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Abstract-In 2004, a drilling project by the International Continental Scientific Drilling Program
(ICDP) at the Bosumtwi impact crater, Ghana (1.07 Myr old and 10.5 km in diameter), obtained drill
core LB-07A, which sampled impactites and underlying metasediments in the crater moat surrounding
the small central uplift of the structure. The LB-07A core consists of three sequences: 82.29 m of an
upper impactite sequence of alternating polymict lithic and suevitic impact breccias overlying 54.88 m
of so-called lower impactite of monomict impact breccia with several suevite intercalations, and
74.53 m of meta-graywacke and altered shale of the basement, also containing a number of suevite
intercalations. Major- and trace-element characteristics of all three sequences have been determined to
investigate breccia formation and the role of the respective basement lithologies therein. Compositions
of polymict impact breccias of the crater fill revealed by core LB-07A are compared with the
compositions of the Ivory Coast tektites and the fallout suevites. The impactites of the LB-07A
borehole appear well homogenized with respect to the silicate component, and little change in the
ranges of many major- and trace-element differences is seen along the length of the borehole (except
for Fe,03, MgO, and CaO contents). Much scatter is observed for a number of elements, and in many
cases this increases with depth. It is proposed that any variability in composition is likely the function
of clast population differences (i.e., also of relatively small sample sizes). No systematic
compositional difference between polymict lithic and suevitic impact breccias is evident. An
indication of carbonate enrichment due to hydrothermal alteration is observed in samples from all
lithologies. The impactites of the borehole generally show intermediate compositions to previously
defined target rocks. The fallout suevites have comparable major element abundances, except for
relatively lower MgO contents. The Ivory Coast tektites are generally similar in composition to the
LB-07A suevites, but broader ranges in MgO and CaO contents are observed for the LB-07A suevites.

INTRODUCTION

The Bosumtwi structure in Ghana, West Africa, is a
complex impact crater that is 1.07 Myr old (Koeberl and
Reimold 2005). It is linked to one of only four known tektite
and microtektite strewn fields (the Ivory Coast strewn field)
(e.g., Glass et al. 1991; Koeberl et al. 1997). The young crater
structure is well preserved. The recent drilling project by the
International Continental Scientific Drilling Program (ICDP)
(Koeberl et al. 2005, 2006) resulted in the recovery of rocks of
the deep crater moat and from the flank of the small central
uplift (drill cores LB-07A and LB-8A, respectively) (e.g.,
Coney et al. 2007; Ferriére et al. 2007a). This includes impact
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breccias as well as basement lithologies (for petrographic
details see Fig. 5 of Coney et al. 2007). Stratigraphic details
for these drill cores are presented in Fig. 4 of Coney et al.
(2007) and Fig. 2 in Ferriére et al. (2007a). Results of
macroscopic drill core description, as well as hand specimen
and microscopic analysis of our sample suite from the
LB-07A borehole, are discussed by Coney et al. (2007). Here
we present first geochemical results for this impactite sample
suite and the underlying crater basement. This allows
comparison with the results of previous geochemical studies
(Koeberl et al. 1998; Boamah and Koeberl 2002, 2003, 2006;
Dai et al. 2005) that focused on rocks sampled around and
beyond the crater rim, and also with the composition of
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samples from core LB-08A into the flank of the central uplift
(Ferriére et al. 2007b) and with Ivory Coast tektites and
microtektites (Koeberl et al. 1997, 1998).

REGIONAL GEOLOGY: A BRIEF OVERVIEW

The ~2.1-2.2 Gyr old Birimian Supergroup (Wright et al.
1985; Leube et al. 1990; Davis et al. 1994; Hirdes et al. 1996;
Oberthiir et al. 1998) in which the Bosumtwi impact structure
was excavated consists of a variety of metasediments
(traditionally regarded as Lower Birimian) and metavolcanics
(Upper Birimian). However, no age difference is apparent
between the two units, and thus it has been recommended
(e.g., Leube et al. 1990) that the subdivision between Upper
and Lower Birimian be abandoned. The metasediments
comprise interbedded phyllites, schists, meta-tuffs, meta-
graywackes, shales, and slates. There are a number of
different varieties of meta-graywacke, some of which are
quartz-rich (metas-andstones and quartzite) or carbonate-rich.
Metavolcanic rocks occur to the southeast of the crater
and includes altered basic intrusives with intercalated
metasediments. To the east and southeast of the crater, clastic
sedimentary rocks thought to represent the detritus of the
eroded Birimian Supergroup (Leube et al. 1990) occur and are
known as the Tarkwaian Group (see Fig. 3 in Coney et al.
2007). A number of granitic and mafic intrusions occur
throughout the region (see Koeberl and Reimold 2005 and
Karikari et al. 2007 for further details). The crater structure is
largely covered by Lake Bosumtwi, which is 8.5 km wide.

PREVIOUS GEOCHEMICAL WORK

One main focus of geochemical work on the Bosumtwi
impact structure in previous years has been to establish the
link between the impact structure and the Ivory Coast tektite
strewn field (first described by Lacroix 1934). The tektite
strewn field and the crater have been correlated on the basis of
geochemical composition (e.g., Schnetzler et al. 1966, 1967;
Kolbe et al. 1967; Shaw and Wasserburg 1982; Jones 1985;
Koeberl et al. 1998) and age (e.g., Gentner et al. 1967;
Koeberl et al. 1997).

Koeberl et al. (1998) identified, by major- and trace-
element chemical analysis and petrographic studies, four
main target-rock groups: phyllite-graywacke, granite dikes,
shale, and Pepiakese granite. They found that the distinction
between phyllites and graywackes was not well defined, and
so included them in one group. The phyllite and graywacke
samples studied by Koeberl et al. (1998) have variable
chemical compositions, but are distinct from the shales in that
they have higher silica and lower alumina, iron, and
magnesium contents. Koeberl et al. (1998) also found that the
regional granitoids represent two different chemical types.
The granite dikes are relatively unaltered in comparison to the
Pepiakese granite, which forms an intrusive granitoid body on
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the northeastern side of Lake Bosumtwi (Fig. 3 in Coney et al.
2007). The Pepiakese granite also contains more amphibole
and biotite than the other granitoids sampled. The Pepiakese
granite samples in general have high but variable Fe, Mg, and
Ca contents (thought to have been caused by extensive
chloritization and the presence of the mafic minerals).

