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Abstract–We examined partially molten dust particles that have a solid core and a surrounding liquid
mantle, and estimated the maximal size of chondrules in a framework of the shock wave heating
model for chondrule formation. First, we examined the dynamics of the liquid mantle by analytically
solving the hydrodynamics equations for a core-mantle structure via a linear approximation. We
obtained the deformation, internal flow, pressure distribution in the liquid mantle, and the force
acting on the solid core. Using these results, we estimated conditions in which liquid mantle is
stripped off from the solid core. We found that when the particle radius is larger than about 1–2 mm,
the stripping is expected to take place before the entire dust particle melts. So chondrules larger than
about 1–2 mm are not likely to be formed by the shock wave heating mechanism. Also, we found that
the stripping of the liquid mantle is more likely to occur than the fission of totally molten particles.
Therefore, the maximal size of chondrules may be determined by the stripping of the liquid mantle
from the partially molten dust particles in the shock waves. This maximal size is consistent with the
sizes of natural chondrules.

INTRODUCTION

Most meteorites falling on the Earth are chondritic
meteorites. Chondrules, which are ferromagnesian silicates,
are a major component of chondritic meteorites. It is thought
that chondrules were formed in the solar nebula about 4.6 ×
109 years ago (e.g., Jones et al. 2000 and references therein),
so we may obtain unique information about the solar nebula
through the investigation of chondrules. From mineralogical
features, it is thought that chondrules were formed through
melting at least once and re-solidifying with rapid cooling.
One prominent feature of chondrules is that they have a
characteristic size distribution: diameters of most of
chondrules are in a range from 0.1 mm to 1 mm (some
chondrules have sizes out of this range, but they are
uncommon). Many formation models for chondrules have
been proposed to date, but none has been widely accepted.
Any formation model for chondrules must be consistent with
the size distribution.

The shock wave heating model is a plausible model for
chondrule formation, since many chondrule features appear to
be explained by it (e.g., Boss 1996; Connolly and Love 1998;

Jones et al. 2000, and references within). When a shock wave
is generated in the solar nebula, the relative velocity between
dust particles and the gas flow can lead to frictional heating of
the particles. When the particle melts due to the shock wave
heating, deformation of and internal flow in the molten
particle may be driven by a hypersonic rarefied gas flow
around the molten particle. For a completely molten particle,
linearized hydrodynamics equations have been used to obtain
the deformation, internal flow, and pressure distribution in the
molten particle (Sekiya et al. 2003). Also, the possible
maximal size of chondrules was estimated based on the
balance between the ram pressure of the hypersonic gas flow
and the surface tension of the liquid sphere (Susa and
Nakamoto 2002). These results are consistent with the sizes
of natural chondrules.

Typically, in shock wave heating models the temperature
in a particle is assumed to be uniform. However, when the
time scale of heat conduction in a particle is longer than the
time scale of melting, the particle will gradually melt from the
surface to the center and a partial melting state will be
obtained. So a dust particle that has a central solid core
surrounded by a liquid mantle may be obtained. If this is the
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case, the dynamical stability of the dust particle with the
liquid surface and the solid core against the hypersonic gas
flow could be different from that of the completely molten
particle, so the stability should be examined to, hopefully,
reveal something about the formation process of chondrules.

In this study, first we obtain the flow in the liquid mantle.
But it is not easy to solve a general situation, so we employ a
lot of assumptions to simplify the problem. We assume that
the flow is axisymmetric and steady, the solid core and liquid
mantle are concentric, physical properties such as the density,
the viscosity, and the conductivity are spatially and
temporally constant, the deformation is small, and so forth.

Thanks to these simplifications, we can analytically solve
linearized hydrodynamics equations for particles with a core-
mantle structure. And we obtain the deformation, internal
flow, pressure distribution in the liquid mantle, and the force
acting on the solid core. Although we know that these
simplifications are not realistic and the real chondrule cases
should be much complicated, we still think that it is worth
obtaining such an analytic solution of the liquid mantle
behavior to investigate the chondrule formation process. It
may give us a basic and insightful solution. And it enables us
to use the analytic solution as a base of realistic and
complicated non-linear numerical solutions in the future. The
analytic solution is the first main result of this study.

Second, applying the obtained solution, we roughly
estimate the time scale such that the solid core would separate
from the liquid mantle due to the drag force. This
phenomenon can be regarded as the stripping of the liquid
mantle from the solid core. When stripping takes place, it
leads to a reduction in particle size. This may determine the
maximal size of chondrules formed by the shock wave
heating process. We discuss this possibility by evaluating
different time scales: heating, conduction, and the dynamical
time scales. Also, we compare the effect of stripping from a
partially molten particle and the fission of the completely
molten particle to the maximal size of chondrules. We find
that the maximal size of chondrules is likely to be determined
by the stripping.

