameters, Pc/RρcTc, is a universal constant called the
“critical ratio,” which is approximately equal to 0.3
(Hirschfelder et al. 1964). The Van der Waals equation
predicts that this ratio is 3/8 = 0.375, which is higher than
observed for most substances. Unfortunately, this relationship
is somewhat ambiguous because one must specify the
molecular weight of the substance to evaluate it. Ahrens and
O’Keefe assume that both the liquid and vapor state near the
critical point are composed of SiO plus O2 clusters, so that the
mean molecular weight is 40 gm/mole. However, most

tabulations of this ratio use the formula weight of the
substance and do not attempt to guess what form the
molecular clusters take. Table 1 thus evaluates the critical
ratio at both molecular weights.

“Guldberg’s rule” (Hirschfelder et al. 1964, p. 234ff)
states that the critical temperature of a substance is
approximately 3/2 of the vaporization temperature at 1 bar,
which yields a Tc about 4690 K for SiO2 (using a vaporization
temperature of approximately 3127 K), very different from
the hard-sphere model of Ahrens and O’Keefe. A method due
to Pauling (1988, p. 338) is based on the heat of vaporization
and yields a critical point close that of Ahrens and O’Keefe
(see Table 1). Both Guldberg’s rule and Pauling’s method
implicitly assume that either the boiling point or melting point
at 1 bar occur at the same value of the reduced pressure and
temperature for all substances—i.e., that the critical point of
all materials is nearly the same. Clearly, such rules of thumb
may be badly violated when applied to a material, such as
SiO2, whose critical point differs so greatly from more
familiar vapors.

In the process of constructing an ANEOS equation of
state for SiO2, I found it impossible to achieve the Ahrens and
O’Keefe estimate of the critical point and at the same time
match the observed liquid/vapor saturation curve. The
problem is that, on an Arrhenius-type plot of log P versus 1/
T, Ahrens and O’Keefe’s critical point does not lie on the
extrapolation of the liquid/vapor saturation curve. However,
the critical point must lie on this curve. For most materials the
saturation curve is nearly a straight line on an Arrhenius plot.
I thus tried a new approach in which I used the empirically
validated liquid/vapor saturation curve of Schick (1960),
linearly extrapolated the relation between P and T on an
Arrhenius plot, assumed that the critical ratio is exactly equal

Table 1. Critical point parameter estimates for SiO2.

Method
Pressure 
(GPa)

Temperatur
e
(K)

Density 
(kg/m3)

Molecular weight
(gm/mole) Critical ratio

Ahrens and O’Keefe (1972) 0.642 13,500 637 40
60

0.36
0.54

New Young and Adler (1971) 0.60 12,400 650 40
60

0.36
0.54

Pauling (1988), SiO + ½ O2 0.652 14,050 595 40 0.37
Pauling (1988) SiO2 0.322 12,990 595 60 0.30
Guldberg’s rule 
(Hirschfelder et al. 1964)

0.243
0.162

4690
4690

839
839

40
60

0.30a

0.30a

Bobrovskii et al. (1974) 0.54 5400 741 40
60

0.65
0.97

Vapor curve extrapolation, this work 0.219
0.140

5397
5181

650a

650a
40
60

0.30a

0.30a

ANEOS, Morse potential 0.0239 5071 72.6 40
60

0.30
0.47

ANEOS, Mie potential, no critical point adjustment 0.444 6214 690 40
60

0.50
0.75

ANEOS, Mie potential, including critical point adjustment 0.189 5398 549 40
60

0.31
0.47

aAssumed value.
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to 0.3, and accepted a critical density of 650 kg/m3, close to
the estimates of all methods of evaluating the critical point
parameters. The result, listed in Table 1, agrees reasonably
well with that computed from ANEOS. 

This method does not make any implicit assumptions
about the position of the critical point and guarantees that the
critical point lies on the extrapolation of the phase curve. It
thus seems superior to the previous rules of thumb used to
estimate the critical parameters, as well as to the Young and
Adler (1971) hard-sphere model that was, after all,
constructed for metals, not oxides, and seems to fail badly for
SiO2 (the authors also note that it fails badly for some metals
as well).

Note that the initial results from ANEOS did not yield a
critical ratio near 0.3, even for an assumed molecular weight
of 40. However, an adjustment of the shape of the cold-
compression curve, described below, succeeded in adjusting
the critical parameters such to yield a critical ratio nearly
equal to 0.3. Although the Morse potential computation
reported there does give a critical ratio near 0.3 without any
adjustments, the vapor curve on the P-S plot in Fig. 7 is
clearly pathological, having a shape that approaches a double-
peaked curve, which would give an unrealistic multiple
critical point.

THE ANEOS EQUATION OF STATE

The ANEOS equation of state was developed at Sandia
National Laboratories, principally by Sam Thomson, between
about 1970 and 1990 (Thompson 1973, 1990; Thompson and
Lauson 1972a, 1972b). The name ANEOS emphasizes that it
is based on a series of ANalytic approximations to various
terms in the EOS. ANEOS grew out of what was originally a

tabular EOS that had analytic extensions to regions of density
and temperature not covered by the tables (Thompson and
Lauson 1972a). In later work (Thompson and Lauson 1972b),
Thompson evidently decided that the difficulties of locating
phase boundaries in a purely tabular EOS were so severe that
an approach using analytic functions throughout offered
many advantages in constructing a thermodynamically
consistent EOS.

The basic approach in ANEOS is to start with an analytic
expression for the Helmholtz free energy, F(ρ, T). Because
each hydrocode time cycle begins with freshly computed
values of density ρ and internal energy E, this is not precisely
the form most useful for hydrocode computations. However,
a simple Newtonian iteration of the temperature T to find a
target value of the internal energy E is typically very quick
and reliable because the computation itself determines the
slope dE/dT (equal to the heat capacity CV) at constant
density. The heat capacity is invariably positive and non-zero,
so the iteration almost never fails. As a bonus, this method
also returns the temperature, which is not readily accessible
from many widely used hydrocode EOS, such as the Tillotson
equation (Tillotson 1962) or a Mie-Gruneisen EOS (Zharkov
and Kalinin 1971).