Additionally, Koeberl et al. (1998) analyzed a number of
the rocks from around the Bosumtwi crater structure for their
O, Sr, and Nd isotopic compositions. The Rb-Sr isotopic
ratios measured for selected target rocks were similar to those
previously obtained for the Birimian granitoid intrusions
(Taylor et al. 1992). Taylor et al. (1992) used the Rb-Sr, Sm-
Nd, and Pb-Pb isotopic systems to constrain the rock-forming
events, and found that the results from the various isotope
systems were generally in agreement with each other and that
the Birimian magmatic crust-forming event took place from
~2.3 t0 2.0 Gyr by differentiation from slightly depleted crust.
The isotopic data of Shaw and Wasserburg (1982) and
Koeberl et al. (1998) supported the interpretation that the
Ivory Coast tektites were similar in composition to the rocks
exposed at the Bosumtwi impact structure, indicating that
they both formed during the same event (Koeberl et al. 1998).

A strong airborne radiometric anomaly was found around
and to the north of the crater rim by Plado et al. (2000). To
examine the hypothesis that the signal was caused by local
enrichment of potassium, Boamah and Koeberl (2002)
measured major- and trace- element concentrations of a
number of soil samples from around the Bosumtwi structure.
They found that the soil samples showed considerable
variation relative to the parent rocks from which they had
been derived (but within the range obtained for the source
rocks). Boamah and Koeberl (2002) concluded that the
variable geochemical signature reflected the extensive
chemical weathering that had taken place in the tropical
environment. Boamah and Koeberl (2002) suggested that the
strong anomaly could have been caused by potassium
mobilization owing to the impact event, or to the local
presence of source rocks with variable potassium
concentrations.

Boamah and Koeberl (2003) reported on a shallow
drilling program to the north of the crater rim, where
extensive suevite occurrences were known to occur (first
mentioned by Junner 1937), in order to determine the
thickness of the suevitic ejecta blanket in several locations, as
well as to determine geochemical characteristics of the ejecta
in an attempt to link the aero-radiometry data with ground-
based analyses. They found that the major- and trace-element
concentrations of the suevites were similar to those of the
target rocks in the area and noted that the metasedimentary
target rocks and the granite dikes provided an important
contribution to the fallout suevites, together with a lesser
proportion of Pepiakese granite. This is in contrast to the
composition of fallback suevites found in the drill cores
within the crater fill (see petrographic data of Coney et al.
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2007 and Ferriére et al. 2007a), in which granitic components
are only a minor contributor. The regional geological
observations by Reimold et al. (1998) suggested that only
some 2% of the target was composed of granite.

The possible presence of a meteoritic component in
tektites and impact breccias and the indigenous siderophile
element component of the target rocks were investigated by
a number of workers (Palme et al. 1978; Jones 1985;
Koeberl and Shirey 1993; Dai et al. 2005). Koeberl and
Shirey (1993) measured the concentrations and isotopic
ratios of osmium and rhenium for a number of Ivory Coast
tektite samples as well as for country rocks from the
Bosumtwi structure. The osmium isotopic ratios of the
tektites are close to meteoritic values, whereas the rocks of
the Bosumtwi structure showed values rather typical of
older continental crust. Koeberl and Shirey (1993)
concluded that the Re-Os isotopic signatures of the tektites
provided unambiguous evidence for contamination with
0.1-0.6 wt% meteoritic component. However, no clear
meteoritic component could be distinguished in the fallout
suevites (Dai et al. 2005) because of the high siderophile
element contents in the target rocks (see also McDonald
et al. 2007, on PGE abundances).

METHODOLOGY

In order to examine the compositions of the LB-07A
impactites, their possible source rocks, the mixing of target
rocks in formation of the impact breccias, and the possible
presence of a meteoritic projectile, a suite of 86 samples was
subjected to geochemical analysis. Core samples 5-10 ¢cm in
length (quarter cores with a radius of 3 cm) were crushed and
powdered. Twenty-three polymict lithic breccia, 36 suevitic
breccia, 13 monomict impact breccia, and 14 metasediment
samples from the basement to the crater structure were
analyzed. The samples were first crushed and milled to a
powder (after pre-contamination of crushing instruments).
Eighty-six samples were milled in tungsten carbide swing
mills, or, where possible, in an agate mill, in order to avoid
contamination (from the equipment). The powders were
analyzed for major- and trace-element concentrations using
standard X-ray fluorescence (XRF) procedures at the
University of the Witwatersrand, Johannesburg (see Reimold
et al. 1994 for details on the procedures, precision, and
accuracy) and Humboldt University, Berlin (see Schmitt et al.
2004 for details on the procedures, precision, and accuracy).
Trace-element concentrations were determined on 200 mg
aliquots by instrumental neutron activation analysis (INAA) at
the University of Vienna, Austria, following procedures
described by Koeberl (1993, 1994). In those cases where
values were obtained by both XRF and INAA for the same
element, these were compared and generally found to be in
agreement; consequently, averages of both the XRF and INAA
sata, or only XRF values are reported here for these samples.
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LITHOSTRATIGRAPHY OF
THE LB-07A DRILL CORE

Detailed lithostratigraphic studies of core LB-07A are
reported by Coney et al. (2007), based on the same sample
suite that was analyzed geochemically. The LB-07A core was
drilled from a depth 0f 333.38 m to a depth of 545.08 m below
lake level and consists of ~137 m of impactites and ~75 m of
crater basement. The impactites are divided into an upper
(333.38-415.67 m in depth) and a lower (415.67—470.55 m in
depth) sequence. The upper and lower impactites differ from
each other in that the upper impactites are polymict, whereas
the lower ones are monomict. The upper impactites consist of
three polymict lithic breccia units alternating with three
suevite units (see Fig. 4 in Coney et al. 2007). The breccias
are dominated by meta-graywacke and shale (some of it
graphitic) clasts, plus minor phyllite, mica-schist, and
quartzite, and traces of primary carbonate. The lithic breccias
and suevites are very similar in terms of clast types and size
ranges, as well as shock deformation of clasts, and the lithic
breccias differ from the suevites only in the absence of melt
particles (Coney et al. 2007). Clast size is variable:
subcentimeter- to decimeter-size clasts have been observed
(see Coney et al. 2007). The melt particles in the suevites are
angular to rounded, either mafic (brown-black) or felsic
(colorless to white), and the matrices of the suevites are gray-
brown in color. The abundances of the melt particles vary
between 1.5 and 7 vol%.