MODEL

In this study, we examine the dynamical properties of a
partially molten particle. For that purpose, we discuss a
situation where a central solid core is surrounded by a liquid
spherical mantle. We assume that the liquid mantle does not
evaporate, the densities of solid and liquid material are the
same, and the volume is constant. (We discuss a case where
the density of solid is different from liquid in section Porous
Particle Case). Although, in reality, the temperature, material
density, and viscosity of the liquid mantle may change, we
assume that they are spatially and temporally constant. We
also assume that the time scale of the deceleration is much
longer than the dynamical and thermal conduction time scales
within the liquid mantle (the validity of this assumption will
be discussed in section Stripping). Then the internal flow,
pressure distribution, and deformation of the surface are
obtained by solving steady state fluid equations. We use the
spherical co-ordinate system  (r, θ, φ). A hypersonic rarefied
gas flows downward along the z-axis with the velocity νrel
(Fig. 1). The gas flow is approximated by the free molecular
flow, because the velocity of the flow is faster than the sound
velocity of the gas and the mean free path is larger than the
size of the dust particle. It is also assumed that the flow in the
liquid shell is axisymmetric with respect to the z-axis, so

, and the flow has no azimuthal component of the

Fig. 1. A schematic view of the set-up. A solid core (gray) of radius
rc is surrounded by a liquid mantle (white) of radius rs. Axisymmetry
is assumed and the polar coordinates are employed. Gas molecules
flow from upward (+z) to downward (−z). The apparent gravitational
acceleration g emerges toward the +z direction due to the
deceleration of the dust particle.

∂ ∂φ 0=⁄
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velocity, i.e., υφ = 0. The central solid core is a sphere with
radius rc and the shape is supposed not to be deformed. The
radius of the outer liquid mantle is given by rs. Strictly
speaking, the liquid mantle is not a spherical shell with a
constant outer radius, but is somewhat deformed. We choose
the origin of the spherical co-ordinates so that drs/dθ = 0 at θ
= π/2 as shown in Fig. 1. The unit vectors in r, θ, and φ
directions are denoted by er, eθ, and eφ, respectively. The
position vector on the surface of the sphere is written by rs =
rser.

The boundary condition for the flow in the liquid mantle
on the surface of the central solid core is given by:

(1)

where v = υrer + υθeθ is the fluid velocity in the liquid mantle.
The boundary condition on the surface of the liquid sphere is
given by:

(2)

where n = (nr,nθ,nφ) is the unit normal vector of the surface
(Fig. 2). Since the particle shape is assumed to be
axisymmetric, nφ= 0.

From the balance of forces among the ram pressure by
the gas flow, the surface tension, and the stress tensor on the
surface, we have (Appendix A):

(3)

The continuity and the Navier-Stokes equations of the
flow in the liquid mantle are given by (e.g., Landau and
Lifshitz 1987):

(4)

(5)

(6)

where ρ is the density of the liquid mantle and g is the
apparent gravitational acceleration given below. Usual form
of the Navier-Stokes equations have been transformed into
Equations 5 and 6 by using Equation 4. In our co-ordinate
system, which is co-moving with the center of mass, apparent
gravitational acceleration g emerges, which is given by:

(7)

where V is the volume of the particle.
We assume that the densities of solid and liquid materials

in the particle are both ρ = 3.0 × 103 kg m−3 and the viscosity
of the liquid mantle η is η = 0.2 Pa ⋅ s (Uesugi et al. 2003).
Although the viscosity can strongly depend on the
temperature and the chemical composition, we assume that it
is spatially and temporally constant for simplicity. In our
simplified model, when the temperature of a point just above
the solid core is not high enough and the viscosity at the point
is quite high, that point may be regarded as a part of the solid
core. Detailed analyses of more realistic and complicated
situations should be done in the future, but they are beyond
the scope of the present study. We also assume that the surface
tension coefficient is similar to that of the molten basalt, so
we adopt Ts = 0.4 N m−1 (Murase and McBirney 1973).