The Helmholtz free energy F is the most natural
thermodynamic potential to use in impact computations
because temperature T and density ρ are its “fundamental

Fig. 6. The cold compression portion of the EOS, emphasizing the
expanded region with density less than the cold reference density ρ00.
The plot shows three values of the Mie exponent a and the Morse
potential. Note that the energy integral, Equation 3, of all these curves
is the same, in spite of appearances. The 1/η2 term in Equation 3 puts
a strong emphasis on the behavior of the cold pressure near η = 0,
which is different for each curve.

Fig. 7. Pressure-entropy representation of the ANEOS equation of
state. The heavy solid line is the Hugoniot curve. The thin solid line
is derived from the ANEOS parameters for the Mie cold potential in
Table 3. The computation shown by the short dashed line uses the
same input parameters, but employs the Morse potential illustrated in
Fig. 6. Its behavior near the critical point is pathological, showing the
incipient formation of a second peak. The long dashed line illustrates
the result of omitting molecular clusters (in this case, the Mie
exponent a = 1.5 and Evap was increased to 2.08 × 107 J/kg to give the
correct vaporization temperature). The vapor phase entropy is much
too high because in this case the vapor phase is a monatomic gas of Si
and O atoms. The filled circle and square are the entropies of the
liquid and vapor phases, respectively, from the HSC computation
listed in Table 2. The long vertical arrow at entropy 4789 J/kg-K
indicates the release path from shock compression at a particle
velocity of 7 km/s, and indicates the thermodynamic path traversed
by the expanding gas cloud shown in Fig. 11.
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variables,” such that dF = −SdT + P/ρ2dρ, where S is entropy
and P is pressure (Denbigh 1971). It thus follows that the
entropy and pressure of any material can be derived from F by
the equations:

(1)

 

Other useful thermodynamic functions, such as the
internal energy E = F + TS, Gibbs energy G = E + P/ρ − TS,
heat capacity CV, and the derivatives dP/dρ and dP/dT can
easily be derived from these fundamental equations.

ANEOS separates the Helmholtz free energy into three
parts, an approximation justified by the separability of the
wave function into nuclear and electronic components
(Zel’dovich and Raizer 1967; Zharkov and Kalinin 1971):

(2)

The first term, Fcold, contains the parts of the atomic
interactions that do not depend on temperature, such as the
interatomic potential. Fthermal contains the temperature-
dependent parts of the interatomic forces. Thompson used the
subscript “nuclear” for this term, but this terminology is
misleading to an earth scientist—it does not refer to nuclear
energies, which ANEOS does not evaluate, but to the thermal
energy of collective motion of the nuclei and their associated
electrons. The “thermal” term vanishes when T = 0 and
approaches a perfect gas EOS at sufficiently high pressure

and low density. Felectronic contains energies related to
ionization of atoms and is only important at very high
temperatures and low densities.

Because pressure and entropy are linear functions of F
(Equation 1), they can also be decomposed into a sum of three
terms (two in the case of entropy, because Fcold depends only
on density, not temperature). The original ANEOS equation
of state was developed to describe metals, not geologic
materials, and the choices of analytic approximations to the
three terms in Equation 2 were made specifically for metals.
However, geologic materials are often complex chemical
compounds lacking metallic bonds, and these approximations
may not work well for them. Experience in using and
modifying ANEOS over the past several years has indicated a
number of areas that need alteration for geologic materials.

The most serious defect of ANEOS is that it treats the gas
phase as a mixture of perfect monatomic gases. The vapor
phase of such a monatomic gas has very high energy and
entropy compared to a more realistic gas containing
molecular clusters. This means that very little vapor may be
generated in a hydrocode computation that uses ANEOS
because of the high energetic cost of producing it. Problems
due to this lack of vapor production have been noted in a
number of hydrocode computations, and directly inspired the
alterations to ANEOS described in this paper (Melosh and
Pierazzo 1997).

In addition to modifications of the “thermal” part of the
Helmholtz free energy, there are also changes needed in the
“cold” term. To date, no modifications to the “electronic”
terms have been required. The following sections briefly
outline the changes necessary to the basic ANEOS equation
of state.

Fig. 8. Summary plot of the saturated vapor curve of SiO2 on an
Arrhenius plot of pressure versus 1/T. The legend on the plot
summarizes the ANEOS input parameters for the computation of the
heavy line. The circles are low-pressure data from Mysen and
Kushiro (1988), the crosses are derived from the vapor phase curve of
Schick (1960), and the squares are chemical equilibrium
computations from HSC 5.0. The small dots are from a computation
by Bobrovskii et al. (1974), which are based on a model similar to the
present modified version of ANEOS but fit to older, somewhat
different thermodynamic data on SiO2.
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Fig. 9. Entropy of SiO2 as a function of temperature at 1 bar pressure.
The small squares are the HSC 5.0 computation and the solid line is
from ANEOS. Note only a small step in the HSC occurs at the high
cristobalite melting point of 1996 K, while a large step occurs at the
vaporization temperature. ANEOS and HSC do not match well
between about 4500 and 6000 K because of the assumption that only
one binding energy characterizes the decomposition into Si and O2,
whereas two are actually involved. Nevertheless, ANEOS gives a
good average representation of the curve over most of its range.
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“COLD” TERM IN THE HELMHOLTZ 
FREE ENERGY

The “cold” term of the ANEOS equation of state is
important not only for densities larger than the reference
density at zero temperature, ρ00, but also for densities much
lower than those considered normal. In such “expanded”
states, where the density ratio η = ρ/ρ00 < 1, this term
represents the energy of interaction of atoms located farther
apart than their low-temperature and pressure-equilibrium
positions.

The “compressed” region, η > 1, is well-treated by the
original ANEOS and provides a good representation of the
high-pressure EOS, as demonstrated by Fig. 5, which shows a
good fit between the observed Hugoniot shock compression
curve and the ANEOS prediction. The only caveat in this
generally good fit is that ANEOS treats high-pressure phase
transitions as a modification of the cold compression term
alone. This means that the pressure of the phase transition
depends only slightly on temperature, a result that disagrees
with the obvious slope of the coesite-stishovite phase curve in
Fig. 1. The fixed-pressure phase transformation also prevents
the introduction of separate liquid and solid phases in ANEOS
(the liquid/solid phase boundary is too difficult to locate), so
the condensed liquid and solid states cannot be distinguished
when a high-pressure phase transformation is introduced.
Furthermore, as noted by Ivanov (2003), the lack of thermal
differences between the high-pressure and low-pressure
phases means that, among other things, the thermal expansion
coefficient of the high-pressure phase is the same as the low-
pressure phase. This unrealistic result sometimes leads to
problems in defining the initial conditions in geological
simulations where gravitational overburden pressures are
significant. The treatment of high-pressure phase transitions
is an area that obviously needs improvement in ANEOS. To
be fair, the author of ANEOS, Sam Thomson, was unhappy
with this treatment and stated that it was “provisional” until a
better formulation was implemented (Thompson and Lauson
1972b). Unfortunately, Thompson died before this was
completed.

