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Abstract–In the late Jurassic period, about 142 million years ago, an asteroid hit the shallow paleo-
Barents Sea, north of present-day Norway. The geological structure resulting from the impact is today
known as the Mjølnir crater. The present work attempts to model the generation and the propagation
of the tsunami from the Mjølnir impact. A multi-material hydrocode SOVA is used to model the
impact and the early stages of tsunami generation, while models based on shallow-water theories are
used to study the subsequent wave propagation in the paleo-Barents Sea. We apply several wave
models of varying computational complexity. This includes both three-dimensional and radially
symmetric weakly dispersive and nonlinear Boussinesq equations, as well as equations based on
nonlinear ray theory. These tsunami models require a reconstruction of the bathymetry of the paleo-
Barents Sea.

The Mjølnir tsunami is characteristic of large bolides impacting in shallow sea; in this case the
asteroid was about 1.6 km in diameter and the water depth was around 400 m. Contrary to
earthquake- and slide-generated tsunamis, this tsunami featured crucial dispersive and nonlinear
effects: a few minutes after the impact, the ocean surface was formed into an undular bore, which
developed further into a train of solitary waves. Our simulations indicate wave amplitudes above
200 m, and during shoaling the waves break far from the coastlines in rather deep water. The tsunami
induced strong bottom currents, in the range of 30–90 km/h, which presumably caused a strong
reworking of bottom sediments with dramatic consequences for the marine environment.

INTRODUCTION

Our understanding of impacts by asteroids and comets
and their related processes has developed dramatically during
the last few decades. Over the last few years in particular,
attention has focused on the consequences of marine impacts,
and specifically on the development of tsunamis (e.g., see
Bourgeois et al. 1988; Gisler et al. 2003; Shuvalov et al. 2002;
Smit et al. 1996). The present paper attempts to contribute to
this knowledge base by studying the tsunami generated from
a specific marine impact of a fairly large object on a shallow
continental shelf. 

Of the approximately 174 impact craters on Earth
currently known (Gersonde et al. 2002; Grieve et al. 1995), 26
have been recognized as original marine impacts (Dypvik

et al. 2003, 2004a). Considering that two-thirds of the Earth’s
surface is covered by water, the number of known terrestrial
impacts suggests that many more craters should be found
in the oceanic environment. The reduced marine-crater
representation is due to several reasons. First, due to plate
tectonics, no deep ocean floor older than 200 million years is
preserved, while on land very old Precambrian crust is present
in large areas. Second, we have limited knowledge of fine-
scale topography and structural characteristics of the oceans,
and lack constraints on the morphology expected for impact
structures formed in the thin oceanic crust. Moreover, impacts
in deep ocean are less likely to cause craters because bolides
break down when passing through the water column and
before in the sea floor impact. The latter point is demonstrated
by the Eltanin event (Gersonde et al. 2002; Kyte et al. 1981)
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(2.2 million years ago). In this case, a bolide presumably 1 km
in diameter hit the 5000 m deep waters of the South Pacific
Ocean. While ejecta and chemical signatures are evident, no
crater has been found.

The circular Mjølnir structure was first identified in a
seismic survey motivated by the search for oil in the
Barents Sea (Gudlaugsson 1993). Subsequent investigations,
including corings inside and close to the structure, confirmed
the structure to be an impact crater (Dypvik et al. 1996;
Smelror et al. 2001; Tsikalas et al. 1998). In addition to
breccia, shocked quartz, and an excess of iridium, the core
samples revealed a bloom of the green algae Leiosphaerida in
the sediment layers from the time of impact. Paleontological
analysis dates the impact to the late Jurassic, 142 ± 2.6 million
years ago. Simulations assuming an asteroid with a diameter
of 1.6 km and impact velocity of 20 km/s show that the water
was initially blown away (Shuvalov et al. 2002). A tsunami
was formed, and the water did not return permanently to the
impact site until 15–20 min after the impact. A crater 40 km in
diameter was formed on the sea floor (Fig. 1), and vaporized
asteroid and target rocks along with crushed material were
ejected. Occurrences of large amounts of soot particles in the
sediments (Wolbach et al. 2001) show that the organic-rich
sediments of the sea floor were ignited when the sea-floor was
exposed to the atmosphere. (Dypvik et al., Forthcoming).

After impact, the crater was subsequently reshaped and
modified by mass flows, avalanches, and resurge of water into
the crater (Dypvik et al. 2004b; Tsikalas 2004). The currents
and waves (tsunami) generated by the impact may have
significantly affected the sedimentation in the region (Dypvik
et al. 2004b). Some sediment reworking has been registered
within the Mjølnir crater (Dypvik et al. 2004b) and in a core
sample from drill hole 7430 (Fig. 2) adjacent to the crater
(Dypvik et al. 1996). Probably hundreds of years passed
before the region returned to depositional conditions
comparable to the pre-impact state (Dypvik et al. 2004b;
Shuvalov et al. 2002). Tsunami influence, and erosional
effects in particular, would be expected along the sandier

coastlines of the paleo-Barents Sea at that time. Possible
indications of these effects are found in shallow cores from
the Barents Sea (Dypvik et al., Forthcoming).

 For impact-generated tsunamis, both nonlinearity and
dispersion remain important for a long time after generation.
This is different from most tsunamis originating from other
sources. Submarine earthquakes and mass flows generally
produce waves with amplitudes of only a few meters. Such
tsunamis are linear during generation as well as propagation,
while nonlinear effects become significant only close to the
shore. Tsunamis of yet other origins, such as airborne slides,
huge rock falls, or exploding/collapsing volcanoes, may
locally display features reminiscent of impact tsunamis, but
the far-field propagation is again linear. Oceanic impacts of
asteroids and comets, however, may produce huge waves in
the mid-ocean that stay strongly nonlinear during propagation
over hundreds and thousands of kilometers.

Impact tsunamis may be categorized into two extreme
types. First, small asteroids with diameters much less than the
water depth will produce a surface cavity in the sea with
elevations at the rim (Artemieva et al. 2002; Gault et al.
1982). The waves evolving from this kind of source will
inherit much energy on wavelengths that are short compared
to the depth, and are thus highly dispersive. For the Eltanin
impact, the disintegration of the impactor, wave generation,
and the early phase of tsunami propagation were modeled by
Shuvalov (2003). During impact, the ocean surface suffered a
violent vertical excursion of several kilometers, while the
amplitude of the tsunami’s height was on the order of 1 km at
a distance of 20 km from the impact center. Gisler et al.
(2004) studied tsunami generation by impactors of varying
compositions and size (ranging from 250 to 1 km) into water
depths of 5000 m. In the impact region interpretations of huge
surface excursions as wave height are doubtful; splash-up
may be a better term. Still, at a distance of 20 km from the
impact center the tsunami amplitudes were well defined and
above 1 km for the most energetic bolides. Even though the
initial phases of tsunami propagation are strongly affected by

Fig. 1. A seismic reconstruction of the Mjølnir crater (Dypvik et al. 1996).
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nonlinearity, dispersion combined with radial spreading will
rapidly reduce the amplitudes. Hence, Ward et al. (2000,
2002) employ Fourier transforms combined with optical
approximations to describe the far-field tsunami propagation.
Korycansky et al. (2005) have studied breaking of typical
waves generated by deep-sea impactors with a diameter of
less than 1 km. Due to high amplitudes, the waves will break
several kilometers offshore on the continental shelf/margin.
The breaking of such waves is often called the “Van Dorn
effect.” Van Dorn et al. (1968) suggested breaking of waves
generated by submarine explosions in deep sea, far offshore.