SOLUTION OF LINEARIZED EQUATIONS

Linear Approximation and Non-Dimensional Variables

We can obtain the flow in the shell and its deformation by
solving the hydrodynamics equations with the boundary
conditions written in Equations 1, 2, and 3. But it is somewhat
a complicated problem to solve these equations in a non-
linear regime. In this study, we merely solve them with a
linear approximation for steady flow. The applicability of
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linear solutions will be discussed in section Applicability of
Linear Solution. In the following, we denote the unperturbed
and perturbed quantities by subscript 0 and 1, respectively.
For the unperturbed state with pfm = 0, we have g0 = υr0 = υθ0,

, and the radius of
the sphere is given by rs0 = (3V/4π)1/3. From Equation 3, we
have the well-known equation:

(8)

For perturbed state with pfm1 = ρgas , we assume that the
deformation, which is defined by , is much
smaller than the unperturbed radius, i.e., , and the
nonlinear terms, i.e., all the terms on the left-hand side of
Equations 5 and 6, are negligible (the validity of this
assumption will be discussed in section Applicability of
Linear Solution). The apparent gravitational acceleration is a
first order quantity and is given from Equation 7 as:

(9)

by neglecting higher order terms. Using these conditions, we
solve the linearized equations (see Appendix C).

In the course of solving the equations, we use the
following non-dimensional variables:

(10)

(11)

(12)

(13)

(14)

and

(15)

From Equation 14, we have:

(16)

Analytic Solution

In order to solve the linearized equations, we perform the
Legendre transformation:

(17)

(18)

(19)

(20)

where Pn(cosθ) is the Legendre function of order n. With
these transformations, we have the following equations (see
Appendix D). The continuity and the Navier-Stokes equations
are:

(21)

(22)

and 

(23)

where   is the Kronecker’s delta, so  = 1 for n = 1 and
 = 0 for other n. The boundary conditions are written by

(24)

(25)

and

(26)

And the balance of forces on the liquid surface is given by
(Appendix D):

(27)
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From these equations, we have u0 = xs0 = 0, Ψ0 = 1/6,
, and

(30)

as shown in Appendix D. We use the boundary conditions
Equations 24, 25, and 26 to eliminate three coefficients in
Equation 30 and we have (see Appendix E):

(31)

where An are arbitrary constants, and α and β are given by:

(32)

and 

(33)

respectively. From Equation 21, we have:

(34)

From Equations 28 and 34, we have:

(35)

From Equation 23, we have:

(36)

And from Equation 27, we have:

(37)

As described in section Model, we take the origin of the
coordinate system so that drs/dθ = 0 (i.e., dxs/dθ = 0) at θ = π/
2. This condition is written as  . Because
Pn(0) = 0 for even integer n and Pn(0) = (−1)m(2m + 1)!!/
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and

Forces 

Heretofore, we have obtained the deformation, internal
flow, and pressure distribution in the liquid shell. The internal
flow and the pressure gradient exert forces on the solid core.
Figure 3 depicts the geometry of forces acting on the core
surface. The strengths of forces along the z-direction are
obtained by integrating the force acting on a unit area of the
solid core surface. The force due to the pressure gradient is
given by,

(43)

and the force due to the friction with the internal flow is given
by:

(44)

The force due to the apparent gravitational acceleration is
given by 4π ρg1/3. Therefore, the force acting on the solid
core is given by:

(45)

Properties of the Solution

Here, we examine the properties of the solution obtained
in the Analytic Solution section. The velocity and the pressure
distribution are displayed in Fig. 4. As can be seen from
Equations 12, 13, and 14, the velocity and the pressure have
solutions which are proportional to pfmrs0/  and pfm. The
velocity has a maximum value in the vicinity of  θ = π/4 on
the liquid surface and zero on the solid core surface in

accordance with the boundary conditions. In the case of large
core (xc = 0.8), shown in panel (b), the velocity at the backside
of the liquid shell is almost zero and an eddy is formed only in
the front-side. The pressure distribution has the maximum
value in the vicinity of θ = 2π/5 on the liquid surface. Keeping
all other conditions the same, a larger value of xc gives a
smaller velocity difference and a larger pressure difference
between the front and the back of the particle. In contrast,
when xc approaches to zero (small core) or unity (thin liquid
shell), the difference in pressure goes to infinite.

Figure 5 shows the surface deformation given by
Equation 42. The deformation is proportional to pfmrs0/Ts as
seen from Equation 20. When pfmrs0/Ts is fixed, larger xc leads
to a smaller deformation. On the other hand, in a limit of

, α and β behave as:
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taken into account. Then, substituting Equation 47 into
Equation 42, we have the equation of the deformation in the
limit of  as:

(48)

This equation is identical with the equation of deformation for
a completely molten dust particle obtained by Sekiya et al.
(2003). That means when we consider an extremely small
solid core, the deformation of the liquid is the same with the
no core case, although the velocity and the pressure

distribution are not exactly identical with the no core case.
This difference is caused by the boundary condition at the
center.