The expanded region of the cold compression term,
η < 1, plays a surprisingly important role in the liquid/vapor

transition. The energy of separation, which we denote here as
the vaporization energy, Evap, is the total energy needed to
separate the molecules composing the liquid or solid phase to
great distances from one another at zero temperature (in the
original ANEOS, in which molecules did not exist, this was
the energy to separate the atoms from one another. In the
present molecular implementation, this energy of
vaporization does not include the molecular binding energy).
The vaporization energy is thus:

 (3)

where ρ00 is the density of the solid at zero pressure and
temperature. The cold contribution to the pressure Pc(ρ)
must clearly be negative (tensional) in this region if Evap is
to be a positive number. This energy, in conjunction with
the heat capacity of the solid and vapor states, determines
the vaporization temperature (boiling point at 1 bar) of the
material. The cold pressure must, however, vanish at
sufficiently low density if the material is to act like a gas at
low density. Pc(ρ) must thus vanish at ρ = ρ00 and in the
limit ρ → 0, but is negative in between. There is thus a
pressure minimum at some intermediate density smaller
than ρ00.

One of the most important roles of the pressure minimum
in the expanded state is to create a trough in the surface of the
Gibbs free energy. This is the “plait” in the energy surface
that occupied much of Van der Waals career (Sengers 2002).
No other term in the EOS creates such a minimum. The
density of the liquid and vapor states are determined at a given
temperature by the equality of both the total pressure and
Gibbs energy on either side of this minimum, so its existence
is the only feature of the thermodynamic surface that assures
a separation between these two states. In addition, the position
of the critical point is determined by the interaction between
the minimum in the cold-pressure curve and the thermal
contributions to the liquid and vapor phases, so that the cold-
expanded pressure curve is of overriding importance in
determining the liquid/vapor phase curve.

The original version of ANEOS incorporated a Morse
potential to describe expanded states (Thompson and

Table 2. Target and final thermodynamic properties of SiO2.
Property Source Target ANEOS result

Tvap, vaporization temperature at 1 bar, K NIST/JANAF (Chase 1998)
Schick (1960)
Hidalgo (1960)
Ahrens and O’Keefe (1972)
Barin (1989)

3127
3070
3141
3175
3223

3157

Sliq, liquid entropy at 1 Bar, J/kg-K HSC (Roine 2002) equilibrium chemistry computation
NIST/JANAF (Chase 1998)

3447
3507

3443

Svap, vapor entropy at 1 Bar, J/kg-K HSC equilibrium chemistry computation
NIST/JANAF (Chase 1998)

7237
7267

7240

PΔ, triple point pressure, Pa Pressure from Schick (1960) vapor curve at Tmelt = 1996 K
Least squares fit to Mysen and Kushiro (1988) at 1996 K

3.2
1.9

2.7

Evap

Pc ρ( )

ρ2-------------- ρd
0

ρ00

∫–=
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Table 3. Input parameters for ANEOS SiO2.
Input Description Source Value

Nelem Number of elements in SiO2 Si and O 2
Type Type of EOS 4 is a full solid/liquid/vapor treatment 4
Rho0 Density at reference condition Alpha quartz (Weast 1972) 2.65 gm/cm3

Temp0 Reference temperature Standard temperature 0 (defaults to 273 K)
Press0 Reference pressure Standard pressure 1 bar
Cbulk Bulk sound speed in reference state Marsh (1980) 3.68 × 105 cm/s
Grun Gruneisen ratio in reference state This work; see text 0.618
Tdebye Debye temperature, average over quartz, 

cristobalite and liquid to 3100 K
Fit, this work. Data from HSC chemistry 
computation.

650 K 
(uses full Debye treatment)

S Slope of particle-velocity, shock velocity 
curve for quartz

Marsh (1980) 2.12

3*C24 High pressure exponent Extrapolates to Thomas-Fermi limit 
at ultra-high pressure

2

Evap Energy of vaporization Fit, this work 1.237 × 1011 erg/gm
Tmelt Melting temperature (high cristobalite) NIST/JANAF (Chase, 1998) 1996 K
C53 Critical point adjustment This work 0.8
C54 Critical point adjustment This work 6 × 1011 dyne/cm2

H0 Thermal conduction Not used 0
C41 Thermal conduction Not used 0
Rhomin Minimum density This work 0 (defaults to 0.9 rho0)
D1 Density at onset of high pressure phase 

transition (hppt)
This work, based on data in Marsh (1980) 3.5 gm/cm3

D2 Density at completion of hppt This work, based on data in Marsh (1980) 4.3 gm/cm3

D3 Pressure at center of hppt This work, based on data in Marsh (1980) 2.1 × 1011 dyne/cm2

D4 dP/dη at end of hppt This work, based on data in Marsh (1980) 1.8 × 1012 dyne/cm2

D5 d2P/dη2 at end of hppt This work, based on data in Marsh (1980) 6 × 1012 dyne/cm2

Hfusion Enthalpy of fusion Not used 0
Rholiq Liquid density Not used 0
Up Cold compression limit Not used 0
L0 Cold compression limit Not used 0
Alpha Liquid Gibbs surface shape parameter α Not used 0
Beta Liquid Gibbs surface shape parameter β Not used 0
Gamma Liquid Gibbs surface shape parameter γ Not used 0
C60 Interpolation parameter Not used 0
C61 Interpolation parameter Not used 0
C62 Liquid/vapor convergence parameter, C60 

= (1 − b)
This work 0.5

IonFlag Ionization model 0 = Saha, 1 = Thomas-Fermi tabular 0
Eshift Reactive chemistry, energy shift Not used 0
Sschift Reactive chemistry, entropy shift Not used 0
Atomsa Number of atoms in molecular clusters, 

n + m
This work 2

Ebinda Molecular cluster binding energy, EB Fit, this work 5 eV
RotDOFa Number of rotational degrees of freedom, 

nrot

Diatomic molecule 2

Rbonda Length of molecular bond, R Fit, this work 1.5 × 10−8 cm
VibDOFa Number of vibrational degrees of freedom, 

nvib
Diatomic molecule 1

Theta_viba Vibrational Debye temperature Fit, this work 2000 K
LJ_flaga Flag for Mie potential, or Morse potential Fit, this work 1
a_expa Power in Mie potential, a Fit, this work 1.7
Z(1) Atomic number of element 1 O 8
COT(1) Atomic fraction of element 1 O makes up 2/3 of atoms in SiO2 0.66667
Z(2) Atomic number of element 2 Si 14
COT(2) Atomic fraction of element 2 Si makes up 1/3 of atoms in SiO2 0.33333

aNew entries created by current modifications to ANEOS.