The second extreme class includes large objects that lead
to crater formation on the sea floor and a temporarily dry sea
bed (Crawford et al. 1998; Gisler et al. 2003; Weiss et al.
2006). In this case the tsunami generation is characterized by
intense wave breaking and resurge into the crater. Given that
the crater radius is large compared to the water depth, long
waves with large amplitudes are eventually formed.
Subsequently, these waves will behave very differently from
both seismic tsunamis and waves from deep-water impacts.
Huge tsunamis of this kind crossing the oceans may lead to
strong mixing and sediment transport that may change the
environment with drastic consequences for marine life. 

In the following, we extend the referenced work on the
Mjølnir impact by combining the impact model (Shuvalov
et al. 2002) with a dispersive long wave model for tsunami
propagation. Since a comparatively fine grid is needed
everywhere in the ocean domain, even the long wave model
yields heavy computations. Therefore, a simpler strategy
based on nonlinear physical optics is adopted and proved to
be a valuable tool under the circumstances.

PHYSICAL AND MATHEMATICAL FORMULATION

In the present study, we will focus on the evolution of the
tsunamis within a distance of a few thousand kilometers from
the impact center. Hence, we may neglect the rotational
effects and the curvature of the earth and introduce a
Cartesian coordinate system with horizontal axes ox and oy at
the undisturbed sea surface. The origin is located at the center
of impact. The equilibrium depth is denoted by h and the
surface elevation by η. Even for oblique impacts, the later
stages of the crater formation and the tsunami generation are
nearly symmetric processes (Gisler et al. 2004; Shuvalov
et al. 2004). Moreover, the pre-impact bathymetry in the
target region probably had a low profile. Therefore, we may

Fig. 2. Current position of the Mjølnir crater in the Barents Sea with major geological lineaments marked.
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regard the early stages of wave evolution as approximately
symmetric and introduce the radii from the impact center,

, as a space variable.

The Impact Model

The impact, cratering, and early stages of tsunami
formation were simulated by the SOVA multi-material code
(Shuvalov et al. 1999, 2002). This code solves the mass
balance equation, the momentum equation, and an energy
equation with respect to the total velocity, thermal energy,
density, and pressure in a finite volume setting. At each time
step, these basic quantities, along with the grid, are advanced
using Lagrangian formulations of the governing equations.
The solutions are thereafter mapped back to a regular grid.
The mapping is constructed in a manner allowing mass,
momentum, and energy conservation. The code hence
appears as Eulerian, but applies Lagrangian features to locally
follow the motion during each time step. When solving two-
or three-dimensional equations, SOVA introduces an operator
splitting in space that only locally one-dimensional problems
are solved implicitly.

The SOVA model includes solid rock, atmospheric air,
and water. In addition, passive tracers are introduced to
follow trajectories of ejected material. Viscous effects are
neglected in the water and air, while the solid rock is modeled
as a Bingham fluid with a yield stress expression involving
parameters for cohesion, dry friction, limiting material
strength, etc. These parameters vary with depth and are tuned
so that simulations match the established geological
knowledge about the lithology at the time of the impact. The
material properties of the sea floor have a large effect on the
crater morphology, but only a minor effect on the tsunami
generation. At impact the water is blown away, giving rise to
a first system of outgoing waves that will be independent of
the later stages of the crater formation. On the other hand, the
secondary wave systems, created by the resurge of water into
the crater, may be influenced by the crater shape. In fact, a
huge impact in shallow water may even produce a crater rim
that can block the resurge entirely.

Tsunami Propagation Models

During propagation of surface gravity waves, the fluid
flow may often be regarded as nonrotational, except in thin
boundary layers at the bottom and at the free surface. This is
naturally not the case for the region close to the impact where
wave breaking and ejecta give rise to a substantial vorticity in
the water. However, the vorticity is advected by the particle
velocity only and is rapidly left behind the outgoing waves.
On the other hand, long-time wave propagation will be
affected by the Coriolis force that will induce vertical
vorticity. In mid-range, the assumption of nonrotational flow
holds and potential theory can be employed.

Oceanic propagation of tsunamis is most frequently
described by shallow water theory that neglects deviations
from a hydrostatic pressure distribution and yields
nondispersive waves. As will be seen subsequently, this
theory is completely inadequate for the Mjølnir impact, which
generated high and moderately long waves that were
genuinely influenced by both nonlinearity and dispersion.
The desirable option for such a case is a model based on either
the primitive Navier-Stokes equations or full potential theory.
However, while we will employ such techniques for the
impact itself and the first stages of propagation from the
source region, we must resort to a simplified theory for
propagation on a larger scale. Our choice is a set of
Boussinesq equations that is described in the Appendix. 

The coupling between the impact model and the tsunami
propagation model is crucial and special care is taken to avoid
spurious behavior, such as reflection and noise production.
Details are given in Appendix 2.

Optical Approximation and Asymptotic Behavior in the
Far-Field

Simulation of the Mjølnir tsunami requires wave models
with dispersive effects, such as the Boussinesq equations.
These types of models are currently too heavy for simulations
of the whole Barents Sea with appropriate resolution. An
alternative is to resort to simpler descriptions, such as
geometrical and physical optics. Besides significantly
increased computational efficiency, the optical theories also
provide simple closed-form solutions that render the physics
in the wave propagation more transparent. In the present
study, we have extensively applied optical methods with
success.

When waves of a particular class are propagating in a
slowly varying medium, they may adjust gently without loss
of identity or noticeable diffraction. This is the basic idea of
the optical theories, which are widely used for sinusoidal
waves (Mei 1989; Peregrine 1976). Optical descriptions may
be employed also for solitary waves (Miles 1977; Reutov
1976; Pedersen 1994). The key point is the identification of
the energy density and celerity of the wave as functions of the
amplitude and depth. These functions are assumed to be
constant in depth, but differ depending on which
hydrodynamic theory the optics is based on (full potential
theory, Boussinesq theory, asymptotic theory for small
amplitudes). Details are given in Appendix 3.

It is instructive to compare the outcome of the simplest
version of optics for solitary waves (Equation 21, see
Appendix 3) to the counterparts for linear waves. For
simplicity, we limit the comparison to cases of radial
symmetry. For solitary waves, radial spreading yields an
amplitude attenuation ~r−2/3. Correspondingly, linear
nondispersive waves, as obtained from the shallow water
equations, have an amplitude variation ~r−1/2. Naturally,

r x2 y2+=
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every wave will be affected by dispersion, given a sufficient
propagation distance. However, in some cases, even the
crossing of an ocean will not give dispersive effects time to
develop. Tsunamis from impacts, on the other hand, are
generally dispersive. Dispersive waves display a diversity of
asymptotic behavior with stronger damping rates, as
described in, for instance, Mei (1989) and Clarisse et al.
(1995). For linear, highly dispersive, and nearly periodic
waves, the amplitudes are reduced markedly faster in
proportion to r−1.  This  is  the combination  of  two  factors
of r−1/2 from dispersion and extension of wave crests lengths,
respectively. If the motion starts from rest with a net
integrated elevation or depression, there is a front of the wave
train that attenuates as r−5/6, which is also faster than the
solitary waves. Different starting conditions may give fronts
that attenuate much faster. An initial velocity distribution,
with no surface deformation, yields an r−1 reduction of the
leading wave (Clarisse 1995). However, for an initial
elevation that  is  asymmetric  with  respect  to  a  line  causes
an r−4/3 damping of the front (Mei 1989). In this case, the
trailing waves will eventually dominate, since they still have
a damping exponent equal to −1. Numerical computations of
impact and wave generation (Gisler et al. 2004) (see
Introduction) infer damping rates that are systematically
stronger than r−1, with r−2.25 up to 100 km from the impact site
as the most extreme. However, these are the results of
extremely complex computations, where it is difficult to
assess all relevant particulars. In general, such damping rates
can be explained by breaking, high numerical damping, and
under-resolution. They can also be the result of possible
misinterpretation of splash-up, wave group dynamics, or
interference with compression waves in the water as damping.
In shoaling water the amplitude of the solitary wave increases
as  h−1 until  breaking, while  linear  long  waves  amplify  as
h−1/4. In short, the solitary waves attenuate slower than
dispersive deep-water waves and amplify substantially faster
than  linear  waves  in  shoaling  water. We  emphasize  that
the h−1 amplification requires very gentle bottom gradients.
As will be demonstrated subsequently, it does apply to the
bottom slopes of the paleo-Barents Sea. On the other hand,
sufficiently mild slopes are not frequent in laboratory
experiments, but some experimental support and adequate
discussion can be found in Synolakis and Skjelbreia (1993). 

