

# Secondary alteration of the impactite and mineralization in the basal Tertiary sequence, Yaxcopoil-1, Chicxulub impact crater, Mexico

Doreen E. AMES,<sup>1\*</sup> Ingrid M. KJARSGAARD,<sup>2</sup> Kevin O. POPE,<sup>3</sup> Burkhard DRESSLER,<sup>4</sup> and Mark PILKINGTON<sup>1</sup>

<sup>1</sup>Natural Resources Canada, Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario, K1A 0E8, Canada <sup>2</sup>Mineralogical Consultant, 15 Scotia Place, Ottawa, Ontario, K1S 0W2, Canada <sup>3</sup>Geo Eco Arc Research, 16305 St Mary's Church Road, Aquasco, Maryland 20608, USA <sup>4</sup>Lunar and Planetary Science Institute, Houston, Texas 77058, USA \*Corresponding author. E-mail: dames@nrcan.gc.ca

(Received 30 September 2003; revision accepted 22 February 2004)

**Abstract**–The 65 Ma Chicxulub impact crater formed in the shallow coastal marine shelf of the Yucatán Platform in Mexico. Impacts into water-rich environments provide heat and geological structures that generate and focus sub-seafloor convective hydrothermal systems. Core from the Yaxcopoil-1 (Yax-1) hole, drilled by the Chicxulub Scientific Drilling Project (CSDP), allowed testing for the presence of an impact-induced hydrothermal system by: a) characterizing the secondary alteration of the 100 m-thick impactite sequence; and b) testing for a chemical input into the lower Tertiary sediments that would reflect aquagene hydrothermal plume deposition. Interaction of the Yax-1 impactites with seawater is evident through redeposition of the suevites (unit 1), secondary alteration mineral assemblages, and the subaqueous depositional environment for the lower Tertiary carbonates immediately overlying the impactites.

The least-altered silicate melt composition intersected in Yax-1 is that of a calc-alkaline basaltic andesite with 53.4-56 wt% SiO<sub>2 (volatile-free)</sub>. The primary mineralogy consists of fine microlites of diopside, plagioclase (mainly Ab 47), ternary feldspar (Ab 37 to 77), and trace apatite, titanite, and zircon. The overprinting alteration mineral assemblage is characterized by Mg-saponite, Kmontmorillonite, celadonite, K-feldspar, albite, Fe-oxides, and late Ca and Mg carbonates. Mg and K metasomatism resulted from seawater interaction with the suevitic rocks producing smectite-Kfeldspar assemblages in the absence of any mixed layer clay minerals, illite, or chlorite. Rare pyrite, sphalerite, galena, and chalcopyrite occur near the base of the impactites. These secondary alteration minerals formed by low temperature (0-150 °C) oxidation and fixation of alkalis due to the interaction of glass-rich suevite with down-welling seawater in the outer annular trough intersected at Yax-1. The alteration represents a cold, Mg-K-rich seawater recharge zone, possibly recharging higher temperature hydrothermal activity proposed in the central impact basin. Hydrothermal metal input into the Tertiary ocean is shown by elevated Ni, Ag, Au, Bi, and Te concentrations in marcasite and Cd and Ga in sphalerite in the basal 25 m of the Tertiary carbonates in Yax-1. The lower Tertiary trace element signature reflects hydrothermal metal remobilization from a mafic source rock and is indicative of hydrothermal venting of evolved seawater into the Tertiary ocean from an impactgenerated hydrothermal convective system.

#### INTRODUCTION

Impact-generated hydrothermal systems are common for impact craters developed on shelf environments (i.e. Sudbury: Ames et al. 1998; Kara: Naumov 2002). This is simply due to the heat provided through impact processes initiating subseafloor circulation of seawater within the crater. Heat sources available to drive a convective hydrothermal system in an impact environment include the central uplift (e.g.. Manson et al. 1996; Puchezh-Katunki; Naumov 2002), the melt sheet (Sudbury; Ames et al. 1998), and the inherent heat in the impact brecciated basement rocks (e.g. Ivanov and Deutsch 1999). Seawater, groundwater, deep-formational brines and magmatic fluids from the melt sheet are the fluid sources recognized at other impact sites (McCarville and Crossey 1996; Ames et al. 1998; Farrow and Watkinson 1999; Molnar et al. 2001; Ames 2002). The circulation of fluids is controlled by the permeable impactites, syn-crater faults and paleotopography (Ames et al. 2000). Convective circulation of fluids through impacted crustal sequences can influence the heat transfer and cooling of the impact sequences, affect the source of magnetic anomalies, influence the type and location of mineralization, and influence density, porosity, and seismic velocity through precipitation of secondary minerals. Mineralogical and magnetic studies have identified a hydrothermal system within the Chicxulub crater, but its temporal and spatial extent is, as yet, unknown (Schuraytz et al. 1994; Steiner 1996; Pilkington and Hildebrand 2000). Pilkington and Hildebrand (2000) defined two concentric zones of enhanced magnetization. These coincide with the edge of the central uplift at a radius of ~20 km and the edge of the collapsed disruption cavity at a radius of  $\sim$ 45 km (Fig. 1). The distribution and character of the magnetic anomalies were interpreted to be the result of an impact-induced hydrothermal system at Chicxulub. A study of the secondary alteration associated with these magnetic signatures may play a significant role in unravelling the petrogenesis of the melt, and the geophysical signature and mineral potential of the deeply buried crater.

Hydrothermal fluids discharged from vents on the modern seafloor mix with ambient seawater and spread

laterally for tens to thousands of km (Baker et al. 1995). Chemical precipitants from the overlying water column have distinctive, zoned trace element signatures relative to the vent location and can form in seafloor volcanic, sedimentary (Spry et al. 2000), and impact crater environments (Whitehead et al. 1992; Ames et al. 2002). The hydrothermal plume signature in the marine basin sediments above the suevitic deposits in the ~200 km Sudbury impact crater is characterized by elevated Zn, Cu, V, Cd, Ag, and Ni and extends over at least 25 km<sup>2</sup> within the post-impact marine shales (Rogers et al. 1995; Ames et al. 2002a). Characterization of the trace element signature of the basal Tertiary sequence above the Chicxulub impactites may identify post-impact hydrothermal precipitants from a crater floor vent system discharging metal-rich fluids into the Tertiary marine basin.

This paper documents the mineralogical and chemical effects of secondary alteration of the fragmental impactites, identifies a least-altered melt composition, and characterizes the mineralization in the basal Tertiary sequence of the Yaxcopoil-1 (Yax-1) drill core located within the Chicxulub crater.

## **GEOLOGIC SETTING OF THE YAX-1 DRILL HOLE**

The Yax-1 drill hole is located on the Hacienda Yaxcopoil, 40 km southwest of Merida, Mexico at 20.740 °N



Fig. 1. Conceptual diagram displaying post-impact fluid flow on a cartoon of the Chicxulub crater. Ring faults and down-faulted mega block zones provide high-permeability pathways for seawater recharge in the annular trough environment, Yax-1 site location. Discharge/upflow zones are proposed in the central basin. The location of C-1 is shown in mirror image as it occurs on the opposite side of the central uplift from Yax-1. (compiled from Vermeesch and Morgan [2004] and Pilkington and Hildebrand [2000]).