Figure 6 shows the forces on the solid core as obtained
from Equation 45. All the forces increase monotonically as xc
increases. Note that the pressure gradient at the core surface
increases as xc approaches to zero. But this effect is
counteracted by the effect of decay of spherical area of solid
core. As a result, the total force on the solid core
monotonically increases as xc increases.

MAXIMAL SIZE OF CHONDRULES

Melting

In this study, we examine a particle that has a central
solid core surrounded by a liquid mantle. This configuration
is expected to be realized during the heating process in shock
waves, when the following condition is satisfied:

(49)

where theat is the time scale with which an amount of thermal
energy to melt the entire dust particle is supplied by the
heating mechanism, and tcond is the time scale with which the
heat is conducted from the surface to the center. (In reality, the
melting of solid material may be controlled by kinetics
[Greenwood and Hess 1994]. But we adopt a simple
assumption here that the solid material starts melting when
enough amount of thermal energy is supplied, so that we can

Fig. 4. The velocity (left) and the pressure (right) distributions in a
liquid mantle. Parameters are pfmrs0/  = 1 m s−1 and pfm = 100 N m−2.
The solid core is represented by a black circle. The ratio of the solid
core to the liquid sphere xc is (a) xc = 0.4 and (b) xc = 0.8, respectively.
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Fig. 5. The deformation of the surface with different deformation
parameters D = pfmrs0/Ts (solid curves) and the ratio of the solid core
to the liquid sphere xc (right, xc = 0.8; left, xc approaches to 0). The
dotted curve represents the radius of the sphere. Black region on the
right hand side corresponds to the solid core.
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make a simple discussion. Detailed examination of melting
kinetics and its influence on the stripping are left for the
future work.) These time-scales are written as (Appendix G):

(50)

and

(51)

where Lcond = 4.5 × 105 J kg−1 is the latent heat of melting of
silicate material and κ is the heat conductivity, which is
assumed to be κ = 1.1 × 10−6 m2 s−1 (Stacey 1992; Podolak
et al. 1993). When the time scale of heat conduction, tcond, is
shorter than the time scale of the heat supply theat, it is
expected that the heat supplied from the dust surface transfers
rapidly to the center and the entire particle reaches the same
temperature. With sufficient energy, the entire particle will
melt. In this case, the core-mantle structure would not be
formed. In contrast, when Equation 49 is fulfilled, the
supplied heat energy would not be conducted inside the
particle and only the surface regions would be melted. In this
case, the core-mantle structure could be formed. We can
translate the condition Equation 49 into the following particle
size condition:

(52)

Surface melting of the particle is likely to occur when the size
of the particle is large.

Stripping

Here, we discuss the motion of the solid core surrounded
by the liquid mantle and estimate the possibility that the solid
core leaves the liquid sphere, in other words, the liquid mantle
is stripped from the solid core. In order to have such a core-
mantle structure in a dust particle, the condition theat < tcond
(Equation 49) should be satisfied. When the condition theat <
tcond is met, the solid core would leave if a condition tdyn < theat
is satisfied, where tdyn is the dynamical time scale of the solid
core to leave. Note that theat is the time scale with which the
solid core would shrink and disappear by melting. When the
condition tdyn < theat is met, the solid core can leave from the
liquid mantle before disappearing.

We evaluate the dynamical time scale of the core's
leaving from the liquid sphere. In this study, we estimate it
using the acceleration time scale of the solid core taccel, which
is given by:

(53)

where a = F/(4πrc
3ρd/3) is the acceleration due all the forces

on the core (the pressure, the viscous force, and the apparent
gravity). The core to liquid sphere radii ratio xc is set to be 0.8
in Equation 53. The time scale taccel given by Equation 53
expresses the time with which a point particle undergoing the
constant acceleration a travels a distance rs0. Obviously, the
force acting on the core moving in the liquid mantle should
change with time, so the time scale given by Equation 53 is
not completely exact but just an order of magnitude value.
Then, a condition for the liquid mantle’s stripping is re-
written as:

(54)

According to our simulations using the shock wave heating
model by Miura and Nakamoto (2005), this condition
Equation 54 is always met by chondrule-forming shock
waves. Consequently, stripping of liquid mantle is expected to
occur when the condition of Equation 49, i.e., Equation 52 is
met.