The lower impactites consist of monomict breccias,
dominated by meta-graywacke, with minor shale and two thin
suevite intercalations. The highest proportion of melt in the
borehole is found in the suevites in this interval (~18 vol%-—
but in potentially nonrepresentative samples as discussed by
Coney et al. 2007), and the melt particles differ in color from
the melt particles of the upper impactites in that they are
greenish yellow (as is the matrix of the suevites). This is
attributed to a higher degree of alteration in the lower
impactites.

The basement rocks, intersected in the interval from
470.55-545.08 m, consist of highly altered shales with altered
remnants of graphitic schist, alternating with meta-
graywacke. Two suevite intercalations and a single
hydrothermally altered granophyric lithology are found
within the basement rocks. The upper suevite (483.00 m) is
characterized by a dense gray-black matrix and the lower one
(513.90 m) by a light gray matrix. The meta-graywacke and
shales (including the graphitic schist) are locally strongly
laminated and tightly intercalated, also with thin bands of
quartzite, metasandstone, and carbonate bands. Given the
extensive alteration of the lower levels of the core, it is likely
that some of our relatively small samples represent mixtures
of such lithologies, which could cause local variation in
chemical composition (for example, with regard to CaO and
loss on ignition [LOI] contents; see below).
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Evidence for hydrothermal alteration is present in the
form of a number of cross-cutting quartz and carbonate veins
(both macroscopic and microscopic), as well as carbonate
pods (up to 10 cm in size) in the impactite sequence. The
alteration is most pronounced in the upper impactites,
together with the suevites of the lower impactites, with less
evidence observed in the monomict breccias (though the core
is highly disaggregated and these features may not be
preserved). Within the basement rocks, carbonate pods up to
10 cm in width are observed, and secondary sulfide network
patches have been identified microscopically by Coney et al.
(2007).

The lithostratigraphic subdivisions identified by Coney
et al. (2007) are used below to examine whether any
substantial changes in the major- and trace-element signatures
exist within borehole LB-07A. The XRF and INAA results
are presented in Table 1.

MAJOR ELEMENT COMPOSITIONS

The major-element profiles, plotted against depth in
order to investigate the respective compositions of the
different lithologies, are shown in Fig. 1. Table 2 gives the
overall ranges in the major elements for the various
lithologies. The abundances of MnO and P,0s have similar
patterns, and as these elements form minor components of
the total major element signature, these data are not discussed
in detail here.

Polymict Lithic Breccias

The polymict lithic breccias have SiO,, TiO,, and K,O
contents within small ranges, with only few outliers (see
Table 2). The Al,O; contents show a fair amount of scatter.
The CaO contents vary mainly between 0.76 and 2.89 wt%,
with a maximum of 8.59 wt%. Interestingly, Na,O contents
were found to be highest at the top of the core (and to decrease
with depth) and vary between 0.94 and 3.78 wt%. The Fe,04
(all Fe calculated as Fe*") contents vary between 3.26 and
7.53 wt%, and positively correlate with MgO values (between
1.5 and 15.0 wt%).

Suevites of the Core LB-07A

Most of the SiO, values of suevite samples range from
53.7 to 66.2 wt%, which is similar to that of the lithic
breccias, although a few more siliceous suevite samples (up to
70 wt%) are in evidence. The TiO,, K,0, and Fe,05 contents
vary within similar ranges to those of the lithic breccias. The
highest Fe,O5 values could not be correlated with high shale
contents, so it is clear that another component is controlling
the Fe,O3 composition, such as the sulfide or mica content
variation. MgO contents are again correlated positively to the
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Fe,O; contents. The Al,O; values range from 12.44 to
17.04 wt%, with a single outlier at 5.02 wt% (within a sample
of high carbonate content). The CaO contents are highly
variable and the full range is between 0.95 and 10.06 wt%,
with most values lying in the range of 0.95-2.89 wt%, which
is comparable to the values observed for the lithic breccias.
The Na,O abundance varies between 0.11 and 5.38 wt%, with
most values falling into the range of 0.11 to 3.71 wt%. It is
most likely that these fluctuations are related to the feldspar
minerals, which vary in abundance between 0.7 and 8.5 vol%
in the suevites (see Coney et al. 2007).

Monomict Breccias

In the monomict breccias (lower impactites), SiO, varies
between 56.01 and 76.95 wt%, which is a slightly wider range
than that for the average polymict breccias of the upper
impactites. K,0 and TiO, values are similar to those observed
for the upper impactites. The Al,O; contents vary between
10.9 and 18.96 wt%, which is the same range as observed for
the basement lithologies (see below), but a smaller range than
that seen for the suevites and lithic breccias. As with the other
lithologies, CaO contents show extensive variation—mostly
from 0.82 to 2.10 wt%, to a maximum value of 6.48 wt%. The
Fe,O; abundances show the most scatter out of all the
lithologies. The Na,O and MgO contents vary within a much
smaller range than seen in the polymict breccias.

Basement Lithologies

In the basement rocks, the SiO, as well as K,O contents
vary within significantly larger ranges than those for the
impactites; however, the bulk of the values are similar to
those for the impactites. No correlation of K,O contents with
LOI values exists, which indicates that a significant
proportion of CaO must be responsible for the high LOI
values. The CaO contents vary between 0.39 and 8.49 wt%,
similar to the overall range in the other lithologies. The
altered shales have lower SiO,, Al,O3, Na,O, and P,Os, and
higher Fe,03;, MnO, MgO, and K,O contents than the meta-
graywackes (Table 1). This agrees with the observations made
by Koeberl et al. (1998).