89.718 °W. The drill hole was sited to continuously core the post-impact Tertiary sequence, the impact units, and the down faulted Cretaceous sedimentary rocks. The Yaxcopoil-1 drill hole intersected a faulted area in the outer annular trough (Dressler et al. 2003), ~68 km southwest of the center of the crater (Fig. 1). Data from Yax-1 may help determine whether faults in this area serve as a recharge zone where cold seawater penetrates into the impacted crust or as a focused discharge zone for the expulsion of evolved seawater or hydrothermal fluids (Fig. 1). The stratigraphic nomenclature used in this paper follows that of Dressler and others (2003), with units 1-6 comprising the impactite sequence intersected at 794.63 to 894.94 m (Fig. 2). The drill hole extended through the Tertiary sequence from 404 m to 794.63 m and underlying the impactites, the Cretaceous sequence was cored to 1511 m depth.

The suevite and melt rocks in the ~100 m-thick impactite sequence contain, on average, 60–95% altered blocky glass,

now largely altered to clay minerals. The impact breccias and melt rocks cored include an  $\sim$ 14 m-thick, upper reworked suevite unit, a variety of 10–20 m-thick suevitic units, and an in situ brecciated melt showing hydroclastic fragmentation ( $\sim$ 860–885 m, unit 5) (Fig. 2). Faults that form during the modification stage of impact cratering may provide high-permeability pathways that channel down-welling seawater and up-welling hydrothermal fluids. The highly permeable impactite sequence in Yax-1 may also channel fluid flow laterally and vertically.

The basal Tertiary rocks overlying the impactites at 794.63 m consist of a hemipelagic sequence of mid Eocene to lower-most Paleocene anoxic limestones, confirming that the crater filled with seawater soon after impact. The presence of reworked and redeposited suevite at the top of the impactite sequence also suggests a rapid influx of seawater after impact. The presence of this permeable substrate in a seawatercharged impact environment is conducive to sub-seafloor



Fig. 2. Stratigraphic and alteration mineralogy section through the impact sequence and lower Tertiary carbonates in the Yax-1 drill hole. Unit 1 = redeposited suevite, unit 2 = suevite, unit 3 = melt-rich suevite, unit 4 = heterogeneous suevite, unit 5 = monomict melt breccia, unit 6 = variegated polymict melt breccia (Dressler et al. 2003). Sample locations are shown for petrography, geochemistry, and X-ray diffraction analyses.



Fig. 3. Least-altered Yax-1 silicate melt: a) autobrecciated silicate melt, unit 5, Yax-1\_870.44. Subsample for geochemistry to right of dashed line, dark green clay matrix for X-ray diffraction; b) hydroclastic fragmentation of silicate melt, Yax-1\_876.66; c) SEM photograph of least altered silicate melt, Yax-1\_876.57, unit 5. Dark grey laths = alkali feldspar, medium grey stubby laths = diopside, white = Fe-oxide.

fluid circulation and the formation of hydrothermal mineral deposits.

#### METHODOLOGY

Alteration mineral assemblages and mineral chemistry were documented from 25 polished thin sections made from the impactite sequence (Fig. 2). Eight additional samples at and above the suevite/Tertiary boundary at 794.2 m were studied, and the mineral chemistry was obtained for sulfide phases in the lowermost Tertiary strata (Fig. 2). The clay mineralogy of four fine whole rock (bulk) materials and six clay-size separates was determined by X-ray powder diffraction analysis (XRD) for samples extending from 798.06 m to 891.92 m within the suevite sequence (Fig. 2). Smear mounts were made by pipetting 40 mg suspensions (in water) of the clay-size separates onto glass slides and airdried overnight to produce oriented mounts. X-ray patterns were recorded on a Bruker D8 Advance Powder Diffractometer equipped with a graphite monochromator. The Co K $\alpha$  radiation was set at 40 kV and 40 mA. The samples were also X-rayed following saturation with ethylene glycol and heat treatment (550 °C).

Microprobe analyses were obtained from a fourspectrometer wavelength dispersive CAMECA Camebax at Carleton University, Ottawa. Silicates, carbonates, and hydroxides were analyzed with 15 kV and 15 to 20 nA. Counting times were 10 sec for major elements and 20 sec for minor and trace elements including F and Cl. Clay minerals, carbonates, and hydroxides were analyzed with a strongly defocused beam (raster). The mineral chemistry of clay minerals and sulfide are in Tables 3 and 4. The standards used were: wollastonite for Si and Ca, spinel for Al, andradite for Fe, forsterite for Mg, albite for Na, orthoclase for K, MnTi for Mn and Ti, chromite for Cr, tugtupite for Cl, and LiF for F.

The geochemistry of the silicate melt component was determined for 16 samples of the impactites and one melt dyke cutting the underlying Cretaceous rocks (Fig. 2). Analyses were carried out by the Analytical Geochemistry Subdivision of the Geological Survey of Canada, Natural Resources Canada (Tables 1 and 2). The methods used include major element determinations by wavelength dispersive XRF, trace element determinations by inductively coupled-plasma emission (ICP-ES), and mass spectroscopy (ICP-MS). H<sub>2</sub>O, C, and S were determined by infrared absorption, F and Cl by ion chromatography, and CO<sub>2</sub> by titration. Precision and accuracy were better than 5 percent and 2 sigma relative standard deviation (RSD), with measurements made relative to in-house reference material, duplicate samples, and international standards. During subsampling of the melt, care was taken to avoid veins, visible lithic fragments, fractures, and carbonate impurities.

# PROTOLITH COMPOSITIONS OF LEAST-ALTERED MELT

#### **Mineralogy and Mineral Chemistry**

The least-altered silicate melt from Yax-1 was identified in unit 5, an in situ-brecciated melt approximately 24 m-thick (Fig. 2). Fine, 5–20  $\mu$ m diopside microlites and coarser, <50  $\mu$ m feldspar laths, commonly trachytic, are set in a subordinate matrix of finer magnetite, K-feldspar, quartz, and apatite (Fig. 3). The composition of the clinopyroxene in the



Fig. 4. Mineral chemical diagrams: a) pyroxene quadrilateral showing compositions of pyroxene in least-altered silicate melt, Yax-1; b) feldspar compositions from the impactites, Yax-1.

Yax-1 drill hole (Fig. 4a) is intermediate between diopside and hedenbergite (salite) with Mg numbers between 70–79. These are similar to that documented in the interpreted impact melt sheet samples C1-N10, Y6-N17, and N19 (Kring and Boynton 1992; Schuraytz et al. 1994). Feldspar microlites in the least-altered melt are dominantly plagioclase (Ab 37–47) set in a fine matrix of ternary feldspar intergrown with ironoxides (Fig. 4b).

# Geochemistry

The least-altered mineralogy of unit 5, in contrast to the clay-rich, clinopyroxene-poor mineralogy of altered silicate melt in other units, is used to characterize a primary silicate melt composition in the Yax-1 impactite sequence. Melt fragments were carefully selected to avoid alteration veinlets (Fig. 3). In terms of major element compositions, unit 5 is classified as a calc-alkaline basaltic andesite with 53.4–56 wt% SiO<sub>2</sub>, ~6.93 wt% avg. MgO, and 15.9 wt% avg. Al<sub>2</sub>O<sub>3</sub> (volatile-free; Figs. 5 and 6, Table 1). Ratios of

relatively immobile elements  $TiO_2$ ,  $Al_2O_3$ , and Zr in Y-6 and Yax-1 are similar, while C-1 contains higher Zr (155 ppm; Schuraytz et al. 1994). The higher MgO content of Yax-1 is accompanied by a decrease in  $SiO_2$ , likely showing that Mg metasomatism has also affected unit 5 composition possibly present as fine vesicles filled with smectite. The CO<sub>2</sub> content of the samples was used, in addition to petrography, to detect those samples contaminated by late carbonate that impregnated the matrix (Table 1). Silicate melt compositions normalized to average upper continental crust show a flat pattern which reflects the strong crustal signature of the impact melt in Yax-1 (Fig. 7).