From the discussion above, we can infer the particle size
at which the stripping of molten mantle occurs. Figure 7
shows time scales taccel, theat, and tcond as a function of radius
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Fig. 6. Forces exert on the solid core as a function of xc, the solid core
to the liquid sphere radii ratio, in the case of pfm = 100 N m−2 and rs0
= 1 mm.
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rs0 in the case of pfm = 70 N m−2 and υrel = 20 km s−1. If rs0 >
1 mm, the surface melting of a particle is expected to occur,
and the stripping is expected to take place. In contrast, when
rs0 < 1 mm, the entire particle should melt without melting
partially.

The critical size for stripping should be a function of pfm
and υrel (or equivalently, n0 and υrel, where n0 is the gas
number density in the pre-shock region, because the gas
density in the post-shock region can be related to the gas
density in the pre-shock region using a shock wave heating
model [e.g., Iida et al. 2001]; note that pfm =  ρgυrel

2). Figure 8
shows a range of shock waves that can melt the dust particles
(light-gray), and whether or not the stripping occurs with the
shock wave; if the stripping does not take place, the shock
condition is colored by a dark color. The panel (a) shows
results when the initial dust radius is 2 mm. There is no dark
colored region in this panel, which indicates that the stripping
for 2 mm dust particles occurs in almost all the chondrule-
forming shock waves. As a consequence, chondrules of 2 mm
in radius is unlikely to be formed, though the final size of
stripped dust particles is unknown. On the contrary, when the
initial radius of the dust particle is 1 mm (panel b), it is found
that chondrules of 1 mm radius can be formed without
suffering stripping, if shock waves are weak (slow shock
velocities and/or low gas density).

Dust particles are decelerated in the shock waves because
of the gas drag. The time scale of the velocity decay is given
by (Appendix G):

(55)

This time scale is much longer than taccel, theat, and tcond given
by Equations 50, 51, and 53, respectively, in chondrule-

forming shock waves. This suggests that the particles may be
stripped over and over again in a shock wave. Indeed,
according to Fig. 7, particles may finally become smaller than
1 mm. Here, we estimate the final sizes of particles, which
experience the partial melting, assuming that the final radius
is given so that theat = tcond is met. Estimated final radius as a
function of the shock velocity and the gas density is shown in
Fig. 9 by dashed lines. In the estimation, in order to evaluate
the gas density in the post-shock region, we used the isobaric
condition, which is valid for strong shock waves (Iida et al.
2001):

(56)

where ρ0, k, µ, mp, υs, ρpost, and Tpost are the gas density in the
pre-shock region, Boltzmann constant, mean molecular
weight, proton mass, the velocity of shock front, and the gas
density and the gas temperature in the region where the
particles are melting, respectively. Also, the gas temperature
in the region is assumed to be Tpost = 2,000 K (Iida et al.

Fig. 7. Time scales as a function of radius r0 in the case of pfm = 70 N
m−2 and υrel = 20 km s−1.
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Fig. 8. Shock waves that can melt dust particles (light-gray) and
shock wave in which the stripping would not take place (dark color).
(a) The initial radius of dust particles is rs0 = 2 mm. In all the
chondrule forming shock waves, the liquid mantle of dust particles is
estimated to be stripped away. (b) The initial radius of dust particles
is rs0 = 1 mm. In some weak shock waves (low shock velocity/low
density), the liquid mantle seems not to be stripped off.
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2001). From Fig. 9, it is seen that weak shock waves, i.e.,
slower shock velocity and/or lower pre-shock gas density,
may form larger chondrules. However, the velocity of shock
waves, which melt particles to form chondrules, should be
larger than the critical velocity given by (Iida et al. 2001):

(57)

and

(58)

This velocity condition for melting is illustrated in Fig. 9 by a
solid line. Comparing the solid line and dashed lines
representing different sizes, we can estimate the maximal size
of chondrules, which turns out to be about a few mm. This
estimated maximal size seems consistent with sizes of natural
chondrules.

Porous Particle Case

In the discussion above, it is assumed that both solid and
liquid materials have the same density. This assumption
seems reasonable when the solid particle is dense enough.

However, it is considered that the first generation precursor
particles are formed through coalescence of small dust grains.
The coalescence of dust grains would form fluffy or porous
particles. So, the first generation chondrule precursors are
likely to be porous particles. In this subsection, we will have
a qualitative discussion on a chondrule-precursor particle that
has a porous structure. We will see whether the porous
structure may enhance or reduce the stripping effect.