Granophyric-Textured Lithology

The granophyric-textured lithology occurring at a depth
0f487.12 m has a distinct chemical signature. It has low SiO,,
Na,0, and K,O abundances together with notably high CaO
(6.16 wt%, correlated with a high LOI of 12.30 wt%) (Fig. 2),
Fe,0;, and MgO contents, in comparison to the overall major
element compositions of the basement rocks. The Al,O3 and
TiO, contents are within the overall ranges observed for the
basement lithologies.
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Geochemistry of impactites and basement lithologies from ICDP borehole LB-07A
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Fig. 1. Profiles of the major elements SiO,, TiO,, Fe,0;, MgO, K,0, Na,0, Al,03, and CaO abundances versus depth for the LB-07A drill

core.
Comparison of Upper and Lower Suevite Occurrences

In general, all suevite samples show similar
geochemical signatures (Fig. 1). The lowermost suevite
intercalation in the basement metasediments (at a depth of
513.90 m) has comparatively higher SiO, and lower Al,O3,
Fe,0;, Na,O, and K,O contents than the average (Fig. 1;
Table 1) suevite values. The major element compositions of
the lower impactite (at depths of 430.03 m and 445.13 m)
and upper basement (at a depth of 483.00 m) suevites fall
within the ranges for the upper impactite major element
signatures.

Hydrothermal Alteration

In order to further constrain the extent of hydrothermal
alteration, as indicated by the presence of secondary
carbonate, a plot of LOI versus CaO contents was made
(Fig. 2). In general, most of the samples have CaO contents
in the range 0.5-3 wt% and LOI contents between 2 and
9 wt%. However, some outliers exist, and these high CaO
contents correlate with high LOI contents. These high CaO

contents together with high LOI values are evident in all
lithologies throughout the core. If these signatures represent
the effect of secondary carbonate precipitation from
hydrothermal solutions, this indicates that hydrothermal
alteration did take place throughout the whole LB-07A core
(rather than in isolated lithologies). This is supported by
petrographic characteristics (macroscopic and microscopic
carbonate segregations, veins, and pods) (Coney et al. 2007).
In this geochemical study, care was taken to separate any
macroscopic carbonate pods from the samples crushed for
geochemical analysis, and to ensure that the CaO results are
representative of the bulk-rock composition rather than an
artifact of random sampling of isolated carbonate-rich areas.
However, it was impossible to separate thin (millimeter-
wide) primary carbonate bands and small (<0.5 cm)
carbonate pods that are present locally in the target rock,
sometimes in significant amounts (up to 1.6 vol%) (Coney
et al. 2007).

A small number of samples from all lithologies have high
CaO and moderate LOI values and seemingly form a negative
trend in Fig. 2. Whether or not this represents admixture of a
further target rock component is not currently clear.
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Table 2. Ranges for the major element contents the LB-07A lithologies, shale, graywacke-phyllite, Pepiakese granite, and Ivory Coast tektites of Koeberl et al.

(1997, 1998); averages of the granite dikes and tektites are from Koeberl et al. (1997, 1998); and fallout suevites from Boamah and Koeberl (2003).

Fallout
suevite

Basement

Polymict
lithic

Overall
range

Pepiakese Tektites

granite?

Granite dike
(average)?

Graywacke-
phyllite?

Granophyric
lithology

metasediment

(overall)

Monomict
breccia

(average)®

Tektites?

(average)?

Shale?

breccia Suevite

(Wt%)

66.2-68.5  63.58 +£3.01

67.58 +£0.59

53.13-66.69

68.74 = 0.50

53.56-57.21  63.30—69.12

51.2
0.51
12.1

49.7-78.3

56.0-77.0

0.34-0.67

10.9-19.0
3.0-74

0.03-0.12

53.8-70.0
0.38-0.67

46.4-66.2

0.26-0.66

Sio,
TiO,

0.64 +0.07
15.58 £ 1.15

0.54-0.61

0.56 +0.02
16.74 £ 0.37

0.74-0.97 0.59-0.77 0.50 = 0.00 0.06-0.88
12.70-17.02 1591 +0.18 14.73-19.87

17.68-22.62

0.38-0.72
10.4-18.6

ALO;

16.3-17.7

5.0-17.0

4.7-17.5
0.02-0.12

6.0-17.7

3.3-7.5
0.03-0.14

6.58 £2.24
0.11+£0.05

5.8-6.5
0.04-0.07

6.16 £0.15
0.06 £ 0.01
3.46+0.35
1.38+£0.11

0.48-9.17
0.001-0.106

3.97+0.31
0.014+0.013

5.64-7.57
0.010-0.037

7.99-9.14
0.035-0.055

7.2
0.12
6.8
6.2

3.4-7.1
0.03-0.11

Fe,O3
MnO
MgO
CaO
Na,O

1.43+0.54
1.39+0.61

3.0-4.4
1.2-1.5
1.5-2.1

0.12-10.17
0.23-6.76

2.92-11.88

1.44 +£0.36
0.31+£0.01
4.14+0.49

1.79-2.50

0.07-0.47
0.31-3.07
0.85-2.72

0.02-0.10

2.40-3.31

1.2-93
0.39-8.5

1.3-44
0.8-6.5
1.3-4.5

0.57-2.9

1.6-12.7
0.95-10.1

1.5-15.0
0.8-8.6
0.9-3.8

0.05-0.11

1.73 £0.53

1.90+0.16
1.95+0.11

0.36-2.13

1.5
1.2
0.15
23

0.36-3.6

0.11-5.4

K,0

1.27+0.38
0.09 +£0.03
7.68 £2.22

0.27-1.27

1.92+0.15
0.06 +0.00
2.98+0.33

2.64-3.07

0.83-5.2

d.l.-2.5
0.04-0.37

d.1.-2.3
0.05-0.14

0.02-0.21

0.04-0.13

0.03-0.22

0.06-0.14

P,0s
LOI

0.51-2.22

3.49-5.32

6.86-8.99

1

2.7-13.9

2.1-4.9

2.7-15.1

3.6-17.2

bData from Boamah and Koeberl (2003).

2Data from Koeberl et al. (1997, 1998).
d.l. = detection limit.

L. Coney et al.
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Fig. 2. CaO content versus LOI for the impactites and basement
rocks of the LB-07A drill core.

There are two cases (polymict lithic breccia sample
KR7-2 from a depth of 339.22 m and suevite sample KR7-6
from a depth of 360.65 m) where LOI contents are relatively
high (>10 wt%) but CaO contents low (2 wt% or less). This
implies that the total LOI values do not always relate only to
CO,, but other sources of secondary volatiles (e.g., SO, from
sulfide/sulfate, H,O and hydroxide from primary target-rock
minerals and secondary phyllosilicates) should be taken into
consideration. Petrographic analysis (Coney et al. 2007)
indicates that the LOI contents may be related to H,O from
alteration phases (e.g., chlorite, sericite) and other
phyllosilicates, as these minerals are in evidence throughout
the borehole. The two samples in which LOI contents are high
but CaO contents are low contrast with the other samples with
high LOI contents in that they have minor carbonate
(<1 vol%) and abundant phyllite and mica-rich schist
(>30 vol%) clasts.