A hydrocode equation of state for SiO2 2089

Lauson 1972b). Although this is a generally good
description of the interaction of atoms held together by
metallic bonds, it is not a good approximation for molecular
binding forces, which are better described by a Lennard-
Jones type of potential (Kittel 1971). Moreover, experience
with the Morse potential for geologic materials has shown
that it often results in a critical point that is obviously in the
wrong place, and cannot be corrected by the facilities
provided in ANEOS. Figure 7 below illustrates the
pathologic shape of the phase curve on a P-S plot when the
Morse potential is used for SiO2. This is pathologic because
of its broad top and close approach to a double peak. If an
actual double peak were to develop, no unique critical point
could be defined.

Russian studies of the interatomic potential (Bobrovskii
et al. 1974; Zharkov and Kalinin 1971) suggest that for η < 1,
the cold pressure can be written in a form first proposed by
Mie (1903):

 (4)

where m > a to ensure that Pcold is always tensional. Note that
Pcold = 0 in the limits of η = 0 and 1, as it must. Although
Equation 4 closely resembles the Mie potential (of which the
widely used Lennard-Jones potential is a particular case), it is
really somewhat different because it is limited to densities
lower than the reference (equilibrium) density. The exponents
in this fit may thus differ from the exponents that fit molecular
binding potentials most accurately because they are skewed to
fit the pressure beyond the equilibrium separation.
Nevertheless, in this paper I will refer to potentials of this type
as “Mie potentials.”

The constants C and m in Equation 4 are determined by
the energy  integral,  Equation  3, and the continuity of
dPcold/dη at η = 1, where it must match the slope of the cold-
pressure curve for compressed states to yield the observed
low-pressure bulk modulus. Thus, a is the only adjustable
constant. The value of a reflects the long-range behavior of
the interatomic potential (Zharkov and Kalinin 1971). For a
solid bound mainly by Coulomb forces, a = 4/3, whereas for a
molecular solid bound by Van der Waals forces, a = 7/3. A
Lennard-Jones 6-12 potential also predicts a = 7/3. Here I
choose a nominal value for a of 5/3 or about 1.7 after a similar
choice by Bobrovskii et al. (1974), but any value can be
chosen between about 1.2 and 3.0. The effect of varying a is
to shift the position of the minimum of Pcold and thus of the
critical point. The choice of a also affects the slope of the
liquid/vapor phase curve because the vaporization energy (3)
is a function of the exponent.

The problem of adjusting the critical point has been with
ANEOS since its inception. Thompson and Lauson (1972b)
included a term that can be added to the cold pressure in
expanded states to move the critical point. This term was
constructed so that it does not alter the separation energy, and

so does not greatly affect the thermodynamic properties of the
material far from the critical point. It thus cannot change the
slope of the liquid-vapor phase curve. However, it does alter
the shape of the free-energy curve and thus can change the
critical ratio, a feature that was used in this study (Table 3
defines the adjustment parameters as inputs C53 and C54).

Figure 6 shows the cold-pressure curves for SiO2 with
various choices of the constant a as well as the curve for the
original Morse potential. Although all of these curves look
very similar (as they must, because of the constraints on Pcold
at both η = 0 and η = 1), there are clear differences in the
positions of the minima. These differences are strongly
reflected in the position of the critical point, so that
adjustment of a is of great importance for constructing a
successful EOS.

A somewhat technical point is that the density ρ0 of the
normal 1-bar, 273 K reference state of a material is slightly
less than the cold reference density ρ00, so that the reference
state is actually in the expanded η < 1 region of the cold
pressure. The internal interpolation used by ANEOS to derive
cold-pressure parameters from the inputs reference density
and bulk modulus must thus be substantially altered when the
Mie potential is used.

THE “THERMAL” TERM IN THE HELMHOLTZ 
FREE ENERGY: MOLECULAR CLUSTERS

The “thermal” contribution to the Helmholtz free energy
represents the temperature-dependent portion of the free
energy in a material that ranges from a dense solid at low
temperatures and high pressures to a dissociated gas at high
temperatures and low densities. Although an equation good
for any material over this broad range does not exist, an
approximation adequate for hydrocode computations can be
constructed by combining the free energy of a generalized
Deybe solid with the monatomic gas limit. ANEOS thus
employs the approximation:

Pcold C ηm ηa–( )= 0 η 1<≤

Fig. 10. Comparison of the measured shock temperatures of quartz
and fused silica from Lyzenga (1983) to the ANEOS computation.
Although the data show a wide scatter, perhaps due to the onset of
melting on the Hugoniot at about 100 GPa (see text discussion),
ANEOS seems to do a good job of approximating the observations.
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 (5)

where θ is the Debye temperature (taken to be a function of
density but not temperature in ANEOS), N0 is the total
number of atoms per unit mass, k is Boltzmann’s constant,
and D is the Debye integral, defined as:

 (6)

The dimensionless function ψ(ρ, T) plays the role of an
interpolation parameter that connects the solid and vapor
states. This function was first defined in the Russian equation
of state literature (Kormer et al. 1962), where it was used for
a slightly different purpose, as a measure of the gas-like
character of a substance. It is defined as:

 (7)

where C13 is a dimensional constant that is chosen so that
Equation 5 extrapolates to the free energy of a monatomic gas
at high temperature. The constant b in Equation 5 is a
convergence parameter (0 < b ≤ 1) recently introduced by
Thompson (Thompson 1990) to improve the liquid/vapor
phase convergence. It controls the rate at which ψ induces a
transition between the solid and vapor limits. A value b = 0.5
is essential for the convergence of the SiO2 EOS. If b is too
large, Equation 5 may induce a second minimum in the Gibbs
free-energy surface, leading to the unphysical occurrence of
two critical points. 