In the porous dust particle, the density of the solid state
before melting is lower than that of the liquid state. Then, the
porous dust may be affected by following effects when it is
melting:

1. The size of the liquid sphere after melting becomes
smaller than the initial size.

2. A hydrodynamics time scale in the liquid shell should be
different from that of an initially dense dust particle with
the same initial size, because the radii ratio of the liquid
sphere to the solid core (xc) becomes different in the
partial melting state.

3. The heat conductivity κ would be smaller than the dense
particles, because the inner structure is porous.
In view of these effects, we estimate the critical size of

the porous particle for stripping, which is evaluated using
Equation 52, and the dynamical time scale, which is given by
Equation 53. Here, we just assume that the density and the
heat conductivity of the porous particle are 0.75 times that of
the dense particle. Then, we find that the critical size for the
stripping becomes about 0.7 times and the dynamical time
scale is about 0.6 times of those of dense dust particles. Thus,
in the case where chondrule precursor particles are porous,
the maximal size of chondrules determined by the stripping, is
expected to be smaller than the maximal size of chondrules
formed from dense precursor particles. It is thought that
chondrules may have experienced melting and re-solidifying
a number of times, implying that second generation particles
coming into the shock waves, which could be chondrules,
may be dense particles. Then, the maximal size of chondrules
may be determined by the stripping of the first generation
porous dust particles; when porous particles melt for the first
time to form chondrules by shock wave heating, they would
suffer the stripping and the maximal size could be
determined.

Fission versus Stripping: Totally versus Partially Molten
Particles

Susa and Nakamoto (2002) examined the stability of
totally molten particles in the hypersonic rarefied gas flow by
considering the ram pressure from the gas flow and the
surface tension of the molten dust particle. Since the surface
tension is inversely proportional to the size of the dust
particle, larger dust particles are likely to be destroyed by the
ram pressure. The condition of the size for the fission was
obtained by Susa and Nakamoto (2002) as:

Fig. 9. The maximal size of dust particles that do not suffer from the
stripping (dashed lines) as a function of the shock velocity υs and the
pre-shock gas number density n0. The solid line represents the
boundary of shock conditions to melt the dust particle obtained by
Iida et al. (2001); dust particles can melt if shock waves have υs and
n0 plotted in the upper-right side of the solid line. Comparing the
dashed lines and the solid line, the maximal size of chondrules
produced by the shock wave heating mechanism is inferred to be
about 1–2 mm.
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(59)

The critical size for the fission is larger than the critical size
for the stripping (given by Equation 52) in all the chondrule-
forming shock waves. Thus, the maximal size of chondrules
seems to be determined by the stripping of liquid mantle from
partially molten dust particles, not by the fission of totally
molten dust particles.

Applicability of Linear Solution

In general, if shock waves have large shock velocity and
high gas number density in the pre-shock region (i.e., when
the shock waves are strong enough), and also if the size of
dust particles is large, the Reynolds number of the flow in the
liquid mantle, Re = ρυmaxrs0/  would exceed unity and also
the deformation of the molten particles would become
considerable. For example, when pfm = 70 N m−2, υrel = 20 km
s−1, and xc = 0.8, the Reynolds number becomes Re = 0.03 for
rs0 = 0.9 mm, Re = 0.1 for rs0 = 1.5 mm, Re = 0.3 for rs0 = 3
mm, and Re = 1 for rs0 = 5 mm. We cannot apply the linear
solution obtained in this study to situations where the
Reynolds number further exceeds unity, because the solution
was obtained with assumptions that both the Reynolds
number and the deformation are small enough. On the other
hand, according to Equation 52, the critical strength of the
shock waves, above which dust particles of a certain size
would lose their partially molten mantle by the stripping,
depends on the shock velocity and the pre-shock gas number
density. When the strength of the shock wave is weaker than
the critical one, the particles would form chondrules without
suffering the stripping. Carrying out numerical simulations of
the shock wave heating, we found that the critical strengths of
shock waves for stripping are not strong enough to have a
large Reynolds number and deformation. So, when we discuss
the stripping of the partially molten dust particles, we can
apply the linear solution obtained in this study. Therefore, the
maximal size of chocndrules evaluated in this study using the
linear solution is validated.