Polymict Lithic Breccias versus Suevites

Similar ranges of abundances are seen for the lithic and
suevitic breccias with respect to SiO,, TiO,, Al,03, and CaO
contents (higher maximum values for suevite samples). Both
polymict breccia types have similar K,O and Na,O contents.
More variation in Fe,O; contents is observed in the lithic
breccias as opposed to the suevites. Comparable variation is
observed for the MgO contents in both polymict breccias, and
this element shows the largest overall variation in the
borehole. No correlation of the MgO content with the modal
abundances of chlorite in metasediments can be made, and it
is probable that a combination of minerals controls this
geochemical signature.

Polymict Breccias (Upper Impactites) versus Monomict
Breccias

The ranges in SiO, values of the monomict breccias are
similar to those of the suevites, but are slightly higher on
average. The TiO,, CaO, and K,O abundance ranges are the
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Fig. 3. Profiles of the abundances of Cr, Ni, Co, Rb, Sr, and Zr versus depth for the LB-07A drill core.

same for both the polymict and monomict breccias. The range
in Al,Oz contents observed for the monomict breccias is
similar to that of the upper impactites. The Na,O contents
vary within a smaller range for the monomict breccias than
for the polymict breccias. Very little variation in the
monomict breccias occurs in MgO contents compared to
polymict breccias. Overall, there is more scatter in abundance
values for the monomict breccias than for those of the
polymict breccias.

Monomict Breccias versus Basement Lithologies

The SiO,, Al,O3, Ca0, and TiO, contents are similar for
the monomict breccias and the basement lithologies.
Abundances of Na,O, K,0, and MgO show comparatively
wider scatter in the basement lithologies, whereas the Fe,O5
content has more scatter in the monomict breccias.
Considering that both sequences are made up of the same
lithologies, although locally at different proportions, this
overall similarity is not surprising.

TRACE-ELEMENT CHARACTERISTICS

All eighty-six samples were analyzed by XRF and INAA
for their trace-element content (Table 1). Selected trace-
element values have been plotted against depth in Fig. 3.
Niobium, Br, and Y values are generally either below the
respective detection limits or are very low.

Polymict Lithic Breccias

The polymict lithic breccias show narrow ranges in
concentration for Rb, Zr, Sr, and V. The range for V is larger
than that observed for the suevites. Much scatter is seen for
Ba. The chalcophile elements Zn and Cu show much scatter
throughout the sequence. Nickel, Co, and Cr values vary
within small intervals, and only two samples (at depths of
370.39 and 377.46 m) show high concentrations of up to
77 ppm Co, 1418 ppm Ni, and 2023 ppm Cr. These samples
also show substantial enrichments in As (401 ppm and
728 ppm, respectively). There is no corresponding



680

enrichment in the Zn concentrations; however, Sb values for
both samples are higher than the typical range observed for
the lithic breccias (Table 1). These enrichments might be
caused by the presence of accessory arsenopyrite or other
sulfide minerals. As this section of core is essentially
powderized, no representative thin sections could be
evaluated. However fine-grained opaque minerals (less than
50 um in size) have been noted in thin section, the identity of
which has not been resolved yet due to small size. The
siderophile element variation patterns of Ni, Cr, and Co are
similar to each other (Fig. 3).

Suevites

The suevites have geochemical signatures that are
similar to those of the lithic breccias. Little variation is seen
for Rb, Zr, and V values, with much scatter observed in Sr,
Ba, Zn, and Cu values (Table 1). As with the lithic breccias,
the Ni, Co, and Cr contents are positively correlated, and
only a few outliers with very high Ni and Co abundances (up
to 605 ppm Ni and 31 ppm Co) are observed (at depths of
383.74 m, 398.44 m, and 413.13 m). The suevite at a depth of
383.74 m also has high As values (of 159 ppm) and
somewhat enriched Sb values (0.74 ppm). This sample
contains a number of highly oxidized shale clasts, which
contain microscopic sulfides (most likely pyrite and
chalcopyrite, though due to their small size this has not yet
been fully evaluated).

Monomict Breccias

The monomict breccias show less variation in Rb, Sr, and
Zr concentrations (Rb: 29-107 ppm; Sr: 259-394 ppm; Zr:
89-162 ppm) than the upper impactite polymict breccias (Rb:
33-92 ppm; Sr: 191413 ppm; Zr: 45-150 ppm). The
monomict breccias have no substantially elevated
concentrations in the siderophile elements, and very little
variation is observed throughout this part of the sequence (see
Fig. 3). The range for V is the largest seen throughout the
core. No enrichment in the As, Sb, or Zn concentrations is
observed for any of the monomict breccia samples, in
comparison to the polymict lithic breccias and suevites
(Table 1).

Basement Lithologies

The basement lithologies show the most scatter for Rb,
Sr, Zr, Ba, and Y out of all the lithologies analyzed.
Rubidium, Ba, and Cs show the highest concentrations in the
borehole in the basement lithologies, which potentially
correspond to a local enrichment in feldspar (e.g., Rollinson
1993), although owing to the disaggregated state of the core
this cannot be conclusively confirmed. One sample contains a
substantial relative enrichment in Zr (580 ppm, from an
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average range of ~90—150 ppm), coincident with elevated Ba,
Y, and Hf concentrations, and this most likely represents
random sampling of zircon or other accessory minerals,
although again this cannot be conclusively confirmed; zircon
has been noted throughout this study only rarely. Vanadium
concentrations are variable, similarly to the polymict
breccias. Arsenic concentrations are rarely above 25 ppm, and
Sb contents are generally low (<0.3 ppm).

Granophyric-Textured Lithology

The granophyric-textured lithology is characterized by
higher Ni, Cr, Co, and As than the majority of the LB-07A
samples. The lithophile element abundances of Rb, Sr, Zr, and
V are all within the range of the impactites.