# ALTERATION OF THE IMPACTITE

#### Mineralogy and Mineral Chemistry

The most prominent alteration minerals impart a strong coloration to the impactite sequence with a predominance of bright green celadonite and brown to reddish-brown iron

| Table 1                       | . Geochemi    | stry of silic:       | ate melt, Y | ax-1.           |              |              |              |               |               |               |              |               |               |
|-------------------------------|---------------|----------------------|-------------|-----------------|--------------|--------------|--------------|---------------|---------------|---------------|--------------|---------------|---------------|
| -                             | Yax-1         | Yax-1                | Yax-1       | Yax-1           | Yax-1        |              | Yax-1        | Yax-1         |               | Yax-1         | Yax-1        | Yax-1         | Yax-1         |
| Sample                        | 827.89        | 842.24               | 862.25      | 865.23          | 870.44       | Yax-1 873    | 873.18       | 876.66        | Yax-1 885.7   | 891.92A       | 66.168       | 893.33C       | 894.91        |
| Depth                         | 827.89        | 842.24               | 862.25      | 865.23          | 870.44       | 873          | 873.18       | 874.17        | 885.7         | 891.92A       | 891.99       | 893.33C       | 894.91        |
|                               |               | Fgrd suevite-        | Elinidal    | Elinidal        | Eluidal      |              | Green        | Fluidal       | Dissehod      |               | Dlaashad     |               | Silicate melt |
| Descrip.                      | Silicate melt | ungin green<br>glass | breccia     | breccia         | breccia      | Melt rock    | melt breccia | silicate melt | silicate melt | Silicate melt | melt rock    | Silicate melt | melt)         |
| Unit                          | 3             | 3                    | 5           | 5               | 5            | 5            | 5            | 5             | 6             | 6             | 6            | 6             | 6             |
| $SiO_2$                       | 51.7          | 49.4                 | 52.7        | 53.1            | 52.4         | 52.3         | 50.2         | 51.9          | 56.5          | 54.8          | 55.9         | 55.7          | 54.2          |
| $TiO_2$                       | 0.58          | 0.45                 | 0.55        | 0.52            | 0.52         | 0.52         | 0.5          | 0.52          | 0.46          | 0.47          | 0.36         | 0.65          | 0.43          |
| $Al_2O_3$                     | 15.7          | 12.1                 | 15          | 15.2            | 15.9         | 14.1         | 13.8         | 16            | 15.5          | 15.1          | 15.6         | 17            | 14.5          |
| $\mathrm{Fe_2O_{3T}}$         | 6.1           | 4.2                  | 6.3         | 6.7             | 6.2          | 5.8          | 5.8          | 6.3           | 3.73          | 5.6           | 5.7          | 2.24          | 5.5           |
| $Fe_2O_3$                     | 5.21          | 3.31                 | 4.63        | 5.14            | 4.64         | 3.57         | 3.35         | 4.85          | I             | 4.82          | 5.03         | 2.02          | 4.72          |
| FeO                           | 0.8           | 0.8                  | 1.5         | 1.4             | 1.4          | 5            | 2.2          | 1.3           | 1             | 0.7           | 0.6          | 0.2           | 0.7           |
| MnO                           | 0.01          | 0.01                 | 0.02        | 0.02            | 0.03         | 0.06         | 0.08         | 0.02          | 0.06          | 0             | 0            | 0.03          | 0.01          |
| MgO                           | 5.57          | 8.07                 | 7.48        | 6.93<br>Č       | 6.29<br>6.40 | 6.11         | 5.86         | 6.69<br>2 5 2 | 0.31          | 5.74          | 5.09         | 0.56          | 5.91          |
| CaU<br>Na O                   | 4.99<br>7.0   | 7.7<br>2.7           | 0.04<br>    | 0.0<br>7        | 8.42         | 10./I<br>3.4 | 12.79        | 10.1          | 8.38<br>2 6   | 4.18<br>2.4   | ر C.4<br>۲ د | 8.12          | ۶/.c<br>۲ ۲   |
| Na <sub>2</sub> U             | 2.9<br>2.62   | 2.2                  | 3.I         | 4.0<br>6.0      | 0.0<br>1     | 5.4<br>- 0,  | 5.5<br>11 1  | C.C           | 5.0<br>101    | 5.4<br>101    | C.5          | 5.41          | 5.5<br>101    |
| $\mathbf{N}_{2}\mathbf{O}$    | 78.7          | 5.00                 | 707         | 2.52            | 1.01         | 1.90         | 1.41<br>2.7  | 1.82          | 4.91          | 4.84          | 4.99         | 0.47          | 4.51          |
| $^{\rm H}_{2}{\rm O}_{\rm T}$ | 0.8           | 0.9                  | 4. /        | 0.4             | 9.0<br>1 0   | 7.1          | 0.7          | 0. t          | t<br>  •      | ).<br>10      | 1.0<br>2.1   | 0.0           | 0.0           |
| CO <sub>2T</sub>              | 0.9           | 4./                  | 0.1         | 0.1             | 0.1          |              | 2.2          | 0.7           | 4./           | 0.7           | 5.1<br>1.5   | 4.7           | 1.9           |
| $P_2O_5$                      | 0.03          | 0.11                 | 0.05        | 0.14            | 0.16         | 0.14         | 0.13         | 0.15          | 0.15          | 0.1           | 0.1          | 0.21          | 0.09<br>0.09  |
| $S_{total}$                   | 0.01          | 0.02                 | 0.02        | 0.01            | 0.02         | 0.01         | 0.01         | 0.01          | 0.04          | 0.03          | 0.02         | 0.03          | 0.03          |
| Ag                            | -0.1          | -0.1                 | -0.1        | -0.1            | -0.1         | -0.1         | -0.1         | -0.1          | 0.1           | -0.1          | -0.1         | -0.1          | -0.1          |
| Ba                            | 130           | 210                  | 180         | 130             | 220          | 290          | 300          | 160           | 665           | 730           | 670          | 564           | 700           |
| Be                            | 1.5           | 0.9                  | 1.4         | 1.3             | 1.3          | 1.1          | 1.1          | 1.4           | 0.9           | 1.1           | 1            | 1.4           | 1             |
| Bi                            | -0.2          | -0.2                 | -0.2        | -0.2            | -0.2         | -0.2         | -0.2         | -0.2          | 0.2           | 0.3           | 0.3          | 0.3           | 0.3           |
| Cd                            | -0.2          | -0.2                 | -0.2        | -0.2            | -0.2         | -0.2         | -0.2         | -0.2          | -0.2          | -0.2          | -0.2         | -0.2          | -0.2          |
| Co                            | 8             | 13                   | 13          | 12              | 14           | 15           | 14           | 12            | -5            | 7             | 5            | -5            | 7             |
| Cr                            | 74            | 47                   | 62          | 64              | 67           | 58           | 59           | 63            | 41            | 46            | 40           | 70            | 41            |
| $\mathbf{C}_{\mathbf{S}}$     | 1.6           | 0.63                 | 1.3         | 1.1             | 0.81         | 0.54         | 0.51         | 0.94          | 0.31          | 0.68          | 0.63         | 0.22          | 0.64          |
| Cu                            | -10           | 39                   | -10         | 16              | 22           | 10           | 14           | -10           | 37            | -10           | -10          | 15            | 10            |
| Ca<br>U                       | دا<br>م ر     | 12                   | دا<br>۲     | د <u>ا</u><br>ر | 10<br>71     | دا<br>•      | دا<br>•      | 16            | 13<br>3.3     | 14<br>2       | 13<br>3.0    |               | 13<br>2 1     |
| III "I                        | 5.0<br>0.05   | 1.0                  | 5.0<br>20.0 | 0.05            | 3./<br>0.05  | 1.6          | 1.0          | 0.05          | 5.2<br>0.05   | 5.2<br>0.05   | 5.2<br>0.05  | ).C           | 1.C           |
| Mo                            | c0.0-         | c0.0-                | CO.0-       | 0.0-<br>C 0-    | c0.0-        | 0.00         | 0.00<br>0    | 0.0-<br>C 0-  | 0.4           | -0.0-<br>C 0- | -0-0<br>-    | 0.0-<br>6 0   | c0.0-         |
| qN                            | 7.5           |                      | 7.6         | 8.6             | 8.7          | 7.5          | 7.3          | 8.6           | 6.4           |               | 7.3          | 9.2           | T.T           |
| Ni                            | 22            | 28                   | 31          | 30              | 30           | 33           | 29           | 28            | -10           | 20            | 16           | -10           | 21            |
| Pb                            | 5             | 8                    | 24          | 5               | 4            | ю            | Э            | 9             | 10            | 6             | 5            | 9             | 8             |
| Rb                            | 60            | 46                   | 48          | 45              | 37           | 26           | 25           | 37            | 32            | 35            | 34           | 84            | 30            |
| $\mathbf{Sb}$                 | 0.4           | -0.2                 | 0.3         | 0.3             | 0.2          | 0.2          | 0.7          | -0.2          | 0.5           | 0.2           | -0.2         | 0.6           | 0.4           |
| Sc                            | 19            | 16                   | 19          | 19              | 20           | 19           | 19           | 19            | 3.4           | 11            | 10           | 12            | 14            |
| Sn                            | 1.2           | 1.2                  | 2           | 1.1             | 1.1          | 2.7          | 1.8          | 1.1           | 2.4           | 1.6           | 1.8          | 2.9           | 2.1           |
| $\mathbf{Sr}$                 | 431           | 425                  | 484         | 479             | 538          | 534          | 505          | 531           | 496           | 554           | 596          | 446           | 545           |
| Та                            | 0.55          | 0.42                 | 0.5         | 0.53            | 0.53         | 0.47         | 0.46         | 0.54          | 0.64          | 0.55          | 0.57         | 0.56          | 0.52          |
| Te                            | -0.2          | -0.2                 | -0.2        | -0.2            | -0.2         | -0.2         | -0.2         | -0.2          | -0.2          | -0.2          | -0.2         | -0.2          | -0.2          |
| dT E                          | 9.4<br>2.22   | 5.8                  | 8.5<br>2.3  | 8.4<br>2.23     | 8.7          | 7.3          | 7.6          | 9.2<br>2.22   | 14<br>^ ^ ^   | 12            | П<br>С ў     | 6<br>ب        | 11<br>, , ,   |
|                               | -0.UZ         | 0.02                 | -0.02       | -0.02<br>0.80   | -0.02        | 70.0-        | 70.0-        | -0.02         | 0.02          | -0.UZ         | -0.02        | 0.09<br>م ر   | -0.02         |
| ⊃ >                           | 0.70<br>24    | 73                   | 20.0<br>37  | 0.07<br>40      | 0.72<br>60   | c7.v<br>87   | u./4<br>84   | 0.07<br>50    | 2.2<br>49     | 7 Y           | 0.1<br>56    | 4.7<br>65     | 50 × 1. /     |
|                               |               | 2                    |             | 2               | ~~~          | 5            | -            | 2             | ÷             | 2             | \$           | 2             | 2             |