The function ψ is much less than 1 at low temperatures, and
in this limit, Equation 5 extrapolates to a Debye solid. It
vanishes at T = 0, and at temperatures well above the Debye
temperature the  first two terms approach [3ln(θ/Τ) − 1]. At
high temperatures or low densities, ψ is much larger than 1,
and in this limit the logarithm of ψ cancels the high-
temperature Debye terms and, with a suitable choice of C13,
Equation 5 becomes equal to the Helmholtz free energy of a
mixture of perfect, monatomic gases:

where Nl is the number of atoms per unit mass of type l, ml is
the mass of each atom, and h is Planck’s constant.

The challenge in generalizing this set of equations to
contain molecular clusters is to leave the Debye terms
unaffected while changing the way in which the gas phase is
described. This amounts to finding a modification of ψ that
preserves the low-temperature behavior, while extrapolating
to a molecular gas at intermediate temperatures. Of course, at
sufficiently high temperatures, the result should finally
extrapolate to Equation 8. Although numerical methods exist
for computing the precise chemical composition of a gas at
any given temperature and pressure (Smith and Missen 1982),
such a procedure is both too slow for efficient hydrocode
computation and it requires a great deal of specialized

Fig. 11. Expansion velocity and liquid fraction as a function of time
for a sphere  of SiO2  initially  5 km in radius starting from rest, at
a point initially 4.3 km from the center. The initial conditions are
density 5706  kg/m3,  internal  energy  24.58  MJ/kg,  entropy
4730 J/kg-K, temperature 15,800 K, and pressure 242 GPa. This is
the shock state reached at a particle velocity of 7 km/s (the release
curve is labeled 7 on Fig. 2: the entropy is shown in Fig. 7),
simulating the vapor expansion from a Chicxulub-scale impact at an
impact velocity of about 15 km/s. After 1 s, the velocity is essentially
a linear function of radius (the maximum velocity is 8.6 km/s at the
edge of the sphere, which is not shown here). The solid and dashed
curves indicate the expansion conditions for the SiO2 EOS with
molecular clusters and without (as described in the caption for Fig. 7).
Although the liquid/vapor ratio is substantially different when
molecular clusters are present, the vapor expansion velocities are
nearly identical, as are the pressure and temperature plots (not
shown).
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information, such as the heat capacities and formation
energies of all chemical species over the full range of
pressures and temperatures. In this paper I thus seek a middle
way, adopting the philosophy of ANEOS itself, and attempt to
find an analytic form that gives a good approximation to the
final result without becoming too detailed. Once the desired
analytic form is achieved, parameters in the equations are
adjusted to fit the observed properties of the substance—in
this case, SiO2.

To achieve this result, suppose that the N0 atoms in the
material can undergo a reaction of the form: 

where there are only two types of atom, A and B, which can
react to produce a molecule of composition AmBn. Although I
will shortly confine attention to a diatomic reaction m = n = 1,
the first step is kept more general. The Helmoltz free energy
of this chemical system is written in terms of the partition
functions ζ of each species (Denbigh 1971):

 (10)

where ζA and ζB are the partition functions of a monatomic
gas of A and B atoms:

(11)

 

ζC is the partition function of the AmBn molecule. As before,

ζC = , where:

 (12)

In this equation, EB is the binding energy of the
molecular cluster and frot and fvib are the polyatomic rotation
and vibration partition functions:

(13)

where μ is the reduced mass of the molecular cluster, R the
radius of the cluster, nrot is the number of rotational degrees of
freedom, nvib is the number of vibrational degrees of freedom,
and θvib is the “vibrational Debye temperature” (Fowler and
Guggenheim 1949, pp. 96 and 98). These extra partition
functions prove to be essential in achieving the correct

entropy of the molecular gas. They both depend on
temperature (but not density) in different ways, so they can be
used to match a range of temperature dependences of the
entropy.

The equilibrium number of molecules NC at a given
temperature and pressure is determined by minimizing the
free energy, Equation 10, with respect to NC, subject to the
constraint that the total number of atoms of type A, N1 = NA +
mNC, and those of type B, N2 = NB + nNC, are fixed. This
minimization leads to an implicit equation for NC:

 (14)

Some algebraic manipulation using this equation and an
expansion of Equation 10 will return the Helmholtz free
energy of the gas to the form of Equation 8, plus an additional
term:

 (15)

Note that if NC = 0 (no molecular clusters), then the additional
term vanishes, as expected.

Equation 15 is solved for Fmol by first solving
Equation 14 for NC and then substituting. Because the various
partition functions f depend on both temperature and density,
the final result is also a function of temperature and density.

If desired, this complex equation could be used to
compute the free energy of a gas with molecular clusters.
However, for the purposes of rapid hydrocode evaluation, a
number of simplifications can be made. In the first place, we
assume that the material we are dealing with is a
stoichiometric mixture of atoms, so that the condensed phase
is composed of a mixture of A and B atoms that can be entirely
consumed in the formation of AmBn clusters, with nothing left
over. This is, in fact, a valid assumption for SiO2, if quartz (or
any of its polymorphs) is the starting material. In this case a
simple relation exists between the numbers of atoms such that
N1/N2 = m/n. Applying this relationship, Equation 15 reduces
to a much simpler form:

 (16)

where the new function w is defined as the fraction of
unbound atoms: 

 (17)
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If none of the atoms are bound in clusters, then w = 1
and the extra term vanishes, as expected. The apparent
divergence of the logarithm as w approaches 0 (all atoms
bound in clusters) is  cancelled  by  the  temperature T that
multiplies ln w: w approaches 0 only as T goes to zero, and
one can show that the product actually vanishes in this
limit.

A subtle but important point here is that although the
correction to Fmol vanishes in the zero temperature limit, its
derivative does not. Even worse, it diverges like 1/T. The
result of this divergence is that the energy, E = F + TS,
acquires a constant term equal to −EBN0/(m + n). This really
makes good sense: it represents the shift in the reference
state energy due to the binding energy of the molecular
clusters. However, the energy E00 at zero temperature and
pressure is now negative—a somewhat undesirable choice.
This is  corrected  by  adding  a  constant term equal to
EBN0/(m + n) back into Fmol that cancels this addition and
keeps E00 at zero.