In this study, it has been assumed that the solid core and
the liquid mantle are initially spherical and they are
positioned concentrically. (This assumption might be
validated some extent, because the flow in the back-side of
the particle is quite small according to Fig. 4 and the back-
side might be regarded as the solid state.) Also, some other
assumptions and simplifications were used in order to
analytically solve the hydrodynamics equations with linear
approximation. Obviously, such a simplified case would be
hardly realized in shock waves. A real situation should be
more complicated: the initial shape of the dust particle may
not be spherical, the dust particle in the shock wave would
melt from its front-side, the viscosity in the melt may change
spatially and temporary. And to examine such a complicated

case precisely is far beyond the scope of this study. One might
wonder whether this complicated reality may be realistically
investigated by this simple model. However, we should note
here that the simple model employed in this study should be
helpful even in examining such a complicated case. The
simple model can provide us with a useful analytic solution.
For example, the simple model and analytic solution enabled
us to estimate the maximal size of chondrules by the stripping,
without carrying out huge numerical simulations or
laboratory experiments. Although elaborate studies using
numerical simulations and laboratory experiments should be
used in future to address more realistic situations, the simple
view and the analytic solution obtained in this study would be
helpful even for those studies.

CONCLUSIONS

In the framework of the shock wave heating model for
chondrule formation, we examined partially molten dust
particles that have a solid core and a surrounding liquid
mantle and estimated the maximal size of chondrules.

First, we examined the dynamics of the liquid mantle.
Hydrodynamics equations for the core-mantle structure
particles were solved analytically using a linear
approximation. The deformation, the internal flow, the
pressure distribution in the liquid mantle, and the force acting
on the solid core were obtained.

Then, using these results, we estimated conditions in
which the liquid mantle is stripped off from the solid core. To
explore the stripping condition, three time scales (heating,
conduction, and dynamical) were compared each other. It was
found that the stripping takes place, if both theat < tcond and tdyn
< theat are satisfied: the condition theat < tcond represents case
where the partial melting and the core-mantle structure were
realized in the heating phase of the shock wave heating
process. The condition tdyn < theat means that the solid core can
leave from the liquid sphere before the solid core
disappearing by melting. Combining the condition for the
stripping and numerical simulations of shock waves, it was
found that the stripping is expected to take place before the
entire dust particle melts, when the dust initial radius is larger
than about 1 or 2 mm. Thus, chondrules larger than about 1–2
mm are not likely to be formed by the shock wave heating
mechanism. It was also found that the stripping of the liquid
mantle is more likely to occur than the fission of totally
molten dust particles. Therefore, the maximal size of
chondrules seems to be determined not by the fission, but by
the stripping of the liquid mantle from the partially molten
dust particles in the shock waves. This maximal size, about 1–
2 mm, seems consistent with sizes of natural chondrules.
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APPENDIX A

Here we derive Equation 3. The left-hand side of
Equation 3 represents the force acting on the surface of the
particle due to the gas flow. The momentum flux of the gas
flow, which is the momentum of the gas flow crossing a unit
area perpendicular to the unit vector ez per unit time, is given
by pfm = ρgas , where ρgas is the gas density and υrel is the
relative velocity of the gas flow to the dust particle. (Strictly
speaking, υrel should be the relative velocity between the gas
flow and the liquid flow on the partially molten surface. But
the velocity in the liquid mantle is much slower than that of
the gas flow, which will be confirmed later. So, we ignore the
velocity of the liquid motion on the surface, and we regard υrel
as the relative velocity between the velocity of the gas flow
and the velocity of the center of mass of the dust particle.) The
thermal and reflected velocities of gas molecules are small
enough and are neglected. A unit area on the particle surface
is projected to the flow direction, and its projected area
becomes (n ⋅ ez), where dot expresses the inner product of two
vectors. Then, the force exerting on the surface of the sphere
is given by –(n ⋅ ez)pfm H[(π/2) – θ], where H(x) is the step
function whose values are unity and zero for x ≥ 0 and x < 0,
respectively.

The viscous flow in the particle causes the viscous force.
The viscous force fvis acting on the surface, which is normal to
n, is given by (e.g., Landau and Lifshitz 1987):

(60)

And the stress tensor is given by (e.g., Landau and Lifshitz
1987):

(61)

(62)

(63)

where p is the pressure and  is the viscosity.
The surface tension is denoted by Ts. The principal radii

of curvature are given by (see Appendix B):
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and

(65)

Finally, combining these terms, we have Equation 3.