THE IMPACT SIMULATION

The impact is simulated with the SOVA code. We have
assumed a constant sea depth of 400 m and a normal impact of
a 1.6 km asteroid with a velocity of 20 km/s (Shuvalov et al.
2002). However, according to Shuvalov et al. (2004) there is
evidence that the Mjølnir impact was oblique, but the crater
formation (and hence the generation of the tsunami) is not
much affected by an oblique impact. Therefore, we base our
work on a normal impact because this allows the application

of radially symmetric equations, reducing the number of
mathematical dimensions by one, which is highly desirable
from a computational point of view.

The grid for the early impact stages is reconstructed
several times as the computational domain increases. By
reconstruction, we mean a coupling of two neighboring cells
into one cell and adding new cells to increase the
computational grid. The initial grid has 300 × 500 cells in
vertical and horizontal directions, respectively, with an initial
cell size of 20 m in both directions. The reconstruction was
produced when disturbances induced by the impact reached a
boundary of the computational grid. At the late stage, only
horizontal cell size was increased (horizontal reconstruction
only) because the vertical size of the region of interest (a little
bit larger than sea depth) remained constant. In the last phase
of the simulations, the resolution decreased to 40 and 160 m
in vertical and horizontal directions, respectively.

The results up to 150 s after the impact are shown in
Fig. 3. The water was blown away and did not return
permanently until after 15–20 min. As previously mentioned,
the exposed sea bottom was ignited during this period
(Dypvik et al., Forthcoming; Wolbach et al. 2001). After 3 s,
the cavity was deeper than 5 km and the radius almost 5 km,
while after 30 s the radius of the crater was more than 10 km.
Then the short-lived transient crater started to collapse due to
the gravitational force, and the central part of the crater rose
forming the central height.

In Table 1 we have compared energies from the Mjølnir
event to those of the giant earthquake off Sumatra on
December 26, 2004. We observe that the total energy in the
impact was a factor of 600–700 higher than that of the
earthquake. Moreover, integration of the wave energy in the
Mjølnir tsunami shows a total of 2.1 ⋅ 1018 J, which is nearly
identical to the total energy of the Boxing Day earthquake.
The energy of the tsunami from this earthquake is again a
factor of 1000 less than that of the Mjølnir tsunami. Naturally,
the parameters behind the comparisons are uncertain. Still, it
is clear that both the geological consequences and the tsunami
of an impact of a large asteroid are orders of magnitude larger
than those of even the largest earthquakes recorded.

THE TSUNAMI SIMULATIONS

Modeling of the tsunami from the early stages to the far
fields is a complicated task and different type of models and
mathematical descriptions must be applied. The very first
stages of the tsunami propagation are done by using the
SOVA code. The other models are based on long wave theory
and are listed in Table 2.

Near-Field Tsunami Evolution

Different early stages of tsunami propagation, as
predicted by the SOVA model, are shown in Fig. 4. After
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300 s, the vicinity of the central peak is still dry and water is
resurging into the crater. The strongest inward current is more
than 200 km/h, and at the front of the leading wave system
the outward current is up to 160 km/h. The front of the
outward propagating wave is still a breaking bore, about
300 m high.

After 600 s, the water is climbing the central height. The
front is no longer breaking and a marked, smooth peak has
evolved, with a slightly reduced height of 250 m. This
reduction is due to breaking and radial spread, but is
counteracted by the growth of the peak (see discussion
below). At this time the amplitude-to-depth ratio is 0.63,
which is somewhat too high for (and outside the limitation of)
the Boussinesq equations. At 800 s, a second peak is visible at
the front of the leading wave system. Later, at 1000 s, yet a
third peak is discernible and it is apparent that an undular bore
is in progress. At this time the leading peak is located 116 km
from the impact center. Closer than 20 km to the impact
center, another wave elevation is being produced from the
resurge.

After 1000 s, the amplitude-to-depth ratio for the leading
crest has fallen below 0.5 and it seems reasonable to transfer
the tsunami from SOVA to the radial symmetric Boussinesq
model using the surface elevation from SOVA (see Figs. 5
and 6). The transfer of velocity into the Boussinesq models
are described in Appendix 2, and the depth-averaged potential
is found by integrating the velocity determined by Equation 7
(see Appendix 2) found in the same appendix. Direct transfer
of fluid velocities from SOVA to the Boussinesq model has
also been attempted. However, that resulted in stronger

Fig. 3. Impact simulation by SOVA at time steps between 1 and 150 s after impact. The areas colored black indicate sediments and solid rock,
while the gray layer above it represents water. The figure is taken from Shuvalov et al. (2002).

Table 1. Energies of the Mjølnir event compared to the 
Sumatra earthquake, the resulting tsunami in the Indian 
Ocean, and the Krakatau tsunami in 1883. We have 
employed a density of 3 kg/dm3, a diameter of 1.6 km, and 
a speed of 20 km/s for the Mjølnir impactor. The energy for 
the December 26, 2004, earthquake is taken from the U.S. 
Geological Survey home page (USGS 2006). For the 
Indian Ocean tsunami we assume an initial sea surface 
elevation of 2 m, over a region of 1200 × 200 km, which 
yield a high estimate. The energy of the Krakatau tsunami 
corresponds to an initial cavity of 50 km2 × 200 m.

Event Energy

Kinetic energy of the Mjølnir bolide 1.3 ⋅ 1022 J
Earthquake, December 26, 2004 2.0 ⋅ 1018 J
Mjølnir tsunami 2.1 ⋅ 1018 J
Tsunami, December 26, 2004 3.5 ⋅ 1015 J
Tsunami, Krakatau 1883 9.6 ⋅ 1015 J
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deviations from a purely outgoing wave system due to the
different physics in the two models and the coarse resolution
in the SOVA model.

We observe that the evolution of the leading wave as an
undular bore continues, with an increasing number of
apparent peaks (see Figs. 5 and 6). Moreover, in the
Boussinesq simulation the amplitude of the leading peaks
increases significantly from t = 1000 s and culminates with a
maximum at t ~1150 s. This amplification is in agreement
with the dynamics of plane undular bores, where the highest
peak may reach double the initial amplitude according to long
wave theory (Peregrine 1966). Tests with both Boussinesq
equations and full potential theory on undular bores from
idealized initial states confirm this and also indicate that
errors inherent in  the  Boussinesq  model  are  no  more
than 10–15%, even when the final wave heights becomes
0.7 times the depth. In the case of radial symmetry, the
amplification due to bore dynamics is opposed by the spatial
spreading of the wave crest. When individual waves separate
the radial spread becomes dominant and the amplitudes start
to drop as is seen at t = 1550 s in Fig. 5. The growth in
amplitude for t > 1000 s in the Boussinesq simulations seems
to contradict the attenuation in the SOVA results for t <
1000 s. Attempts to employ 3-D potential theory for t <
1000 s have not been completely successful, mainly due to
under-resolution. However, these simulations combined with
the Boussinesq results indicate that there may be too much

damping in the SOVA model and that the fission process in
the undular bore dynamics is too slow. This is not an
unexpected effect considering that SOVA includes a solid
(crust), liquid (ocean), and vapor (atmosphere) target, and
where the coarse resolution necessarily implies a coarse
representation of the sea surface. On the contrary, it is
impressive that a model of this kind captures the qualitative
properties of the undular bore so well. When the individual
waves separate, and r becomes large, they should approach
solitary waves. This is indeed the case, as demonstrated in
Fig. 6, where we observe that the front is quite close to that of
a solitary wave of corresponding height already at t = 1000 s.