Siderophile Elements and Possible Meteoritic Component

Chromium, Co, and Ni abundances generally have
narrow ranges, with just a few samples showing relative
enrichments. For Ni, the range typically lies between 6 and
200 ppm, with a maximum concentration of 1122 ppm. The
highest concentrations of Ni (200-1122 ppm) occur within
the polymict breccias of the upper impactite (Fig. 3), and the
maximum concentration corresponds to a sample that has a
higher concentration of Fe,O5 than most other samples, and is
intensely iron-stained. A number of samples within the range
of 200-1122 ppm concentration of Ni contain a substantial
proportion of melt particles. However, for other melt-rich
units, such as the suevite intercalation at a depth of 430.13 m
(up to 18 vol% melt locally) (Coney et al. 2007), very little
enrichment in Ni is observed. No substantial and consistent
differences in Ni concentration between the lithic breccias
and the suevites have been noted, as similar numbers of lithic
and suevitic breccias have high Ni concentrations. Great
variation in Ni concentrations is also observed in the
basement rocks, predominantly in the meta-graywacke
samples and the granophyric-textured rock from a depth of
487.12 m. The Co and Cr patterns are similar to the Ni
pattern. Maximum enrichment in both Co and Cr
concentrations (up to 2023 ppm and 77 ppm, respectively)
coincides with maximum Ni enrichment. The average Co
concentrations are between 3 and 20 ppm. The Cr values lie in
the range of 50-200 ppm. Copper concentrations correlate
positively with the Cr, Co, and Ni concentrations (and a
number of these samples also have high As contents up to
728 ppm), which is a strong indication that sulfide, especially
the secondary sulfides such as pyrite, arsenopyrite, and
chalcopyrite, whose presence 1is indicated from the
petrographic studies (see Coney et al. 2007), is responsible
for the local enrichment of these elements. All iridium results
by INAA are below the detection limit of ~2 ppb for
carbonate-poor samples and ~0.5 ppb for carbonate-rich
samples.
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A number of samples, especially those enriched in Ni, Cr,
and Co, were analyzed for their platinum group element
contents in order to ascertain whether a meteoritic component
could be detected. The results are discussed by McDonald
et al. (2007). In essence, no definitive evidence for the
presence of a meteoritic component was obtained in any of
these samples.

Rare Earth Element Data

Rare earth element (REE) data were obtained for 60
samples using INAA (Fig. 4). The REE concentrations were
normalized to the composition of C1 chondrites after Taylor
and McLennan (1985) and selected patterns are shown in
Figs. 4a—d. The impactites have very similar normalized REE
abundances to each other (Figs. 4a—d). The normalized data
range for most of the samples is similar to values given by
Koeberl et al. (1998).

The light REE are consistently significantly enriched
(Figs. 4a—d), and weak negative Eu anomalies are present.
Most calculated Eu anomaly values (Euw/Eu*) are less than 1.
Selected samples show very weak negative Ce anomalies.
Koeberl et al. (1998) found that their shale, graywacke, and
phyllite samples displayed slight negative Eu and Ce
anomalies, and this agrees with the observations made in the
present study. One basement rock sample of our suite (from a
depth of 530.63 m) showed significantly higher REE
abundances (Fig. 4d), and this sample also showed
enrichment in K,O, as well as Zr, Hf, and U, which could
mean that the sample is enriched in zircon, as hypothesized in
the Basement Lithologies section. Unfortunately, only a
powder mount of this sample could be examined, and the only
rock fragments in evidence are altered shale, meta-
graywacke, and a little carbonate. No distinct differences
were noted with increasing depth, or between the three
sequences. When the ratios of La/Th (Fig. 4e) and La/Lu
(Fig. 4f) are plotted with depth, for both ratios some scatter is
observed; average values are La/Lu ~6 and La/Th ~70. The
suevites of the upper impactite and the lower impactite
sequences are not different with respect to their REE
signatures; the suevites from the basement rock sequence
have yet to be fully analyzed for their REE component.

DISCUSSION
Geochemical Characteristics of the LB-07A Borehole

The major- and trace-clement patterns throughout the
LB-07A borehole are, overall, fairly constant with depth. The
following trends can be noted:

* CaO values vary throughout the borehole, and this is
thought to reflect hydrothermal alteration in addition to
the presence of carbonate target rock, as discussed by
Coney et al. (2007).

* The basement lithologies show the most variation in
range of many of the major elements as well as in the
trace-element concentrations.

* Although a number of samples are enriched in
siderophile elements, further analysis has not revealed
the presence of a meteoritic component (McDonald et al.
2007).

The suevites and the lithic breccias of the LB-07A
borehole do not seem to be chemically distinct from each
other, and are not substantially different from the average
compositions of the monomict breccias and basement
rock lithologies (Table 2), indicating that extensive
homogenization has taken place (Fig. 1; Table 1). Dressler
and Reimold (2001) discussed how homogenization of the
target rock material in impactites is a common observation.
This has also been observed for corrected geochemical trends
in the Yax-1 drill core of the Chicxulub structure (e.g.,
Tuchscherer et al. 2004). However, unlike in the Bosumtwi
core, slightly differing chemical characteristics could be
detected for the different lithostratigraphic units (e.g., Schmitt
et al. 2004) of that drill core.

For a number of the major and trace elements, the scatter
in the range of composition increases with depth within the
basement lithologies (no obvious difference can be
ascertained between the upper and lower impactites). This
provides further evidence for extensive mixing of the target
lithologies for the polymict and monomict breccias.

In terms of the petrographic signature of the LB-07A
borehole, our results (Coney et al. 2007) show that the overall
composition of the LB-07A borehole is 43.6% meta-
graywacke, 40.9% shale, 5.9% phyllite, 4.8% quartz, and
1.6% carbonate. In terms of relative proportions, meta-
graywacke and shale are similar and dominate the
petrographic signature. Thus, it can be concluded that much
of the geochemical signature will reflect these lithologies.
The petrographic study (Coney et al. 2007) also showed that
there is much fluctuation in clast composition and, locally, in
relative clast proportion, which influences the geochemical
signature of the polymict breccia samples.

In order to examine a possible clast control on major
element content, the volume percentage of shale was
compared to the Fe,03 and MgO contents. It was noted that in
only a few samples with high volume percentages of shale (in
comparison to meta-graywacke and other lithic components),
there was a weak correlation with high concentrations of
Fe,0; and MgO. The majority of shale-rich samples lie in
small ranges for both Fe,O; and MgO contents, and no
defining correlation can be made. Thus, shale contents are not
the sole control of Fe,O; and MgO contents and other
minerals must influence the geochemical signature. It is
possible that, in addition to minerals such as the
phyllosilicates, another factor may be involved, such as the
matrix composition. Further work is currently in progress to
examine this possibility.
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Vanadium concentrations vary widely throughout the
borehole, and this is most likely due to the variation in biotite
as well as rutile. In order to test for substitution of V in rutile,
a plot of Ta versus V was made (as V substitution in Ta-rich
varieties of rutile is common), and correlation is apparent.