|                | x-1   | 4.91        | 4.91    | icate melt    | <li>to carb</li> | ilt)          |      | 5  | 1   | 3  | 1.4 | 0.64 | 0.46 | 1.7 | 0.26 | 1   | 0.1  | 9.9 | 2.7 | 2   | 0.25 | 0.1  | .6  | 0.61 | 9.6   |  |
|----------------|-------|-------------|---------|---------------|------------------|---------------|------|----|-----|----|-----|------|------|-----|------|-----|------|-----|-----|-----|------|------|-----|------|-------|--|
|                | Ya    | 89.         | 89.     | Sil           | (ac              | elt me        | 9    | ŝ  | 11  | 6  |     |      |      |     |      | -   |      |     |     |     |      |      | (-  |      | 6     |  |
|                | Yax-1 | 893.33C     | 893.33C |               |                  | Silicate m    | 6    | 32 | 154 | 55 | 4.3 | 2.4  | 1.2  | 4.6 | 0.91 | 29  | 0.33 | 25  | 6.4 | 5   | 0.74 | 0.37 | 27  | 2.3  | 99.4  |  |
|                | Yax-1 | 891.99      | 891.99  |               | Bleached         | melt rock     | 6    | 29 | 112 | 25 | 1.6 | 0.76 | 0.52 | 1.8 | 0.31 | 11  | 0.11 | 11  | 2.9 | 2.3 | 0.28 | 0.11 | 8.4 | 0.75 | 100.3 |  |
|                | Yax-1 | 891.92A     | 891.92A |               |                  | Silicate melt | 6    | 31 | 108 | 23 | 1.4 | 0.64 | 0.46 | 1.7 | 0.25 | 10  | 0.09 | 10  | 2.7 | 1.9 | 0.24 | 0.1  | 7.2 | 0.58 | 98.8  |  |
|                |       | Yax-1 885.7 | 885.7   |               | Bleached         | silicate melt | 6    | 32 | 90  | 32 | 1.7 | 0.88 | 0.56 | 2.1 | 0.33 | 19  | 0.13 | 14  | 4   | 2.6 | 0.3  | 0.13 | 10  | 0.84 | 98.5  |  |
|                | Yax-1 | 876.66      | 874.17  | Fluidal       | breccia          | silicate melt | 5    | 44 | 135 | 60 | 3.4 | 1.8  | 1    | 3.6 | 0.68 | 23  | 0.27 | 21  | 5.7 | 4.1 | 0.59 | 0.28 | 19  | 1.8  | 99.8  |  |
|                | Yax-1 | 873.18      | 873.18  | Green         | monomict         | melt breccia  | 5    | 48 | 111 | 45 | 2.8 | 1.5  | 0.86 | 3.1 | 0.57 | 18  | 0.28 | 18  | 4.7 | 3.4 | 0.48 | 0.25 | 17  | 1.7  | 99.3  |  |
|                |       | Yax-1 873   | 873     |               |                  | Melt rock     | 5    | 48 | 111 | 67 | 3.4 | 2    | 1    | 3.7 | 0.71 | 24  | 0.34 | 22  | 5.8 | 4.3 | 0.59 | 0.31 | 21  | 2.1  | 98.7  |  |
| 111 CU.        | Yax-1 | 870.44      | 870.44  |               | Fluidal          | breccia       | 5    | 43 | 132 | 37 | 4.4 | 2.4  | 1.2  | 4.7 | 0.89 | 23  | 0.36 | 23  | 5.9 | 4.6 | 0.71 | 0.39 | 26  | 2.4  | 99.1  |  |
| an I. Contra   | Yax-1 | 865.23      | 865.23  |               | Fluidal          | breccia       | 5    | 40 | 128 | 29 | 4.4 | 2.4  | 1.2  | 4.7 | 0.89 | 22  | 0.37 | 23  | 5.7 | 5   | 0.73 | 0.37 | 25  | 2.4  | 99.5  |  |
| arv 111/11, 10 | Yax-1 | 862.25      | 862.25  |               | Fluidal          | breccia       | 5    | 60 | 122 | 25 | 1.6 | 0.95 | 0.48 | 1.7 | 0.34 | 8.6 | 0.19 | 8.4 | 2.2 | 1.9 | 0.27 | 0.16 | 8.8 | 1.2  | 99.1  |  |
| out of othe    | Yax-1 | 842.24      | 842.24  | Fgrd suevite- | bright green     | glass         | 3    | 65 | 115 | 39 | 3.4 | 1.8  | 0.9  | 3.6 | 0.67 | 19  | 0.29 | 18  | 4.7 | 3.7 | 0.57 | 0.28 | 21  | 1.8  | 6.66  |  |
|                | Yax-1 | 827.89      | 827.89  |               |                  | Silicate melt | 3    | 51 | 122 | 12 | 1.6 | 0.92 | 0.43 | 1.6 | 0.33 | 7.2 | 0.16 | 7.5 | 1.9 | 1.7 | 0.26 | 0.15 | 8.8 | 1.1  | 98.1  |  |
| Laure 1.       |       | Sample      | Depth   |               |                  | Descrip.      | Unit | Zn | Zr  | Ce | Dy  | Er   | Eu   | Gd  | Но   | La  | Lu   | Nd  | Pr  | Sm  | Tb   | Tm   | Υ   | Yb   | Total |  |