Table 2. Models applied for the simulation of the tsunami. 
Model Dimensionsa Refraction Defraction Applied in Description

Quasi-symmetric
ray theory

2-D − − “Qualitative Features—Simplified 
Computations” section

Appendix 3,
Equation 21

Quasi-symmetric 
Boussinesq

2-D − − “Near-Field Tsunami Evolution” and 
“Qualitative Features—Simplified 
Computations” sections

Appendix 1,
Equations 1 and 2

Ray theory 3-D + − “Qualitative Features—Simplified 
Computations” section

Appendix 3,
Equations 18 and 19

Boussinesq 3-D + + “Full Boussinesq Simulations” section Appendix 1,
Equations 1 and 2

aPhysical dimensions; however, the mathematical description is reduced by 1 due to depth-averaged equations.

Fig. 4. Surface elevation (a) and depth averaged horizontal velocities (b) after the Mjølnir impact. Simulations based on the SOVA model. The
resolutions are Δr = 160 m and Δz = 40 m.

Fig. 5. Surfaces from the Boussinesq model. Resolution: Δr = 50 m,
Δt = 0.8 s.
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According to the Boussinesq solution in Fig. 5, the waves
from the resurge of water into the crater develop into a
secondary undular bore. It must be noted, however, that these
waves are more nonlinear than the leading system due to the
intermediate trough. The highest amplitude nearly reaches 0.7
times the depth in front of the system. Hence, breaking cannot
be ruled out. Still, as radial dilution takes its toll on the wave
heights, it is probable that a smooth undular bore evolves. At
later times (see, for instance, Fig. 14), the secondary system is
much weaker than the primary one.

The evolution of undular bores and subsequent fission
into solitary waves are well established in the literature for
plane waves, or radially symmetric waves, propagating in
constant depth. Save for the crater, the bottom gradients have
been ignored in the simulations described above. In
systematic studies on evolution on undular bores in variable
depth, we have found that solitary wave-like crests do evolve
even in bathymetries with bottom gradients that are an order
of magnitude higher than those in the Barents Sea. Then, the
variable depth influence is small indeed. Numerical tests
indicate errors in amplitude less than 3% for the first 1000 s
(using a Boussinesq model initiated by an idealized bore of
length 32 km and A = 240 m). In subsequent computations we
also find that, when generated, the individual waves retain
their identity as solitary waves, until they break in shoaling
water.

It is reasonable to assume that large marine impacts,
producing craters with diameters that are an order of
magnitude larger than the water depth, will generate ocean
surface waves that are long and strongly nonlinear. In turn,
such waves will develop into bores that are either breaking or
undular, depending on their amplitudes. The bore will be
undular if the initially long, shelf-like wave has a small
amplitude (Peregrine 1966). In contrast, a large initial
amplitude produces a breaking bore, possibly with some
minor undulation in the front that is rapidly consumed by the
dissipation in the breaking process. For plane (straight-

crested) waves, the limiting initial amplitude is around 0.3–
0.4 times the depth, while radial symmetry favors generation
of undular bores strongly. Presumably, if the propagation
distance is sufficiently large, every bore will eventually be
transformed to an undular one when the amplitude is reduced
due to radial spreading. We have not performed systematic
tests to investigate the likelihood of a modified Mjølnir
impact producing a breaking bore some distance from the
crater. 

In a short paper, Weiss et al. (2003) presented results for
a bolide 1 km in diameter with a speed of 12 km/h hitting a
1250 m deep ocean. This corresponds to a bolide-diameter-to-
sea-depth ratio that is between those of the Mjølnir and
Eltanin cases. An impact model (SALE) was coupled to a
nonlinear shallow water model in the far field. After 800 s, a
breaking bore of height near 0.3 times the depth was evident
20 km from the impact center. If dispersion had been included
in the tsunami propagation model this bore would probably
have been transformed into an undular one. Also, after 1700 s,
a second tsunami wave system was developing from the
resurge into the crater. Even though the parameters are
different from the Mjølnir case, some of the important
features are similar.

The Eltanin impact has been subject to several studies
(e.g., Crawford et al. 1998; Shuvalov 2003; Gisler et al. 2003,
2004). However, since no crater was formed, the
characteristics of both the impact and tsunami are very
different from the Mjølnir event. For an asteroid 800 m in
diameter and an ocean depth of 5000 m, using the SAGE
multi-material code, Gisler et al. (2003, 2004) found early
wave amplitudes that were much larger (up to 1 km or more)
than those of the Mjølnir tsunami. However, the amplitude-
to-depth ratio becomes very rapidly smaller in the Eltanin
than in the Mjølnir case. Thus, the breaking is more likely to
be governed by the amplitude-wavelength ratio typical of
deep-water approximation, rather than the amplitude-depth
ratio. Moreover, the characteristic wavelengths are not much

Fig. 6. Separation into solitary waves in the evolution of the Mjølnir tsunami. a) Matching of the SOVA solution at 1000 s to the exact solitary
wave solution of Tanaka (1986). b) Numerical Boussinesq solution matched with the corresponding solitary wave solution. The solitary wave
solutions are calculated from the maxima of the numerical surfaces and the depth. Resolution: Δr = 50 m, Δt = 0.8 s.
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larger than the depths. Hence, the far-field tsunami
characteristics are very different from those of the Mjølnir
tsunami. The huge coefficients for far-field amplitude
attenuation, from Gisler et al. (2003, 2004) were discussed
previously in the “Optimal Approximation and Symptotic
Behavior in the Far-Field” section. Those papers do not
provide sufficient details on the resulting wave forms and it is
thus difficult to assess their findings. However, it is
improbable that any breaking wave forms could results in
such large attenuation coefficients. Hence, we are lead to
attribute the damping to either breaking or the employed
numerical method. Given that the attenuation appears to be
strongest for the smaller asteroid diameters we are inclined
toward the latter explanation. Anyhow, the strong damping is
not a general characteristic for waves from deep-ocean
impacts. This is supported by a recent article (Weiss et al.
2006) where the SALE impact model is combined with a
Boussinesq model for deep-water propagation and the well-
known tsunami model MOST for run-up. They employed a

nonstandard Boussinesq model with anisotropic dispersion.
The diameter of the asteroid was 800 m, the ocean depth
5000 m, and the impact velocity 10 km/s, corresponding to a
fourth of the kinetic energy in the corresponding simulation
by Gisler et al. (2004). At t = 240 s the SALE solution of
Weiss et al. (2006) is transferred to the Boussinesq model. At
this point the combined length of the first peak and trough is
around four ocean depths, which is acceptable for the
particular Boussinesq model used in that work. The wave then
develops into a linear, dispersive wave system. Unlike in the
case of the Mjølnir tsunami, there is no sign of an undular
bore or soliton generation in the deep ocean. At later times,
the attenuation is reported to be a somewhat larger than r−1.
This may be partly due to the initial wave shape in the
Boussinesq simulation (see the “Optimal Approximation and
Symptotic Behavior in the Far-Field” section). Anyhow, the
attenuation found by Weiss et al. (2006) clearly contradicts
the huge damping reported by Gisler et al. (2003, 2004). In
view of this and the damping found in the SOVA solution

Fig. 7. The reconstructed sea floor topography of the paleo-Arctic Seas at the actual time (approximately 150 million years ago). The impact
center is marked with a bullet in the middle of the figure. White areas are land. The black lines out from the impact center are cross sections
used in the simulations, and the corresponding labels in the white boxes are the angle in degrees from north. The remaining keys (1–6) are:
1 = Norway/Scandinavia, 2 = Greenland, 3 = pre-Bear Island, 4 = pre-Svalbard, 5 = pre-Franz Josef Land, 6 = Novaya Zemlya. At this time
Bear Island (sea mount), Svalbard, and Franz Josef Land were lying under water.
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described here, we are lead to suggest that general impact
codes are not suited for long-term simulations of the tsunami
propagation. For smaller diameter-to-depth ratios the
generated surface gravity waves are even shorter and will,
probably, become dominated by a modulated periodic train as
found by Ward and Asphaug (2002). A Boussinesq-type
model is then not appropriate.