No distinct changes potentially related to alteration are
evident for the monomict breccias of the lower impactites.
This is consistent with the local origin of the breccias and that
their compositions reflect original lithologies that would have
been as diverse as the basement rock below. It is apparent that
little hydrothermal alteration has taken place in the monomict
breccias, and that these brecciated rocks were not necessarily
a channel for carbonate-rich fluids, indicating that the origin
of the fluids was potentially from above, rather than from
below the polymict breccias.

Unlike the impactites of the Yax-1 drill core from the
Chicxulub structure (e.g., Schmitt et al. 2004), the K,O
content in this Bosumtwi sequence is nearly always less than,
or the same as, the average continental crust value of 2.6 wt%
(Wedepohl 1995). Schmitt et al. (2004) used the observation
of high K,O contents to suggest that potassium
metasomatism, caused by postimpact hydrothermal
alteration, had taken place in the Yax-1 impactites. Only one
sample in the Bosumtwi rocks shows an elevated
concentration of K,O (which may indicate the presence of
K-feldspar); thus, conclusive evidence for potassium
metasomatism has not been found. The majority of feldspar
observed in the LB-07A borehole is plagioclase, rather than
K-feldspar (Coney et al. 2007).

Coney et al. (2007) suggest that the granophyric
lithology may be a hydrothermally altered vein of the
regionally occurring granophyric granitoid lithology that
was first described by Reimold et al. (1998). The LOI of
this sample is particularly high, with a value of
12.30 wt%, and is correlated with a high content of CaO
(6.82 wt%). In petrographic examination, it was found that
this sample contained extensive carbonate, quartz-feldspar
intergrowth, and muscovite (see Coney et al. 2007). Also
noted was sericitized plagioclase, which would have been
produced by hydrothermal alteration. The granophyric-
textured lithology also contains significant abundances of
Fe,0; and MgO, and these can be accounted for by the
abundant mica minerals.

In terms of comparing the degree of alteration of the
different suevites throughout the borehole, it has been
observed that the lowermost basement suevite has a
substantially different major- and trace-element signature
compared to the other suevites in the core, including the
other suevite injection in the basement. For example, the
trace-element geochemical signature of the lowermost
basement suevite shows substantially lower Ba, Sr, and V
concentrations in comparison to the uppermost basement
suevite as well as the lower impactite suevites. The
uppermost suevite has higher Rb and Zn and lower Sr
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concentrations than the lower impactite suevites. The
suevites in the lower impactites have very similar major- and
trace-element signatures to each other, and have major- and
trace-element compositions intermediate to the range seen in
the upper impactites. The most notable difference between
the upper and lower impactite suevites is that the upper
impactites show higher average Co values, and contain the
highest Ni and Cr concentrations of all suevites. It was noted
in the petrographic study (Coney et al. 2007) that the color
of the melt particles and the matrices of the suevites varied
throughout the core, changing from gray-brown in the upper
impactites to greenish yellow in the lower impactites and
either lighter or darker gray in the basements intercalations.
Changes in the mineralogy of the suevites were found
(Coney et al. 2007), but it is most likely that the matrices of
the suevites may provide more evidence of alteration. This
work is in progress.

Major-Element and Trace-Element Signatures of the
LB-07A Impactites versus those of Target Rocks

Koeberl et al. (1998) calculated average compositions of
their identified target rocks for the Bosumtwi structure (shale,
phyllite-graywacke, granite dikes, and the Pepiakese granite)
(Table 2). In comparing the ranges of these rocks, a number of
differences are apparent.

Basement Metasediments versus Target Rock Types

A total of 14 LB-07A basement samples were analyzed,
and these are compared to the ranges (Table 2) quoted for the
shales and graywacke-phyllites identified by Koeberl et al.
(1998). The LB-07A meta-graywacke was found to have an
overall similar signature to the graywacke-phyllite of Koeberl
et al. (1998), with the following exceptions: the meta-
graywacke shows slightly higher concentrations of MnO,
MgO, P,0s, and LOI, and a significantly higher content of
CaO. The LB-07A meta-graywacke also has slightly lower
concentrations of SiO,, TiO,, and Fe,O;, and similar
concentrations of Al,03, Na,0, and K,O in comparison with
the graywacke-phyllites. Thus, the only significant difference
between the LB-07A meta-graywacke and those of Koeberl
et al. (1998) is the CaO content. The LB-07A altered shales
are more similar in composition to the shale compositions of
Koeberl et al. (1998) than the meta-graywackes are to the
graywacke-phyllites, but the shales generally have larger
ranges than those quoted by Koeberl et al. (1998), namely for
SiO0,, MnO, MgO, P,05, K,O, and Na,O. Lower
concentrations were observed for TiO, and Fe,O; and
enrichments in CaO and LOI exist. Both the meta-graywackes
and altered shales of LB-07A have substantially higher CaO
(together with high LOI) contents than the shales and
graywacke-phyllites, providing evidence for a substantial
carbonate component, which is both of primary and
secondary origin (see Coney et al. 2007).
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Polymict/Monomict Breccias versus Target Rocks

Harker plots of the impactite compositions (Fig. 5) show
that the impactites and basement rocks of the LB-07A
borehole consist of a thoroughly homogenized mixture of
target rocks similar to those analyzed by Koeberl et al. (1998).
However, an additional lithology must be involved
(particularly noticeable for Fe,03, CaO, and MnO contents),
as a number of samples have outliers that are more enriched in
those elements than the general field defined by the majority
of samples. The fields that delineate the monomict breccias,
the basement metasediments, and the majority of the polymict
breccias mirror each other in shape and extent, showing that
the LB-07A column is reasonably well homogenized in terms
of the geochemical signature. The most notable difference
between the LB-07A impactite concentrations and the target
rocks is that they are generally more enriched in CaO than the
target samples, except for the Pepiakese granite. Of course,
this discrepancy could also be due to the small number of
target rock samples analyzed so far from the Bosumtwi region
(see also Karikari et al. 2007).