Table 2. Geochemistry of carbonate melt within impactite sequence and melt dyke within a Cretaceous block, Yax-1.

Table 2. Geochemistry of carbonate melt within impactite sequence and melt dyke within a Cretaceous block Vax-1

| sequence u                      | nu mont u   | yke wittiin u | ciciaceous | oloek, lux l |
|---------------------------------|-------------|---------------|------------|--------------|
|                                 | Yax-1       | Yax-1         | Yax-1      | Yax-1_       |
| Sample                          | 823.3       | 891.92B       | 893.33A    | 1348         |
| Depth (m)                       | 823.3       | 891.92B       | 893.33A    | 1348         |
| Descrip.                        | Matrix      | Melt          | Melt       | Melt dyke    |
| Unit                            | 3           | 6             | 6          |              |
| SiO <sub>2</sub>                | 38.40       | 6.20          | 1.80       | 23.30        |
| TiO <sub>2</sub>                | 0.29        | 0.09          | -0.02      | 0.51         |
| $Al_2O_3$                       | 10.00       | 1.40          | 0.30       | 10.30        |
| Fe <sub>2</sub> O <sub>3T</sub> | 4.30        | 1.10          | 0.16       | 4.70         |
| Fe <sub>2</sub> O <sub>3</sub>  | 3.63        | 0.99          | _          | -            |
| FeO                             | 0.6         | 0.1           | _          | _            |
| MnO                             | 0.02        | 0.28          | 0.24       | 0.00         |
| MgO                             | 5.88        | 1.94          | 3.15       | 12.80        |
| CaO                             | 18.10       | 48.44         | 47.80      | 16.24        |
| Na <sub>2</sub> O               | 1.80        | 0.20          | 0.08       | 0.50         |
| K <sub>2</sub> O                | 2.23        | 0.30          | 0.20       | 3.70         |
| $H_2O_T$                        | 7.1         | 1.0           | _          | _            |
| CO <sub>2T</sub>                | 13.0        | 39.1          | 43.9       | 24.8         |
| $P_2O_5$                        | 0.05        | 0.01          | -0.01      | 0.02         |
| S <sub>total</sub>              | 0.03        | 0.04          | 0.07       | 1.71         |
| Δσ                              | 0.2         | _0 1          | _0 1       | _0 1         |
| Ra                              | 210         | 82            | 799        | 150          |
| Be                              | 0.7         | -0.5          | -0.5       | 17           |
| Bi                              | 0.7         | 0.2           | 0.2        | 0.3          |
| Cd                              | -0.2        | -0.2          | -0.2       | 0.3          |
| Cu                              | -0.2        | -0.2          | -0.2       | -0.2         |
| C0<br>Cn                        | 22          | =5            | -3         | 26           |
| C                               | 1 00        | -10           | -10        | 20           |
| Cs<br>Cr                        | 1.00        | 0.24          | 0.02       | 5.80         |
| Cu                              | -10         | -10           | 1/         | -10          |
| Ga                              | 2.10        | 2.10          | 0.90       | 12.00        |
| HI                              | 2.10        | 0.35          | 0.06       | 3.80         |
| in<br>M-                        | -0.05       | -0.05         | -0.05      | 0.07         |
| Mo                              | -0.2        | -0.2          | 0.3        | 5.1          |
| IND<br>N:                       | 5.40<br>24  | 1.50          | 0.20       | 9.40         |
| IN1<br>Dh                       | 24          | -10           | -10        | 10           |
| FU<br>Dh                        | 28.00       | -1            | 1 50       | 100.00       |
| KU<br>Sh                        | 58.00       | 7.90          | 1.50       | -100.00      |
| 50                              | 3.5<br>11.0 | -0.2          | 0.5        | 0.7          |
| SC                              | 0.5         | 5.9           | 1.9        | 12.0         |
| SII                             | 0.5         | =0.5          | 2.2        | 1.5          |
|                                 | 405         | 233           | 244        | 0.50         |
| Та                              | 0.31        | 0.00          | -0.03      | 0.39         |
| Th                              | -0.2        | -0.2          | -0.2       | -0.2         |
| T1                              | 4.40        | 0.94          | 0.12       | 9.10         |
| II<br>II                        | 1.00        | -0.02         | -0.02      | 3.60         |
| V                               | 30          | 12            | 6          | 25           |
| v<br>Zn                         | 56          | 12            | 19         | 25           |
| Zr                              | 84.0        | 16.0          | 2.0        | 143.0        |
| Ce                              | 46.0        | 12.0          | 20.0       | 27.0         |
| Dv                              | 2.40        | 1 10          | 1 30       | 3 40         |
| Er                              | 1.30        | 0.75          | 0.75       | 1.90         |
| Eu                              | 0.72        | 0.19          | 0.30       | 0.78         |
| Gd                              | 2 70        | 0.85          | 1.20       | 3 10         |
| Ho                              | 0.50        | 0.26          | 0.27       | 0.65         |
| La                              | 16.0        | 7 3           | 89         | 13.0         |
| Lu                              | 0.25        | 0.18          | 0.14       | 0.35         |
| Nd                              | 15.0        | 4 5           | 6.8        | 16.0         |
| Pr                              | 4.10        | 1.30          | 1.90       | 3.90         |
|                                 |             |               |            |              |

| sequence  | and melt | dyke within a | Cretaceous | block, Yax-1. |
|-----------|----------|---------------|------------|---------------|
|           | Yax-1    | Yax-1         | Yax-1      | Yax-1_        |
| Sample    | 823.3    | 891.92B       | 893.33A    | 1348          |
| Depth (m) | 823.3    | 891.92B       | 893.33A    | 1348          |
| Descrip.  | Matrix   | Melt          | Melt       | Melt dyke     |
| Unit      | 3        | 6             | 6          |               |
| Sm        | 3.10     | 0.86          | 1.30       | 3.50          |
| Tb        | 0.43     | 0.16          | 0.21       | 0.52          |
| Tm        | 0.23     | 0.15          | 0.12       | 0.33          |
| Y         | 13.00    | 8.10          | 9.10       | 19.00         |
| Yb        | 1.60     | 1.10          | 0.85       | 2.20          |
| Total     | 101.2    | 100.1         | 97.8       | 98.6          |



Fig. 5. Major element plots of the Yaxcopoil-1 suevitic melt rocks showing (a) the andesitic composition (volatile-free) of Yax-1 silicate melt after Gill (1981) and (b) total alkalis versus silica plots of LeBas et al. (1986).

oxide/goethite staining of the core (Fig. 8). Also present are varying amounts of Mg-saponite, K-montmorillonite, chalcedony, K-feldspar, magnetite, calcite, dolomite, and albite (Fig. 2). The details of the mineralogy and occurrence of the secondary Fe-oxides are documented in an accompanying paper (Pilkington et al. 2004).