Tsunami Propagation and Shoaling

The wave models described in Table 2 yield a range of
simulation tools that we have used to investigate the
propagation of the Mjølnir tsunami. The primary model,
though, with limited applicability due to its huge demands of
computational resources, is the three-dimensional weakly
nonlinear and dispersive Boussinesq equations. As a simple
alternative we employ quasi-symmetric solutions where the
number of dimensions is reduced by one. By assuming radial
symmetry, the equations are solved with the depth h(r, θ = C)
extracted along a straight line from the impact center. The
straight line is defined by the angle C. Correspondingly, we
have used the ray theory with two horizontal dimensions as
well as in the quasi-symmetric fashion by simulating the
leading wave of the tsunami along several lines defined by
different values of the angle C. Naturally, the real bathymetry
is not symmetric and the quasi-symmetric solutions are only
approximations. However, they deviate from the full three-

dimensional solutions by less than 1% within distances of
500 km, with the exception of the direction toward paleo-
Norway. For larger distances effects of refraction and
diffraction, which are not contained in the quasi-symmetric
equations, become important.

We have reconstructed the bathymetry of the paleo-
Arctic Seas based on our own field work and regional
compilations as shown in Fig. 7, which also show the
positions of today’s coastlines. Based on sedimentological
and paleontological  information,  at the time of the impact
the paleo-Arctic Seas were dominated by shallow water
(~200–600 m) with the deepest part between paleo-Norway
and paleo-Greenland. 

Qualitative Features—Simplified Computations
The starting point for the optical (ray) theory is set after

the leading solitary wave has emerged. We use the position
r0 = 160 km from the impact center, the amplitude A0 = 200 m,
and depth h0 = 400 m. Only the leading crest will be
computed by ray theory. We could also have employed the
optical theory to the following crests as soon as they become
separated, and in the absence of interference with reflections
from land. However, the highest amplitude is associated with
the leading crest.

In Fig. 8, we verify the quasi-symmetric ray theory by
comparing the results with a simulation using the quasi-
symmetric Boussinesq model. For the chosen typical depth
profile, the agreement is very good. As long as the depth
gradients and thereby the error factor F are small, there are no
discernible differences between the Boussinesq and ray
theory solutions. However, when the wave crosses regions
with a larger F, small errors in the wave theory, presumably

Fig. 8. Comparison of quasi-symmetric solutions of the Mjølnir
tsunami between ray theory and Boussinesq. The profile is taken
westward in the direction of 255° from north (see Fig. 7). The spatial
and time increments are Δr = 100 m and Δt = 1.6 s, respectively. F is
the validity factor from Equation 23 and refers to the right axis.

Fig. 10. Comparison of critical depth for breaking, hb. “Tan.”
(Tanaka) is given by full potential theory, while “as.” is derived from
the asymptotic expressions of (21).

Fig. 9. Amplitude of the leading crest. Comparison of 3-D ray theory
(label “ray”) and 3-D Boussinesq simulations (label “Bouss.”) as
explained in the text. The cross section is taken out from the impact
center at approximately 255° from the north (see Fig. 7). The
resolution for the Boussinesq simulation is Δx = Δy = 400 m and Δt
= 6.3 s, while  for  the three-dimensional  ray theory  we have
used  Δθ = 2π/100 and Δt = 3.2 s.
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due to nonlinear diffraction, accumulate to yield minor
discrepancies. A corresponding comparison with two
horizontal dimensions is given in Fig. 9. The depicted cross
section is taken westward from the impact center. 

The first application of the quasi-symmetric ray theory is
in estimating the depth at which breaking first occurs under
shoaling. Using the asymptotic expression for the amplitude
found in Equation 21 of Appendix 3 with A/h = 0.72 (3-D)
and 0.78 (2-D) as critical values, we find the critical depth for
breaking, hb, as a function of distance from the impact center.
Figure 10 shows that the breaking depth is rather similar for
the two breaking limits. Furthermore, hb from the asymptotic
expression for ε (see Equation 16 in Appendix 3) follows the
hb from the corresponding full relation (from the full
potential theory of Tanaka) closely. We presumably owe
this to the moderate differences between the various
approximations for ε, as shown in Fig. 11. In particular, the
asymptotic and Tanaka curves intersect near the critical
amplitude, due to the maximum at A = 0.78 h in the latter
curve. This indicates that the onset of breaking, in the
meaning A/h > 0.72, may be well predicted by Boussinesq-
type equations. Figure 12 shows the critical depth for
breaking, together with some depth profiles from the paleo-
bathymetry along different direction through the impact
center. At distances as large as 2000 km, the tsunami still will
break at depths close to 150 m. Toward paleo-Norway (130°,
see Fig. 7), we must expect breaking at a depth of 300 m,
approximately 120 km off the coast. The tsunami will be
breaking over the pre-Bear Island and pre-Franz Josef Land
regions (in the directions 215 and 335 degrees, respectively).
At Greenland (255°) breaking occurs at a depth of 185 m
about 1040 km from the impact center.

Combining the quasi-symmetric ray theory in many
directions, we obtain the amplitude distribution in Fig. 13. It
is observed that breaking is confined to the shoals and the
coast. We have also computed the Mjølnir tsunami with
today’s bathymetry (results not shown). In this case, the
deeper parts of the Barents Sea, south of Bear Island, were the

only nonbreaking regions close to the impact. Another
noteworthy feature of the present bathymetry is the deep sea
basins westward and northward of the impact site. In these
directions, the optics was inadequate to describe the transition
of the solitary waves over the continental margins. Due to too-
steep bottom gradients the solitary waves lose their identity
and are transformed to dispersive linear wave fronts.

Naturally, the quasi-symmetric ray theory cannot include
refraction of waves. Using the three-dimensional ray theory
we may simulate the general evolution of the crest with the
inclusion of wave refraction as well. When there is a point of
a crest that touches land, or where breaking should have
occurred, ray theory fails locally. Due to the nonlinear
refraction the errors are then transported along the crest as
progressive modulations. For a nearly straight crest, the
asymptotic (A/h → 0) crosswise celerity is (Miles
1977; Pedersen 1994), which corresponds to 65 km/h for A =
100 m. If the depth is 400 m, then a localized disturbance of
the crest will influence a sector of 30° downstream. The result
is that the parts of the crest adjacent to a local failure of ray
theory will also be corrupted. Naturally, the same crosswise

Fig. 11. Energy densities (a) and wave celerities (b) for solitary waves. Asymptotic relations for A/h << 1, relations for Boussinesq equations,
and from Tanaka’s method, as explained in the text.