A more drastic simplifying assumption is that the
resulting clusters are diatomic molecules. Thus, m = n = 1.
In this case, Equation 14 for NC reduces to a simple
quadratic equation that can be rapidly solved. Otherwise,
the equation for NC is of order m + n and, in general,
requires numerical methods for solution. The idea that SiO2
gas might be approximately diatomic is supported by the
chemical equilibrium computations illustrated in Fig. 4,
which indicate that the gaseous species SiO and O2
predominate just above the vaporization temperature.
Equation 16 does not exactly represent this case because it
assumes that there is only one type of molecular cluster
with one single binding energy. To represent the
dissociation of SiO2 correctly, at least two rather different
binding energies, one each for the Si-O bond (energy 432
kJ/mole or 4.48 eV) and O-O bond (143 kJ/mole, or
1.48 eV) are needed (data reported here is from Pauling
1988), and the entropy of mixing of the two different
species should be added. However, the mixing entropy is
small compared to the entropy from the specific heat, and
the bond energies are similar, so the error made in using a
diatomic Helmholtz free energy for SiO2 is not serious for
the purposes of hydrocode computations.

The general equation for w is easily obtained in a form
that is relatively easy to solve:

 (18)

where ymn(P, T) is a function that will play an important role
in Equation 19 below and the equations introduced in the
Appendix.

In the special case that the molecules are diatomic
clusters of the (distinguishable) atomic species A and B, the
fraction of unbound pairs is:

(19)

This form of the equation for w avoids numerical
singularities and indicates the proper limits as y11 becomes
either very large or very small.

Having solved for the molecular correction to the
Helmholtz free energy, it remains to show how Equation 5,
which is used by ANEOS, is corrected to incorporate these
improvements. It is easy to show that a simple modification to
ψ will accomplish this goal. Thus, the original function ψ in
Equation 7 is multiplied by a function Z given by:

 (20)

The functions of w in this expression generate the
additional terms in Equation 16 at high temperature (for
m = n = 1; the generalization to other m and n is
straightforward and is given explicitly in the Appendix), and
the exponential term that includes EB adds a constant to Fmol
that corrects the zero point of E00. This is the only
fundamental change needed to ANEOS.

With this modification, the ANEOS equation of state
now incorporates molecular clusters. Because Z is a function
of both density and temperature, many expressions for
quantities such as pressure, entropy, and energy acquire
additional terms that must be incorporated in ANEOS. For
reference, these additional terms are written out in the
Appendix.

APPLICATION OF THE IMPROVED ANEOS TO SiO2

Thompson’s 1990 version of ANEOS (Thompson 1990)
required the input of 37 parameters (in the more sophisticated
“long” form. The older “short” form required 24.). Most of
these are simple and can be readily determined from
experimental or standard thermodynamic data. Some of the
parameters control seldom-needed options, such as thermal
conductivity or special convergence procedures. The
modifications to the ANEOS equation of state described
above add another 8 parameters, of which only 3 need serious
work to determine, although even these parameters can be
approximately determined from tables of thermodynamic or
spectroscopic data. Unfortunately, these different parameters
interact with one another in complex ways and it is not a
straightforward process to derive a set of input parameters
that adequately describes a given material.

The principal parameters affecting the liquid/vapor
transition are the vaporization energy, Evap, and Debye
temperature, θD, among the original 37 input variables. The
vaporization energy has a major (but not unique) effect on the
vaporization temperature, while the Debye temperature most
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strongly affects the entropy of the condensed (liquid or solid)
phase. Two new variables, the molecular binding energy, EB

and the vibrational Debye temperature, θvib, have strong
effects on both the vaporization temperature and slope of the
liquid/vapor phase boundary. EB is the energy (in eV)
necessary to break the average molecular bond and θvib is the
average spacing between vibrational energy levels

divided by Boltzmann’s constant k: θvib = /k. Other
new parameters, such as the number of vibrational and
rotational degrees of freedom, are set by the structure of the
molecules in the vapor (they are equal to 2 and 1, respectively,
for diatomic molecules). The parameter a describing the Mie
potential has little effect on most thermodynamic quantities,
but plays an important role in adjusting the position of the
critical point along the liquid/vapor phase curve, and the
critical entropy. The radius of the molecules in the gas, R, has
only a minor effect on other quantities, and was set equal to a
generic value of 1.5 × 10−10 m. In the actual process of
seeking a good fit between the observed properties of SiO2
and its measured thermodynamic properties, four basic
properties, listed in Table 2, were used to target a search for
the four parameters described above. Because all of these
parameters interact, my actual procedure, after using
thermodynamic tables to establish approximate values, was to
numerically construct a matrix of derivatives of each of the
four target quantities with respect to the four input
parameters, and to manually seek a best solution, also listed in
Table 2. This process could probably be automated to yield a
better fit in some more objective sense, such as least squares
deviation, but in view of other misfits (see below) and
uncertainties in the target parameters listed in Table 2, this
enhanced precision may be misleading. In any event, the
parameter set in Table 3 yields good agreement between the
target and computed quantities.

Of the parameters in Table 2, the vaporization
temperature Tvap and the pressure at the triple point, PΔ (I take
this as nearly equal to the pressure of the empirical liquid/
vapor phase curve extrapolated to the melting point of high
cristobalite, 1996 K), together determine the slope of the
phase curve on the Arrhenius plot, which is also related to the
difference between the liquid and vapor entropies. The vapor
entropy plays an important role in the mass fraction of vapor
produced. This property is most strongly affected by the
presence of molecular clusters.

One input parameter whose derivation may not be
obvious is the value of Gruneisen’s gamma in the alpha quartz
reference state, Γ0. This parameter measures the dependence
of pressure on internal energy (Poirier 1991), and equals the
following combination of physical constants:

 (21)

where α is the volume coefficient of thermal expansion,
3.4 × 10−5 K−1 (Skinner 1966), K0 is the bulk modulus,

3.759 × 1010 Pa (Birch 1966), ρ0 is the reference density,
2650 kg/m3, and CV is 781 J/kg-K (Weast 1972). Taking these
values together yields Γ0 = 0.618 for alpha quartz, as entered
in Table 3.