Major Element Signatures for LB-07A Suevites versus the
Ivory Coast Tektites

The major element compositions of Ivory Coast tektites
(Table 2; see also Koeberl et al. 1997, 1998) are compared here
to the suevites of the LB-07A core, as these two rock types
should represent mixed compositions of the target rocks. The
tektites always have narrower compositional ranges than the
LB-07A suevites. In general, the tektite major-element range
is within the range for the suevites, indicating that they were
derived from the same target rocks, but that comparably less
homogenization has taken place in the suevites. There are two

main differences between the suevites and the tektites: the
MgO and CaO contents of the suevites are much higher than
those for the tektites. The larger range may well reflect that the
suevites show evidence for postimpact alteration.

Major-Element Signatures for the LB-07A Suevites versus the
Fallout Suevites

The major-element signatures for the LB-07A suevites
are very similar to the averages measured by Boamah and
Koeberl (2003) (Table 2). The average abundances in fallout
suevites for SiO,, TiO,, Al,O3, Fe,0O;, MnO, Na,O, K,O,
Ca0, P,0s, and the LOI all are within the range of the
LB-07A suevites. The CaO value for the fallout suevites lies
toward the minimum values for the LB-07A suevites
(1.38 wt% versus a maximum of 10.1 wt%). The only
exception is the MgO content, which is lower in the fallout
suevites (1.43 wt%) in comparison to the LB-07A suevite
range of 1.6-12.7 wt%, and this may well reflect postimpact
alteration as seen in the comparison with the tektites.

Average Trace-Element Signatures of the LB-07A Rocks
versus Target Rocks, Fallout Suevites, and the Ivory Coast
Tektites

In order to further compare the geochemical signatures
of the impactites and basement rocks of LB-07A, a plot of
the Cl-normalized REE signatures for the averages of the
different lithologies in LB-07A is compared to the averages
for the four target lithologies (phyllite-graywacke, granite
dikes, shale, and Pepiakese granite), fallout suevites, and
Ivory Coast tektites of Koeberl et al. (1998) and presented
in Fig. 6. Additionally, two ternary plots of Th-Hf-Co and
La-Cr-Sc for the averages of these lithological types are
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rocks, together with the average fallout suevites from boreholes BH1 and BH3 (Boamah and Koeberl 2003), and averages for the target rocks

and Ivory Coast tektites (Koeberl et al. 1998).

shown in Fig. 7. As noted in the Rare Earth Element Data
section, the impactites have very similar normalized REE
abundances to each other (Figs. 4a—d and 6). These
normalized abundances, however, are slightly lower than
those for the average shale and graywacke-phyllites.
Furthermore, the Pepiakese granite has lower abundances
than the LB-07A rocks; the fallout suevites are close in
value to the LB-07A rocks although the values from
borehole 1 (BH1) (Boamah and Koeberl 2003) are closer to
the graywacke-phyllites. The average granite, however, has

intermediate composition, which is comparable to the
LB-07A lithologies. Thus, the REE normalized abundances
are intermediate to those of the target rocks, as expected
from previous results.

The ternary plots (Fig. 7a) show similar features: the
LB-07A lithologies lie on apparent “tie-lines” between the
different target rocks. For the first plot, Th-Hf-Co, the end-
points of the tie-line are an average granite together with
graywacke-phyllite and the average Pepiakese granite. In this
case, shale is in the middle of the tie-line defining the field,



Geochemistry of impactites and basement lithologies from ICDP borehole LB-07A

and the Ivory Coast tektites show similar compositions to
fallout suevites from BHI. A similar relationship is also
indicated by the La-Cr-Zr ternary plot (Fig. 7b) and the end-
points are the same as in the other ternary plot. Thus, it is
apparent that the LB-07A rocks are most similar in
composition to the graywacke-phyllite and shale components,
but are intermediate to the granite dikes and the Pepiakese
granite. This is in agreement with the petrographic data
(Coney et al. 2007), which indicates that most of the samples
are composed chiefly of meta-graywacke and altered shale.

CONCLUSIONS

Thirty-six samples of suevite, 36 samples of lithic and
monomict breccia, and 14 samples of meta-graywacke and
shale (target rocks) from drill core LB-07A in the crater moat
around the central uplift of the Bosumtwi impact structure
were analyzed for their major- and trace-element
compositions. From comparison of the geochemical
signatures of impactites and basement rocks from the LB-07A
drill core, we draw the following conclusions:

* The major-element compositions of the LB-07A core are
fairly uniform in range with respect to depth, irrespective
of rock type, with the exception of CaO, MgO, and
Fe,0;. This suggests that the silicate component of the
impactites has been relatively well homogenized.
However, there is much variation in the amount of scatter
with depth, and in general scatter increases with depth
(except notably for TiO,). Any variability is likely a
function of differences in the population of small clasts
(<1 cm). This aspect needs to be studied further.

* The LB-07A polymict and monomict breccias generally
have compositions intermediate to those target rock
components analyzed by Koeberl et al. (1998), but an
additional source of Fe,03;, CaO, and MnO is apparent.
For the CaO0, it is likely that this corresponds to a separate
carbonate component, as noted by Coney et al. (2007).

» The LB-07A basement metasediments are very similar in
composition to the target rocks of Koeberl et al. (1998),
with larger ranges observed for the altered shales of the
LB-07A core. Higher CaO and LOI values are noted for
both LB-07A metasediments in comparison to the target
rocks.

* Trace-element abundances are strongly controlled by the
compositions of the graywacke-phyllites and shales.

* The Ivory Coast tektites have narrower major-element
ranges than those for the suevites, but overlap in the
compositional ranges is apparent. The suevites have far
larger ranges for MgO and CaO than the tektites, and this
may have been caused by post-impact alteration.

* The major-element composition for the fallout suevites is
very similar to the LB-07A suevites, except for MgO
values.

* Overall limited hydrothermal alteration is clearly
indicated by locally elevated CaO and LOI values. This is
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also indicated by the petrographic study, where both
primary as well as secondary carbonate was in evidence.
The hydrothermal alteration is not restricted to a
particular depth or lithology, and is apparent throughout
the core.

* LOI values are not solely controlled by CaO contents,
and most likely also involve H,O from primary and
secondary phyllosilicates.

» The contents of the siderophile elements do not indicate
the presence of a significant meteoritic component in the
impactites.
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