Clay minerals in Yax-1 were characterized to determine possible mineral zonation, interstratification, and/or the possibility of fine-grained discrete phases. The clay minerals were identified by X-ray diffraction as pure smectite in 10 samples collected through the impactite sequence (Fig. 2). Celadonite, Mg-saponite, and K-montmorillonite identified



Fig. 6. Major element geochemistry of the Yax-1 suevite deposits. See Fig. 5 for sample legend.

| Unit I                  |               |        |              |              |              |        |  |
|-------------------------|---------------|--------|--------------|--------------|--------------|--------|--|
| Yax-1                   | 806.41        | 807.99 | 807.99       | 807.99       | 807.99       | 807.99 |  |
| Mineral                 | Mont.         | Mont.  | Mont.        | Celadonite   | Mont.        | Mont.  |  |
|                         |               |        |              | Lining       | Lining       | Amygd  |  |
| Texture                 | Lining void   | Matrix | Alt. glass   | amygd.       | amygd.       | rim    |  |
| SiOa                    | 54.65         | 52 10  | 57 58        | 53.89        | 55.63        | 54 45  |  |
| $TiO_2$                 | 0.59          | 0.18   | 0.22         | 0.00         | 0.02         | 0.33   |  |
| A1 O                    | 14.41         | 12.47  | 17.03        | 7.88         | 11.57        | 13.84  |  |
| $A_{12}O_3$             | 0.00          | 0.01   | 0.00         | 7.00         | 0.00         | 0.02   |  |
| $C_{12}O_3$             | 0.00          | 12.25  | 0.00         | 0.01         | 5.42         | 0.02   |  |
| reo<br>Mro              | 7.80          | 13.33  | 2.30         | 18.19        | 5.42         | 9.40   |  |
| MnO                     | 0.06          | 0.01   | 0.02         | 0.04         | 0.06         | 0.00   |  |
| NIO                     | 0.02          | 0.06   | 0.00         | 0.03         | 0.06         | 0.06   |  |
| MgU                     | 5.92          | /.88   | 5.84         | 5.79         | 9.96         | 5.54   |  |
| CaO                     | 1.30          | 0.65   | 0.87         | 0.49         | 0.11         | 0.84   |  |
| BaO                     | 0.00          | 0.00   | 0.00         | 0.04         | 0.00         | 0.00   |  |
| Na <sub>2</sub> O       | 0.28          | 1.13   | 2.64         | 0.82         | 0.41         | 1.78   |  |
| $K_2O$                  | 4.48          | 5.30   | 1.40         | 7.61         | 7.90         | 4.04   |  |
| F                       | 0.13          | 0.36   | 0.86         | 0.69         | 0.59         | 0.63   |  |
| Cl                      | 0.08          | 0.08   | 0.04         | 0.07         | 0.03         | 0.08   |  |
| Subtotal <sup>b</sup>   | 89.71         | 93.66  | 89.94        | 95.55        | 91.75        | 91.02  |  |
| Si                      | 3.855         | 3.691  | 3.866        | 3.874        | 3.879        | 3.830  |  |
| Ti                      | 0.031         | 0.010  | 0.011        | 0.000        | 0.001        | 0.018  |  |
| Al                      | 1.198         | 1.040  | 1.419        | 0.668        | 0.951        | 1.148  |  |
| Cr                      | 0.000         | 0.001  | 0.000        | 0.001        | 0.000        | 0.001  |  |
| Fe                      | 0.460         | 0.789  | 0.144        | 1.093        | 0.316        | 0.553  |  |
| Mn                      | 0.003         | 0.000  | 0.001        | 0.002        | 0.003        | 0.000  |  |
| Ni                      | 0.001         | 0.003  | 0.000        | 0.002        | 0.003        | 0.003  |  |
| Mg                      | 0.623         | 0.830  | 0.584        | 0.621        | 1.035        | 0.581  |  |
| Ca                      | 0.098         | 0.049  | 0.062        | 0.038        | 0.008        | 0.063  |  |
| Ba                      | 0.000         | 0.000  | 0.002        | 0.001        | 0.000        | 0.000  |  |
| Na                      | 0.038         | 0 155  | 0 344        | 0 114        | 0.055        | 0.243  |  |
| K                       | 0.403         | 0.479  | 0.120        | 0.698        | 0.703        | 0.363  |  |
|                         | 0.105         | 0.1/2  | 0.120        | 0.070        | 0.705        | 0.505  |  |
| Al(IV)                  | 0.114         | 0.300  | 0.123        | 0.126        | 0.120        | 0.153  |  |
| Al(VI)                  | 1.084         | 0.740  | 1.295        | 0.541        | 0.831        | 0.995  |  |
| Mg + Fe                 | 1.087         | 1.623  | 0.729        | 1.718        | 1.358        | 1.137  |  |
| Ca + K + Na             | 0.539         | 0.682  | 0.526        | 0.851        | 0.766        | 0.669  |  |
| Unit II                 |               |        |              |              |              |        |  |
| Yax-1                   | 818.05        | 818.05 | 818.05       | 818.05       | 818.05       |        |  |
| Mineral                 | Mont.         | Mont.  | Mont.        | Saponite     | Mont.        |        |  |
| Texture                 | Alt. glass    | Matrix | Void filling | Alt. glass   | Void filling |        |  |
| SiO                     | 49.82         | 54 42  | 51.94        | 45.40        | 50.27        |        |  |
| $TiO_2$                 | +9.02<br>0.27 | 0.60   | 0.45         | 0.03         | 0.40         |        |  |
| $\Lambda_1$             | 12.84         | 15 17  | 13 40        | 5.53         | 11 58        |        |  |
| Cr O                    | 0.02          | 0.00   | 0.00         | 0.00         | 0.00         |        |  |
| $C_{12}O_{3}$           | 6.02          | 0.00   | 10.10        | 3.12         | 0.00         |        |  |
| reu<br>MnO              | 0.91          | /.1/   | 10.19        | 5.12<br>0.04 | 9.19         |        |  |
| NIO                     | 0.00          | 0.03   | 0.00         | 0.04         | 0.00         |        |  |
| NIU<br>MaQ              | 0.00          | 0.04   | 0.00         | 0.00         | 0.03         |        |  |
| MgU                     | 5. <i>55</i>  | 0.00   | 5.17         | 22.94        | 5.70         |        |  |
| CaU                     | 0.78          | 1.38   | 0.73         | 0.39         | 0.66         |        |  |
| BaO                     | 0.00          | 0.06   | 0.06         | 0.04         | 0.00         |        |  |
| Na <sub>2</sub> O       | 1.06          | 0.56   | 0.83         | 1.00         | 1.04         |        |  |
| <u>к</u> <sub>2</sub> О | 3.16          | 3.50   | 5.70         | 0.29         | 4.83         |        |  |
| F                       | 0.20          | 0.26   | 0.12         | 0.47         | 0.07         |        |  |
| Cl                      | 0.12          | 0.05   | 0.11         | 0.03         | 0.10         |        |  |
| Subtotal <sup>b</sup>   | 80.53         | 89.25  | 88.69        | 79.27        | 83.86        |        |  |