Table 3 summarizes a set of input parameters that gives a
good description of the substance SiO2 at high pressure and
temperature. The large density change in the quartz-stishovite
transition shows up clearly in the Hugoniot curve, Fig. 5, so it
is important to include this high-pressure phase transition. As
discussed above, this precludes a detailed treatment of a
separate liquid phase in the present version of ANEOS, so that
liquid and solid phase are treated as a single condensed phase.
This is probably not as serious as it may seem, because the
density contrast between liquid and solid phases is only of
order 10%, while that between quartz and stishovite
approaches a factor of 1.5.

Figure 5 shows that the choice of parameters in Table 3
yields a good match between the measured shock data (Trunin
et al. 1971) and the observed Hugoniot curve up to the
exceptionally high particle velocity of 12.3 km/s, or to a
corresponding pressure of 652 GPa. These highly compressed
states are insensitive to the presence of molecular clusters and
modifications of the expanded state, but do depend strongly
on the presence of a high-pressure phase transition. The
ANEOS modifications described in this paper are seen most
acutely in the liquid/vapor phase curve. Figure 8 shows that
the choice of parameters in Table 2 gives an excellent fit to a
variety of data on the phase curve in P and T. Figure 7
indicates that these parameters also give a good
representation of the liquid/vapor transition in the important P
versus S variables. Figure 9 shows that, at 1 bar, the
dependence of entropy on temperature computed by ANEOS
agrees with that computed from the HSC chemistry package
in overall value up to about 5000 K, but does not show the
same detailed temperature dependence. This is a consequence
of my approximation of two binding energies as one. Thus,
the first sharp rise in entropy above the vaporization
temperature is due to O2 dissociation, whereas the second is
due to SiO dissociation (compare Fig. 4b). ANEOS averages
over these two steps with a single, monotonic rise of entropy.
A more complicated addition to ANEOS could correct this,
but at the present state of hydrocode computations, such fine
details do not seem to warrant the extra complication and
computation time.

Figure 10 plots the predicted shock temperatures against
the limited data that exists on this quantity. The ANEOS
prediction steers a middle course between the data for either
fused quartz or crystalline alpha quartz between 50 and
150 GPa. This is probably because the high-pressure melting
curve for quartz (Ivanov 2003) intersects the Hugoniot at
about 100 GPa, just where the shock temperature seems to
drop off as pressure increases above 100 GPa in Fig. 10.
Because this ANEOS parameterization of the SiO2 equation
of state does not include a solid-melt transition, it cannot
properly model the temperature change in this pressure range.

ΔE ΔE

Γ0
aK0

ρ0CV
------------=
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What ANEOS cannot do is account for metastable states.
It assumes perfect thermodynamic equilibrium and thus
perfect reversibility of phase transitions. It thus cannot
account for the formation of post-shock metastable stishovite
or coesite, although these are observed in shock release
experiments (Ahrens and Rosenberg 1968). It is also unable
to account for a kinetic delay in the onset of high-pressure
phase transformations, and so may predict shock-wave
splitting (Zel’dovich and Raizer 1967) in the ranges of shock
compression just before the nominal formation pressure of
stishovite, although such splitting is not observed in practice
(Trunin et al. 1971). This may account for the mismatch
between the ANEOS Hugoniot and the data of Turnin (1971)
below a particle velocity of 1 km/s, although some of the
discrepancy is likely due to the difference between single
crystal and polycrystalline quartz targets.

APPLICATION TO AN EXPANDING 
CLOUD OF HOT SILICA

Having gone to a great deal of trouble to correct the
ANEOS equation of state to better represent SiO2, it is
important to see how this correction affects the outcome of
numerical hydrocode computations. For this purpose, I
constructed a very simple model of an expanding spherical
cloud of hot silica. The model was begun with a sphere 10 km
in diameter of SiO2 at rest, with a uniform initial pressure of
242 GPa and a temperature of 15,800 K. These conditions
were chosen to represent the outcome of an impact that
generates a particle velocity of 7 km/s in quartz, which is
approximately the same as the conditions of the K/Pg
Chicxulub crater impact. The entropy of this initial state is
4730 J/kg-K, which is approximately the critical point
entropy (see the arrow in Fig. 7).

The expansion of this ball of hot gas was computed using
a simple Lagrangian hydrocode that divided the sphere into
30 concentric shells, where the radius of each successive shell
was chosen to contain equal amounts of mass. The pressure of
this sphere was dropped to zero at t = 0, when the mass begins
to expand freely into the space around it. The time evolution
of temperature, pressure, velocity, and position (along with
all other thermodynamic variables computed by ANEOS)
was recorded at each time step, and the results are plotted in
Fig. 11. A second computation was performed with the same
initial conditions and EOS, with the one difference that
molecular clusters were not present in the second EOS, as
described in the caption of Fig. 7. As expected, the entropy
remains constant during the expansion, although the
temperature and pressure both fall rapidly.

Figure 11a shows that the SiO2 remains in a supercritical
state for about the first half-second of the expansion (see also
the curve labeled “7” in Fig. 2, which illustrates the full
thermodynamic path). Liquid first appears at about 0.47 s
when no molecular clusters are present, but is delayed until
about 0.58 s when molecules can form. However, because of

the high cost of vapor formation in the absence of molecular
clusters, by 1 s the EOS without molecules produced only
about 10 wt% of vapor, whereas that with molecules
generated about 30 wt% of vapor, an increase of a factor of 3.
This difference persists through the end of the computation at
1000 s (not shown in the figure because little change occurs
after 1 s). Thus, as expected, the molecular cluster
modification results in a substantial increase in the amount of
vapor produced in an impact of this kind.

Figure 11b illustrates the velocity of the test point as a
function of time after the beginning of expansion. The test
point, located 0.7 km from the edge of the sphere, remains
nearly at rest until the rarefaction wave arrives 0.05 s after the
pressure is released at the sphere’s surface. It then accelerates
rapidly to about 3 km/s. At about 0.1 s it coasts at nearly
constant velocity for another 0.07 s before it again begins to
accelerate.