Fig. 12. Critical depth for breaking, hb, of the Mjølnir tsunami plotted
against some depth profiles taken from the paleo-bathymetry. The
label for the radial depth profiles reflects the degrees of the direction
out from the impact center (see Fig. 7). Towards Greenland (in the
direction of 215°) the pre-Bear Island area is found 280 km from the
impact center, while in the direction of 335° the pre-Franz Josef Land
region is located at 1100 km.

gA 3⁄
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spread of local changes on a crest, physical or unphysical, will
appear in full solutions of the Boussinesq equations.

The results of quasi-symmetric Boussinesq simulations
toward paleo-Greenland are displayed in Fig. 14. Both the
leading and the secondary (only the front shown) wave
systems form distinct trains of solitary waves. During the
tsunami propagation the minimum amplitude is about 60 m,
but when the waves approach land the amplitudes pick up
again. In Fig. 15, more details of the leading part of the
solutions are depicted. 

After 4 h, the leading solitary wave has slightly exceeded
the theoretical threshold for breaking (α = 0.72) at

r ~1060 km (distance from impact) and for a depth h = 170 m,
which agrees with the theoretical breaking depth shown in
Fig. 12. We also observe that the resolution at this point is
coarse relative to the wavelength. The wave speed is ranging
from 190 to 280 km/h throughout the simulation, while the
depth-averaged particle speed varies from 35 to ~100 km/h.
Applying the relation between the depth-averaged velocity
and the velocity at the sea bottom found in Appendix 2, we
find that the particle velocity at the bottom generally is above
90% of the depth-averaged value.

Numerical tests with a quasi-symmetric Boussinesq
model indicate that a resolution of Δx = Δy = h is fairly
appropriate for solitary waves with an amplitude-to-depth
ratio up to 0.4 (see Fig. 16). The depth profile in the figure
runs from the impact center towards paleo-Norway in the
direction of 130°, as indicated in Fig. 7. During shoaling, the
solitary waves become shorter and more poorly resolved. As
a consequence the amplification is under-represented.

Full Boussinesq Simulations
In the full-scale simulations using a three-dimensional

version of the Boussinesq model, we consider a domain of
800 × 800 km around the impact center. As previously
described, the Mjølnir impact generated an undular bore
which developed into a train of solitary waves. Typical
length of the leading solitary wave at depths of 400 m is a
few kilometers, which is much shorter than typical
wavelengths of seismic tsunamis in corresponding depths.
Hence, the main challenge in the present simulations
compared to those of earthquake-generated tsunamis is the
need for very high resolution and nonlinear as well as
dispersive equations throughout the whole computational

Fig. 13. Amplitude (a) and ratio amplitude to depth (A/h) (b) estimated by quasi-symmetric ray theory as explained in the text. Amplitudes
above 0.3 km and values of A/h over the breaking criterion 0.72 are truncated. (See Fig. 7 for explanation of the key numbers.)

Fig. 14. Quasi-symmetric solutions of wave propagation with depth
profile extracted from the impact center toward paleo-Greenland
(255°; see Fig. 7). The solutions are printed at t = 23 min, 1 h 33 min,
2 h 45 min, and 4 h 6 min, respectively. Only the primary wave
system and the leading part of the secondary wave system are plotted.
The spatial and time increments are Δr = 100 m and Δt = 1.6 s. The
corresponding close-ups of the front of the first system are given in
Fig. 15.
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Fig. 15. Front of leading wave system for the quasi-symmetric Boussinesq solutions shown in Fig. 14. The first crest of the simulation (solid
line) is compared to a solitary wave (dashed line) scaled by the amplitude and water-depth under the crest. r is the distance, A the amplitude
of the leading crest, h is the water depth, u the particle velocity, and c the wave speed.

Fig. 16. Convergence tests for quasi-symmetric Boussinesq simulations. The labels are spatial increments in meters (Δr). The convergence is
shown as amplitude tracking (a) and snapshot of the surface at t = 23 min (b). The time increments (Δt) are 6.3 s, 1.6 s, and 0.8 s, with
corresponding spatial increments of 400 m, 100 m, and 50 m, respectively (t ∈ [17 min, 90 min]). In (a) the ratio amplitude to depth (label
“A/h”) refers to the right axis.
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domain. The simulations presented below in a rather small
domain have 4 million nodes corresponding to a resolution
of Δx = Δy = 400 m, which is reasonable but somewhat
coarse in view of the grid refinement tests shown in Fig. 16.
The simulations are run on eight nodes of a parallel Linux
cluster.

Figure 17 summarizes some of the results from three-
dimensional simulations. After 1 h and 10 min, the leading
waves are completely separated into solitary waves (see
lower left panel). Here the leading crest is about 144 m high
and the five first waves are all above 50 m. The overall
maximum amplitude during the whole simulation is up to

220 m (upper left panel). See also the cross sections of the
surface elevation in Fig. 18. The breaking feature in our
model has been activated over pre-Bear Island area and
toward paleo-Norway at depths less than approximately 310
and 260 m, respectively (upper left panel). These depths are
slightly less than the predicted breaking depth due to under-
resolution in the Boussinesq model. In the upper left panel the
breaking is shown as reduced amplitude (see, e.g., over pre-
Bear Island). 

The breaking feature in our Boussinesq model reduces
the amplitude in breaking areas. Figure 18 shows cross
sections of breaking solutions taken along a line from the

Fig. 17. Simulations using the reconstructed paleography/paleo-bathymetry and the three-dimensional Boussinesq equations. Panel (a) shows
the maximum surface elevation and (b) shows the maximum amplitude-to-depth ratio during the tsunami propagation from t = 17 min to 1 h
10 min. Panel (c) shows a local part of the solution. The plotting area is indicated with a rectangle in (d) where we have plotted the bathymetry
applied in the simulations. Note that values of A/h > 0.72 are truncated. The resolutions are Δx = Δy = 0.4 km and Δt = 6.3 s. (See Fig. 7 for
explanation of the key numbers.)
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impact center toward Norway. After 1 h there is no breaking,
but after 1 h and 10 min, the front of the solutions is
significantly reduced by breaking (spilling) and the wave
crests above the critical value of A/h are damped as they enter
shallower water.

CONCLUDING REMARKS

In this paper, we have modeled the generation and the
propagation of the tsunami caused by the Mjølnir impact
about 142 million years ago. The tsunami generation phase is
modeled by the multi-material code SOVA, while the tsunami
propagation within the limitations of shallow water theory is
modeled by combining the weakly dispersive and nonlinear
Boussinesq equations and ray theory.

In the numerical simulations we have seen that both the
generation and propagation are strongly influenced by
nonlinearities. A few minutes after the impact, the tsunami
starts to develop as an undular bore, which then develops into
a train of solitary waves. The wave characteristics are due to
genuine nonlinear and dispersive features, but neither shallow
water models nor linear theory can capture them. Unlike
traditional shallow water models, nonlinear and dispersive
equations lead to an implicit system of unknowns. In three-
dimensional simulations this implicitness and the need of
high resolution due to short waves (1–4 km) give a
computationally heavy problem, even for a rather small
domain. In this paper, we have applied numerical simulations
using the power of the combination of a domain
decomposition method and parallel computing. Moreover,
important qualitative information, such as regions of
breaking, is obtained by simplified techniques that include
quasi-symmetric simulations and ray theory for solitary
waves. The quasi-symmetric approximation is accurate until
diffraction/refraction due to land or particularly distinct
shoals, such as the pre-Bear Island, become important. Ray
theory is seldom applied to solitary waves, but in the present
case this simple approach provides useful results both as
asymptotic results in closed form and computations. The
optical theory may be useful also for related cases where
undular bores are produced by seismic tsunami, or tides, in
estuaries and shallow straits.