APPENDIX B

Here we obtain the mean curvature. The unit tangential
vectors of the surface are given by:

(66)

and

(67)

Then, the unit normal vector of the surface is given by:

(68)

The mean curvature, which is an average of principal radii of
curvature, is given by (e.g., Lipshutz 1969):

(69)

where Rmax and Rmin are principal radii and:

(70)

Since the unit normal vector and vectors in the tangential
plane are perpendicular to each other, we have:

(71)

and

(72)

By differentiating both sides of Equations 71 and 72 with θ
and φ, we have:

(73)

(74)

and

(75)

Using Equations 73, 74, and 75, we have:

(76)

Thus, the mean curvature is written as:

(77)

since gθφ = 0 (see Equations 66, 67, and 70). And using
Equation 68, we can obtain:

(78)

and

(79)

Therefore, by defining the principal radii of curvature as:
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(80)

and

(81)

we have the mean curvature as:

(82)

Note that numerators in Equations 80 and 81 are positive if
the deformation is small enough.

APPENDIX C

Equations 1 and 2 are re-written by:

(83)

(84)

and

(85)

at r = rs0 by neglecting second and higher order terms. Since
rs = rs0 + rs1, rs0 is constant, and  , we have:

and

Neglecting second and higher order terms and using these
expressions, Equation 7 is re-written by:

(86)

at r = rs0, because

Similarly, equation (8) is re-written by:

(87)

at r = rs0. From these equations, Equation 3 is written by:

(88)

and

(89)

at r = rs0. By using Eqsuations 15 through 20, Equations 9, 10,
and 11 and above equations are re-written as:
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(96)

and

(97)

Equations 92 and 97 are obtained by neglecting higher order
terms in Equations 11 and 89, and integrating with respect to
θ. The volume of the sphere is given by:

(98)

where ξ = cosθ. We assume that the volume of the sphere is
conserved, thus:

(99)

APPENDIX D

The Legendre transform of the term including the step
function is written:

(100)

where

(101)

Calculating this integral, we have a0 = 1/6, a1 = 3/8, a2 = 1/3,
a3 = 7/48, an = 0 for n ≥ 4, and

(102)

Substituting θ = 0 in Equation 100, we have

(103)

From the property of the Legendre function, we have:

(104)

Substituting these equations into Equations 92 through 99, we
have following equations:

(105)

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)

From Equation 105 with n = 0, we have x2u0 = constant, and
we get u0 = 0 from Equation 109. From Equation 106, we
have Ψ0 = constant. From Equation 99, we have xs0 = 0. Thus,
we have Ψ0 = 1/6 from Equation 113 for n = 0. Calculating
dΨn/dx from Equation 108, and using Equation 105 and 106,
we have:
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(115)

Assuming the solution has a form  and substituting it
toEquation 115, we have:

(116)

Solving these equations, we obtain λ = n + 1, n – 1, –n, –n –
2. Thus:

(117)

where An, Bn, Cn, and Dn are constants.

APPENDIX E

Here, we derive Equations 31, 32, and 33. Using
Equations 21 and 30, we have an expression for wn as:

(118)

Then, substituting the Expression 30 into the boundary
condition (24), we have An + Bn + Cn + Dn = 0, thus: 

(119)

Similarly, from Equations 25 and 30, we have

and using Equation 119, then:

(120)

And using Equation 26, 119, and 120, we have:

(121)

This Equation 121 can be re-written as:

(122)

Thus,

(123)

where α is a ratio between An and Bn, and Equation 123
becomes Equation 32. Also, from Equations 120 and 123, a
ratio between An and Cn, which is defined as β, is given by:

(124)

Equation 124 corresponds to Equation 33. And using
Equations 119, 123, and 124, we have:

(125)

Finally, substituting Equations 123, 124, and 125 into
Equations 30, we have Equation 31.

APPENDIX F

As described in section Linear Approximation and Non-
Dimensional Variables, we have:

(126)

This summation can be re-written as:

(127)

where the first and second terms correspond to the even
integer n and odd integer n in the summation of Equation 126,
respectively. And P2m(0) = 0 for integer m ≥ 0. Thus, Equation
127 becomes:
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(129)

And from this Equation 129, we have Equation 38.

APPENDIX G

In this appendix, expressions of heating time scale,
conduction time scale, and stopping time are given.

Injected energy from the gas flow to the particle per unit
time is given by . The required energy to melt the
particle completely at the melting temperature is evaluated to
be .

Thus, the heating time scale, theat, to melt the particle is
estimated by equating

(130)

and neglecting some order of unity factors as:

(131)

The heat conduction equation is given by (e.g., Landau
and Lifshitz 1987):

(132)

where x is the spatial distance. Evaluating derivatives by
divisions and substituting  and , we have

(133)

The equation of motion of the particle in the post-shock
region is given by:

(134)

since the gas flow is the free molecular flow and the relative
velocity is faster than the gas thermal velocity. Evaluating the
time derivative by:

(135)

and using a relation , we have:

(136)
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