Table 3. Clay mineral chemistry.<sup>a</sup>

| Unit II               |           | 5          |               |            |              |  |
|-----------------------|-----------|------------|---------------|------------|--------------|--|
| Yax-1                 | 818.05    | 818.05     | 818.05        | 818.05     | 818.05       |  |
| Mineral               | Mont      | Mont       | Mont          | Saponite   | Mont         |  |
| Texture               | Alt glass | Matrix     | Void filling  | Alt glass  | Void filling |  |
| a                     | 2 000     | 2 0 0 0    | 2 00 <b>7</b> | 2 1        |              |  |
| S1                    | 3.889     | 3.829      | 3.807         | 3.571      | 3.870        |  |
| Ti                    | 0.016     | 0.032      | 0.025         | 0.001      | 0.023        |  |
| Al                    | 1.182     | 1.258      | 1.157         | 0.512      | 1.051        |  |
| Cr                    | 0.001     | 0.000      | 0.000         | 0.000      | 0.000        |  |
| Fe                    | 0.451     | 0.422      | 0.624         | 0.205      | 0.592        |  |
| Mn                    | 0.000     | 0.003      | 0.000         | 0.003      | 0.000        |  |
| Nı                    | 0.000     | 0.002      | 0.000         | 0.000      | 0.002        |  |
| Mg                    | 0.621     | 0.629      | 0.565         | 2.691      | 0.654        |  |
| Ca                    | 0.066     | 0.104      | 0.057         | 0.033      | 0.055        |  |
| Ba                    | 0.000     | 0.002      | 0.002         | 0.001      | 0.000        |  |
| Na                    | 0.161     | 0.076      | 0.118         | 0.152      | 0.155        |  |
| K                     | 0.314     | 0.314      | 0.533         | 0.029      | 0.474        |  |
| Al(IV)                | 0.096     | 0.139      | 0.169         | 0.427      | 0.107        |  |
| Al(VI)                | 1.086     | 1.119      | 0.988         | 0.085      | 0.944        |  |
| Mg + Fe               | 1.072     | 1.056      | 1.189         | 2.899      | 1.247        |  |
| Ca + K + Na           | 0.541     | 0.495      | 0.710         | 0.215      | 0.684        |  |
| Unit III              |           |            |               |            |              |  |
|                       | 021.02    | 021.02     | 021.02        | 921.02     | 921.02       |  |
| Yax-1                 | 831.02    | 831.02     | 831.02        | 831.02     | 831.02       |  |
| Mineral               | Saponite  | Saponite   | Saponite      | Saponite   | Mont.        |  |
| Texture               | Dark red  | Amyg. fill | Amyg. rim     | Amyg. fill | Matrix       |  |
| SiO <sub>2</sub>      | 48.89     | 42.05      | 43.93         | 42.82      | 47.19        |  |
| TiO <sub>2</sub>      | 0.01      | 0.01       | 0.01          | 0.00       | 1.26         |  |
| $Al_2O_3$             | 9.27      | 5.55       | 7.34          | 5.55       | 10.97        |  |
| $Cr_2O_3$             | 0.02      | 0.03       | 0.00          | 0.02       | 0.00         |  |
| FeO                   | 3.98      | 4.68       | 4.29          | 3.81       | 6.64         |  |
| MnO                   | 0.05      | 0.04       | 0.01          | 0.00       | 0.05         |  |
| NiO                   | 0.00      | 0.00       | 0.03          | 0.07       | 0.00         |  |
| MgO                   | 19.27     | 19.97      | 18.62         | 21.14      | 7.24         |  |
| CaO                   | 1.32      | 0.93       | 1.97          | 1.00       | 0.77         |  |
| BaO                   | 0.03      | 0.01       | 0.07          | 0.00       | 0.03         |  |
| Na <sub>2</sub> O     | 0.47      | 0.98       | 0.44          | 1.22       | 0.74         |  |
| K <sub>2</sub> O      | 1.22      | 0.09       | 0.54          | 0.16       | 3.65         |  |
| F                     | 0.54      | 0.31       | 0.44          | 0.62       | 0.28         |  |
| Cl                    | 0.04      | 0.06       | 0.04          | 0.04       | 0.08         |  |
| Subtotal <sup>b</sup> | 85.10     | 74.72      | 77.73         | 76.46      | 78.90        |  |
| Si                    | 3 588     | 3 550      | 3 556         | 3 524      | 3 803        |  |
| Ti                    | 0.001     | 0.000      | 0.001         | 0.000      | 0.076        |  |
| A1                    | 0.802     | 0.553      | 0.700         | 0.539      | 1 041        |  |
| Cr                    | 0.001     | 0.002      | 0.000         | 0.001      | 0.000        |  |
| Fe                    | 0 244     | 0 331      | 0.290         | 0.262      | 0 447        |  |
| Mn                    | 0.003     | 0.003      | 0.001         | 0.000      | 0.003        |  |
| Ni                    | 0.000     | 0.000      | 0.002         | 0.004      | 0.000        |  |
| Mσ                    | 2 108     | 2 514      | 2.247         | 2 594      | 0.870        |  |
| Ca                    | 0 103     | 0.084      | 0 171         | 0.088      | 0.067        |  |
| Ba                    | 0.001     | 0.000      | 0.002         | 0.000      | 0.001        |  |
| Na                    | 0.066     | 0.160      | 0.069         | 0.195      | 0.116        |  |
| K                     | 0.114     | 0.010      | 0.055         | 0.017      | 0 375        |  |
| 1                     | 0.117     | 0.010      | 0.000         | 0.01/      | 0.575        |  |
| Al(IV)                | 0.411     | 0.449      | 0.444         | 0.476      | 0.121        |  |
| Al(VI)                | 0.391     | 0.103      | 0.256         | 0.063      | 0.920        |  |
| Mg + Fe               | 2.356     | 2.847      | 2.540         | 2.861      | 1.320        |  |
| Ca + K + Na           | 0.285     | 0.255      | 0.298         | 0.300      | 0.559        |  |

Table 3. Clay mineral chemistry.<sup>a</sup> Continued.