The total energy in the Mjølnir tsunami is several
orders of magnitude larger than the energy of the disastrous
Indian Ocean tsunami of 2004. This work shows that the
impact caused amplitudes above 200 m, and in some cases
the amplitude is still above 100 m after 4 h. Due to these
high amplitudes the tsunami will break far from the
coastline. For instance, the tsunami traveling toward paleo-
Norway should break at a depth of around 300 m and
120 km offshore.

At the time of impact, the sea bed was sedimented by
organic rich mud and clays that presumably were
unconsolidated. Hence, there was no well-defined sea

bottom, but a thick (turbid) layer with gradually increasing
density downward. Then, the tsunami, causing repeated
current pulses  with  particle  velocities  in  the  range of
30–90 km/h close to the sea floor, must have generated
substantial mixing and consequently reworked the sea floor
dramatically. A total change of the marine environment
throughout the paleo-Barents Sea is thus likely. The direct
effect of the re-sedimentation is difficult to detect in the
layers, but the bloom of the green algae (Leiosphaerida)
(Dypvik et al. 2004b; Smelror et al. 2005) surely indicate the
environmental changes. It is also possible that the
unconsolidated bottom and the suspended fine-grained
sediments caused a substantial damping of the tsunami.
Similar effects may be important for seismic tsunamis and
storm surges flooding tidal flats and entering estuaries and
other shallow regions that are rich in sediments. However,
we expect that of the entire paleo-Barents Sea region, the
clearest evidence of tsunami today should come from the
coastal regions.

In this work we have focused on the generation,
propagation, and shoaling of the Mjølnir tsunami. While the
important investigations regarding the run-up of the tsunami
are rather complex and require further analysis.
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Fig. 18. Breaking of the train of solitary waves towards Norway. The
profiles are cross sections in the three-dimensional fields after 60 and
70 min. The thick black curve is the sea bottom, h (depth in
kilometers shown at right vertical axis). The lower axis is the
distance from impact center, and waves are travelling to the right.
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APPENDIX 1: 
MODELS FOR TSUNAMI PROPAGATION

For tsunami propagation we employ a set of Boussinesq
equations that is based on the averaged velocity potential φ
and the surface elevation η:

(1)

(2)

where g is the acceleration of gravity and is an artificial
diffusion term that enable a rough representation of breaking
waves. Usually this kind of term is added to the momentum
equation. However, when the momentum conservation is
represented by the potential in a Bernoulli type of equation,
this causes difficulties with both momentum conservation and
numerical performance. Naturally, the term may equally well
appear in the continuity equation as long as mass conservation
is observed. The term reads:

(3)

The determination of an appropriate diffusion factor, β, is
far from straightforward and there is presumably no single
choice that is universal in the sense that it fits all purposes.
Herein, the diffusion is designed to check the growth of
solitary waves during shoaling, after they reach a threshold of
the ratio amplitude to depth A/h = α = 0.72. (The solitary
wave solution is discussed in Appendix 3.) Hence, β is zero

for η/h < α. To assign a value to β when the threshold is
surpassed we have studied the “post-breaking” behavior for
different β in a typical depth profiles from the Barents Sea. It
turned out that for a value close to β = 1 the amplitude-to-
depth ratio remained below 0.8 for at least h > 100 m. For
gentle spilling this is a reasonable behavior, and we thus have
employed β = 1 for active diffusion in all our Boussinesq
simulations. However, we do remark that the resulting
diffusion will become more and more inappropriate as the
shape of the wave is transformed to become substantially
different from that of a solitary wave (see the discussion at the
end of Appendix 3). Our diffusion term is similar to those
employed by Zelt (1991) and Kennedy et al. (2000) where the
threshold for α is linked to gradients, but still corresponds to
a solitary wave of limiting height. That method with α = 0.65
was used to reproduce bores from experiments very well
(Kennedy et al. 2000; Lynett et al. 2002). This value of α is a
little below the theoretical breaking limits α = 0.72 (Kataoka
et al. 2004) for the 3-D case and α = 0.78 (Tanaka 1986) for
plane waves. While the referenced breaking models dissipate
energy mainly in a front region, the present extends the
dissipative region beyond the peak, which is more reasonable
for a spilling breaker. 

For the radially symmetric case, Equations 1 and 2
reduce to:

 

(4)
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(5)

Equations 1–2 and 4–5 are well suited for discretization by
finite difference and element techniques. We have observed
artificial behavior in the presence of extreme bottom
gradients in both formulations 1–2 and 4–5. Still, since we
have a low-profile bathymetry, no such problems are
encountered in the Mjølnir simulations. The sets 1–2 and 4–5
are solved by finite element and finite difference methods
very similar to those described in Langtangen et al. (1998).
The solver for 1–2 is also parallelized using a data
decomposition technique on the linear system level as
explained in (Cai et al. 2003).

It turns out that the surface gravity waves from the
impact undoubtedly stretch the validity of the Boussinesq-
type long wave models concerning height and length.
Moreover, the SOVA model is under-resolved and thus not
well fitted for validation of the models for tsunami
propagation in large regions. To assess the performance of the
Boussinesq-type models, we have therefore employed two
models for full potential flow: namely, a 2-D traditional
boundary integral model (Pedersen 2005) that is related to
that of Dold (1992), and a new 3-D model that combines
resolution in panels with Fourier transforms (Clamond et al.
2001; Fructus et al. 2005; Grue 2002). 

APPENDIX 2: VELOCITY PROFILES 
AND UNIDIRECTIONAL WAVES

In shallow water theory there is no vertical variation of
the horizontal velocity. Boussinesq theory, on the other hand,
implies a parabolic velocity profile:

(6)

where  is the surface velocity and the  in the last term on
the right-hand side may be replaced by the surface velocity
without loss of accuracy. We need this profile for
comparisons and exchange of data with the more general
models.

The various models utilize different primary unknowns.
In particular, the Boussinesq models are expressed in terms of
surface elevations and depth-averaged velocities/potentials.
The full potential flow methods involve surface elevation and
velocities/potentials at the surface, whereas the SOVA model
discretizes the whole velocity field and employs volume
fractions and localizes the surface at grid cells that are
partially filled with water. Moreover, the different theories
imply different relations between surfaces and velocities for

propagating waves. The compatibility problem is further
accentuated by the fact that the SOVA model must be run with
rather coarse resolution, making accurate extraction of
surface velocities and elevations difficult. When the
generation and early propagation have been computed by the
radial SOVA model, surface and depth-averaged velocity are
extracted and conveyed to the Boussinesq model. However,
the surface is not accurately presented in the impact model
due to coarse resolution. Moreover, the impact model and the
long wave propagation model yield different dispersion
properties. Hence, a direct adoption of both surface elevation
and averaged velocity from the impact model will cause noise
and artificial reflection in the propagation model.
Alternatively, only the surface elevation is extracted and the
velocity is computed from the assumption of radially
diverging waves. For large r (far from impact center) we then
have:

(7)

where  is the vertically averaged horizontal velocity
component. This relation is derived below. We observe that
the right-hand side is singular for r = 0. It is essential that
Equation 7 is written in an implicit manner, with the double
derivative expressed in  instead of η. Otherwise, short-scale
noise would be severely augmented. From Equation 6 we may
then obtain the following relations between the surface,
bottom, and depth-averaged velocities:

, (8)

where us and ub are the surface and bottom velocity,
respectively, and R is as defined in Equation 7. The first
relation may be used to convey fields from the Boussinesq
solution to full potential theory. When combined with
Equation 7 it also provides a route from the SOVA model to
the full potential theory models.