This coasting is due to the high-to-low pressure
transformation from stishovite to quartz, a modification in
ANEOS to the cold-pressure term, which is added to the EOS
for any temperature in Equation 2. Although this might at first
seem like a flaw in the formulation of the EOS at high
temperatures, there is evidence from Raman spectral studies
of anorthite glass (Daniel et al. 1997) and of silica (Hemley
et al. 1994) that such a density changes actually does occur in
the liquid due to the change of Si coordination from six-fold
to four-fold, thus echoing the stishovite-quartz transformation
built into ANEOS. What may not be correct is the lack of
temperature dependence of this transition in ANEOS, so that
the pressure and temperature at which this coasting takes
place (about 50 GPa and 13,000 K) may be too high
(observationally, it is about 25 GPa at room temperature
(Hemley et al. 1994), and so would occur later in the
expansion, but still before the critical point is reached).

About 0.4 s after expansion starts, the test particle has
reached a nearly constant expansion velocity of about 6 km/s.
At this time, the velocity in the expanding sphere is a nearly
linear function of distance from its center, and the remainder
of its evolution is a constant-velocity coast to larger radii,
with a density profile very similar to that expected from
analytic models of gas-cloud expansion (Zel’dovich and
Raizer 1967). Because energy is conserved in the expansion
process, this final velocity is nearly the same for both versions
of the EOS. The only difference is that the sphere without
molecules expands slightly faster, as shown in Fig. 11b,
because the lack of molecular clustering gives it a higher
pressure and thus drives a slightly more vigorous expansion.
The figure also shows the time at which the two-phase
saturation vapor curve is reached on both expansion histories.
Note that little acceleration occurs once both liquid and vapor
phases are present below the critical point. This is a
consequence of the high compressibility of a two-phase gas/
liquid mixture at equilibrium (the compressibility is not
actually infinite because the temperature is also changing
during this adiabatic expansion).
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Thus, the introduction of molecular clusters has little
overall effect on the expansion velocity of a shocked mass of
silica, but it does have a strong effect on the amount of liquid
and vapor produced in such an event. Vapor fractions are
increased dramatically by the formation of molecular clusters
in the vapor phase.

CONCLUSIONS

The modified ANEOS equation of state provides a good
general representation of a complex material with a liquid/
vapor phase transition, molecular clusters in the vapor state,
and an important high-pressure phase transformation. It
cannot yet represent a distinct liquid/solid transition, and the
high-pressure phase transformation does not depend correctly
on temperature. However, it does represent a step forward in
the realistic representation of the EOS of a complex geologic
material at pressures and temperatures that are important in
the early phases of impact processes. This improvement is
needed for the proper treatment of melting and vaporization in
impacts, especially the accurate computation of the mass and
physical state of fast early ejecta from impact craters. Because
of the recent recognition of widespread distal deposits of
Archean impacts (Simonson and Glass 2004), the ability to
accurately compute this ejecta component has become
important for interpreting this phase of Earth history.
Similarly, the distribution of the distal ejecta of the Chicxulub
impact (Alvarez et al. 1995; Kring and Durda 2002; Melosh
et al. 1990) has become an important issue for understanding
the nature of this great biological extinction.

The molecular modifications described in this paper
apply only to a material with diatomic molecules in the vapor
phase. Fortunately, this approximation applies not only to
SiO2, but also to a variety of other interesting geologic
materials (Ahrens and O’Keefe 1972). It can thus be expected
that successful ANEOS equations of state may be constructed
for many common geologic materials. The one interesting
material that the diatomic modification of ANEOS cannot
accommodate is water. In spite of several attempts to force-fit
the diatomic model to the properties of water, it proved
impossible to properly represent the entropy of the vapor
phase with such a model. For water, the temperature range
between the evaporation of triatomic molecules from the
liquid and their dissociation into individual atoms is very
broad (from 273 K to about 4000 K at 1 bar), so triatomic
molecules dominate the vapor phase over a large portion of
the phase diagram. For this reason, the diatomic analysis was
extended to triatomic and larger molecular clusters, as
described in the Appendix.

Accurate EOSs for geologic materials like SiO2 at very
high pressures and temperatures are essential for further
progress in the study of planetary impact cratering. My hope
is that this paper represents only the first step in improving
our knowledge of the behavior of earth materials at extreme
conditions.
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APPENDIX: ANEOS MODIFICATION 
FOR MOLECULAR CLUSTERS

The Thermal Terms in the Helmhotz Free Energy section
describes the modifications needed to incorporate molecular
clusters into the Helmholtz free energy. The basic
modification is the replacement of the interpolation function
ψ, in Equation 5, by the product Zψ, where Z is defined in
Equation 21. Although this completes the changes needed to
revise the Helmholtz free energy, the expressions used by
ANEOS for pressure, entropy, etc. are all modified and
acquire additional terms through derivatives of Z. In this
appendix I will not repeat the basic equations used by
ANEOS, as these are reported in Thompson (1990) and
Thompson and Lauson (1972b). They are correctly updated
by the simple replacement of ψ by Zψ.

The expression for Z in the special case of a binary
compound was given in the text as Equation 21. The general
expression for any values of m and n is:

 (A1)

Two new functions of Z will make these new expressions
more compact. Define:

(A2)

 

These functions are most readily expressed in terms of a
new auxiliary function H1:

(A3)

where the function ymn is defined in the text by Equation 18,
and

 (A4)

Subsequent equations will also require derivatives of α
and β with respect to density ρ and temperature T. These

derivatives can be expressed in terms of H1 and a second
auxiliary function H2:

(A5)

where

 (A6)

In the following equations for pressure P, entropy S,
energy E, heat capacity CV, and the derivatives P/ ρ and

P/ T, it is understood that the symbol ψ stands for the
product of Z and the original version of ψ in Equation 7. The
modifications to the basic ANEOS quantities are thus:
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 (A12)
where Γ is a function of the Debye temperature θ defined as
(Thompson and Lauson 1972b):

 (A13)

∂P
∂T
------

∂Pold

∂T
------------- ρN0k

ψb

1 ψb+
---------------

⎝ ⎠
⎜ ⎟
⎛ ⎞

α b α 1 β+( ) β 1 3Γ–( )–[ ]

1 ψb+
------------------------------------------------------------ T

∂α
∂T
-------+ +

⎩ ⎭
⎨ ⎬
⎧ ⎫

–=

Γ ρ( ) ρ
θ
---dθ

dρ
------=



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (U.S. Web Coated \050SWOP\051 v2)
  /PDFXOutputConditionIdentifier (CGATS TR 001)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /SyntheticBoldness 1.000000
  /Description <<
    /FRA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU (Use these settings for creating PDF files for submission to The Sheridan Press. These settings configured for Acrobat v6.0 08/06/03.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