To derive Equation 7 we first we note that constant depth
implies that the depth-averaged velocity and the potential are
related through . Differentiation of Equation 4
with respect to r then yields Boussinesq equations on the form

(9)

(10)

If we expand the spatial derivatives in these equations we
obtain terms containing factors r0, 1/r, and 1/r2. When the
terms with reciprocal powers of r are deleted in Equations 9
and 10 we retrieve the equations for plane waves. For large r,
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and thus small curvatures of the wave-crests, these terms will
be small. Moreover, if we enter a “moving” coordinate system

 with  waves will undergo only slow
temporal changes in the new coordinates, meaning that time
derivatives are small. Observing that also nonlinear and
dispersive terms are small we may transform Equations 9 and
10 to:

(11)

(12)

where the leading terms are collected on the left-hand sides
and “h.o.” indicates negligible contributions from
combination of nonlinearities or dispersion terms with
reciprocals of r. We observe that the left-hand sides differ by
a constant factor, only, and that we through shallow water
theory have:

(13)

provided there is quiescent water for some large r. This
relation may then be employed to eliminate  from all terms
on the right-hand sides of Equations 11 and 12, save the
dispersion term. Next, we may combine the equations to
eliminate  and achieve an expression for  in terms of
η:

(14)

Re-insertion of r as spatial variable and integration then yields
Equation 7. Naturally, we could also have replaced  in the
triple-derivative term by η, but the resulting equation would
then be less useful, even if explicit. 

APPENDIX 3: SOLITARY WAVES AND OPTICS

The solitary wave is a single-crested wave of permanent
shape and constant celerity that may exist due to the
combined action of nonlinearity and dispersion. The concept
of solitary waves goes back to the first half of the nineteenth
century (Russell 1845), and has retained interest in the
context of surface gravity waves since. From the end of the
sixties throughout the seventies, the solitary wave was
fashionable in various physical settings and a number of its
remarkable properties, manifested through closed-form
mathematical solutions, came to light. These include the
particle-like interaction properties for small, but finite,
amplitudes, and the genesis of solitary waves from general
initial conditions. Most of the explicit results are confined to
dispersive long wave theory, in particular the KdV equation,
but numerical and perturbation solutions do exist for solitary

waves within full potential theory as well. While the KdV and
the Boussinesq equations yield solitary wave solutions of
arbitrary amplitude, the full theory predicts a maximum
height A = 0.83h, while amplitudes exceeding 0.78h and
0.72h yield instability in 2-D and 3-D, respectively (Kataoka
et al. 2004; Tanaka 1986). A number of properties of solitary
waves are described in the review (Miles 1980).

The surface elevation of a gravity solitary wave reads:

(15)

where c is the celerity (see below), Y a form function, and the
rightmost expression is the asymptotic (A/h → 0) solution
consistent with the KdV equation. It is noteworthy that while
the solitary wave in principle has infinite extension, though
with exponentially decay on the outskirts, it displays a length
scale that is in inverse proportion to the square root of A. For
larger amplitudes the solutions for the KdV equations, the
Boussinesq equations and full potential theory differ. An
example, A/h = 0.5, is depicted in Fig. 19. Even for this quite
high amplitude, there are only moderate differences between
the Boussinesq solution and full potential theory.

The basis of the optics for solitary waves is the
dependence of the energy density per crest length E, and the
wave celerity c upon the equilibrium depth h and amplitude A

(16)
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Fig. 19. Surface profiles for a solitary wave of height A = 0.5h
according to different approximations as explained in the text.
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The rightmost expressions are asymptotic approximations for
A/h <<1. From Tanaka’s method (Tanaka 1986) we may
tabulate the functions ε and C for general A/h. Inserting the
solitary wave solutions of the Boussinesq equations into the
appropriate energy expressions we may also tabulate
approximate functions ε and C that presumably are more
consistent with our form of the Boussinesq Equations 1 and 2.
However, it should be noted that the Boussinesq equations on
this form are not exactly energy conserving. The different
options for the energy density and wave celerity are displayed
in Fig. 11. 

In analogy to optics for sinusoidal waves, the basic
assumption is that the relations (Equation 16) are valid also
for gently curved and modulated solitary wave crests in
slowly varying depths. Introducing some suitable
parameterization for a wave crest we may then establish
equations for its evolution. A crest will advance in time with
the rate c in the direction perpendicular to itself, and we
recognize rays as trajectories that are normal to the crest at all
times. The energy density E times the arc length of the crest
between two close rays, meaning the total energy between the
rays, is assumed to remain constant. This leads to a coupled
nonlinear set of equations for the amplitude distribution and
the ray/crest deformations (Miles 1977; Reutov 1976;
Pedersen 1994). In the present context it is convenient to
parameterize the crest in polar coordinates, which means that
the position of the crest is given by r = r(θ,t) (see Fig. 20). We
note that this is different from the common use of optics for
sinusoidal waves where fans of rays are parameterized as time
trajectories and computed first, followed by the application of
a transport equation for the amplitude. 

The flux through the chord θ = const. is given by:

(17)

Energy conservation then yields:

(18)

where is the arc length per θ. For the celerity
we obtain:

(19)

We observe that Equations 18 and 19 constitute a coupled
set of equations for amplitude A and position r which must be
solved simultaneously. Both equations are discretized in
space by finite differences and an iterative time integration
that mimics the Crank-Nicholson method. For cases with
either plane wave motion or radial symmetry, these equations
simplify to:

(20)

where ξ is the spatial coordinate, x or r, and p equals unity for
radial symmetry and zero for a plane wave, respectively.
Employing the approximate expressions in Equation 16 we
find:

(21)

where A0, h0, and r0 define a reference state. This equation is
the basis of the discussion of far-field behavior of solitary
waves given in the “Optical Approximation and Asymptotic
Behavior in the Far-Field” section. By formal perturbation
expansions, higher order optics may be developed, as in Ko
et al. (1978) for the radially symmetric case and in Pedersen
(1994, 1996) for general crest shapes and variable depth.
Several new features are then included. Relevant in the
present context are the shape modifications and diffraction, in
the sense that the leading crest leaks and a trailing long
elevation or trough is formed. In the symmetric case the
height of the diffracted wave becomes:

(22)

where ξ has the same meaning as in Equation 20. The shape
modifications are of the same magnitude as the quantity AD.
Herein we are not primarily interested in these higher order
modifications as such, but rather employ the relation:

(23)

as an a priori validity criterion for the optics. Generally it turns
out that the application of optics is more restricted for solitary
waves than for sinusoidal waves (see also discussion in Miles

Fig. 20. Geometry and definitions for the optics. The wave crest is
plotted at times t and t + dt.
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1980). For constant depth Equations 21–23 imply that F is
independent of r. This means that the increased wavelength
linked to the attenuation due to radial spreading is
counterbalanced by the decrease in curvature of the wave
front as far as validity of the optics is concerned. For a given
bottom gradient we observe that F decreases with increasing
amplitude. This is simply due to the inverse relation between
height and length of solitary waves, which imply that the
requirement of mild bathymetric variation is relaxed for the
higher amplitudes. However, for the higher amplitudes we
should employ tabulated ε(A/h) and C(A/h) from the Tanaka’s
solution rather than asymptotic formulas for small A/h. In

shoaling water the waves may eventually reach the maximum
amplitude, A/h = 0.72 and break. Kulikovskii and Reutov
(1976) attempted to include breaking in an optical description,
assuming that the crest during shoaling remained at the critical
amplitude as a spilling breaker. However, there is no firm
support for this assumption and in most applications the
transformation to a traditional breaking bore of asymmetric
shape seems more likely. Hence, the optical description
should be abandoned as soon as breaking do occur.

The verification and application of the ray theory are
presented in the “Qualitative Features—Simplified
Computations” section.
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