| Unit IV                        |           |            |            |             |             |              |          |        |
|--------------------------------|-----------|------------|------------|-------------|-------------|--------------|----------|--------|
| Yax-1                          | 852.07    | 852.07     | 852.07     | 852.07      | 852.07      |              |          |        |
| Mineral                        | Saponite  | Saponite   | Celadonite | Saponite    | Saponite    |              |          |        |
|                                |           |            |            | Amygdule    | Amygdule    |              |          |        |
| Texture                        | Vermiform | Alt. glass | Alt. glass | fill        | fill        |              |          |        |
| $SiO_2$                        | 45.35     | 42.73      | 52.38      | 41.20       | 40.68       |              |          |        |
| TiO <sub>2</sub>               | 0.11      | 0.01       | 0.49       | 0.12        | 0.01        |              |          |        |
| $Al_2O_3$                      | 7.81      | 6.35       | 10.71      | 6.87        | 5.96        |              |          |        |
| $Cr_2O_3$                      | 0.01      | 0.04       | 0.00       | 0.00        | 0.03        |              |          |        |
| FeO                            | 7.26      | 6.73       | 18.05      | 6.70        | 3.17        |              |          |        |
| MnO                            | 0.00      | 0.00       | 0.00       | 0.00        | 0.00        |              |          |        |
| NiO                            | 0.04      | 0.00       | 0.00       | 0.01        | 0.01        |              |          |        |
| MgO                            | 17.43     | 19.79      | 4.81       | 13.03       | 18.58       |              |          |        |
| CaO                            | 1.83      | 1.35       | 0.60       | 1.30        | 1.23        |              |          |        |
| BaO                            | 0.00      | 0.01       | 0.02       | 0.00        | 0.00        |              |          |        |
| Na <sub>2</sub> O              | 0.89      | 1.15       | 0.22       | 0.42        | 0.98        |              |          |        |
| K <sub>2</sub> O               | 1.37      | 0.21       | 6.69       | 1.18        | 0.09        |              |          |        |
| F                              | 0.24      | 0.18       | 0.04       | 0.07        | 0.32        |              |          |        |
| Cl                             | 0.10      | 0.06       | 0.08       | 0.08        | 0.06        |              |          |        |
| Subtotal <sup>b</sup>          | 82.45     | 78.61      | 94.11      | 70.96       | 71.13       |              |          |        |
| Si                             | 3.537     | 3.483      | 3.790      | 3.698       | 3.573       |              |          |        |
| Ti                             | 0.007     | 0.001      | 0.027      | 0.008       | 0.001       |              |          |        |
| Al                             | 0.718     | 0.610      | 0.914      | 0.726       | 0.616       |              |          |        |
| Cr                             | 0.000     | 0.003      | 0.000      | 0.000       | 0.002       |              |          |        |
| Fe                             | 0.474     | 0.459      | 1.092      | 0.503       | 0.233       |              |          |        |
| Mn                             | 0.000     | 0.000      | 0.000      | 0.000       | 0.000       |              |          |        |
| Ni                             | 0.003     | 0.000      | 0.000      | 0.000       | 0.001       |              |          |        |
| Mg                             | 2.026     | 2.404      | 0.519      | 1.744       | 2.432       |              |          |        |
| Ca                             | 0.153     | 0.118      | 0.046      | 0.125       | 0.116       |              |          |        |
| Ba                             | 0.000     | 0.000      | 0.001      | 0.000       | 0.000       |              |          |        |
| Na                             | 0.135     | 0.181      | 0.031      | 0.074       | 0.168       |              |          |        |
| K                              | 0.136     | 0.022      | 0.618      | 0.135       | 0.010       |              |          |        |
| Al(IV)                         | 0.456     | 0.516      | 0.184      | 0.294       | 0.426       |              |          |        |
| Al(VI)                         | 0.262     | 0.094      | 0.730      | 0.433       | 0.191       |              |          |        |
| Mg + Fe                        | 2.503     | 2.863      | 1.611      | 2.247       | 2.666       |              |          |        |
| Ca + K + Na                    | 0.424     | 0.322      | 0.695      | 0.334       | 0.294       |              |          |        |
| Unit V                         |           |            |            |             |             |              |          |        |
| Yax-1                          | 862.25    | 862.25     | 862.25     | 862.25      | 862.25      | 862.25       | 862.25   | 862.25 |
| Mineral                        | Mont.     | Saponite   | Mont.      | Bladed      | Bladed      | Mont.        | Saponite | Mont.  |
|                                |           | Filling    | Amygdule   | saponite    | saponite    |              | Filling  | Amygd. |
| Texture                        | Matrix    | amygd.     | rim        | Lining vein | Lining vein | Filling vein | amygd.   | rim    |
| SiO <sub>2</sub>               | 46.29     | 36.87      | 47.56      | 37.27       | 44.56       | 40.45        | 38.74    | 44.93  |
| TiO <sub>2</sub>               | 0.39      | 0.00       | 0.37       | 0.04        | 0.00        | 0.03         | 0.01     | 0.20   |
| $Al_2O_3$                      | 11.05     | 5.26       | 11.61      | 4.94        | 5.89        | 14.38        | 5.08     | 11.25  |
| Cr <sub>2</sub> O <sub>3</sub> | 0.02      | 0.04       | 0.02       | 0.00        | 0.00        | 0.00         | 0.00     | 0.04   |
| FeO                            | 9.02      | 4.92       | 6.98       | 4.73        | 5.96        | 3.70         | 5.06     | 4.58   |
| MnO                            | 0.04      | 0.00       | 0.01       | 0.01        | 0.05        | 0.02         | 0.01     | 0.01   |
| NiO                            | 0.03      | 0.03       | 0.00       | 0.00        | 0.00        | 0.08         | 0.02     | 0.01   |
| MgO                            | 5.28      | 17.38      | 6.23       | 16.76       | 20.52       | 8.05         | 18.61    | 5.72   |
| CaO                            | 0.50      | 1.05       | 0.47       | 1.70        | 2.01        | 1.45         | 1.37     | 1.29   |
| BaO                            | 0.03      | 0.00       | 0.01       | 0.06        | 0.05        | 0.00         | 0.01     | 0.01   |
| Na <sub>2</sub> O              | 0.54      | 0.50       | 0.56       | 0.46        | 0.18        | 0.63         | 0.77     | 0.52   |
| K <sub>2</sub> O               | 5.23      | 0.34       | 4.51       | 0.10        | 0.05        | 3.05         | 0.10     | 4.45   |
| F                              | 0.20      | 0.15       | 0.11       | 0.58        | 0.29        | 0.43         | 0.55     | 0.50   |

Table 3. Clay mineral chemistry.<sup>a</sup> Continued.

| Unit V                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                          |                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit V                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                          |                                                                                                                                                                                                                                    |
| Yax-1                                                                                                                                                                                                                                                                                            | 862.25                                                                                                                                                                                                                                  | 862.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 862.25                                                                                                                                                                                                                                                                                         | 862.25                                                                                                                                                                                                                                                                                                                                    | 862.25                                                                                                                                                                                                            | 862.25                                                                                                                                                                                                                                                                                        | 862.25                                                                                                                                                                                                   | 862.25                                                                                                                                                                                                                             |
| Mineral                                                                                                                                                                                                                                                                                          | Mont.                                                                                                                                                                                                                                   | Saponite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mont.                                                                                                                                                                                                                                                                                          | Bladed                                                                                                                                                                                                                                                                                                                                    | Bladed                                                                                                                                                                                                            | Mont.                                                                                                                                                                                                                                                                                         | Saponite                                                                                                                                                                                                 | Mont.                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                         | Filling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Amygdule                                                                                                                                                                                                                                                                                       | saponite                                                                                                                                                                                                                                                                                                                                  | saponite                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                               | Filling                                                                                                                                                                                                  | Amygd.                                                                                                                                                                                                                             |
| Texture                                                                                                                                                                                                                                                                                          | Matrix                                                                                                                                                                                                                                  | amygd.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rim                                                                                                                                                                                                                                                                                            | Lining vein                                                                                                                                                                                                                                                                                                                               | Lining vein                                                                                                                                                                                                       | Filling vein                                                                                                                                                                                                                                                                                  | amygd.                                                                                                                                                                                                   | rim                                                                                                                                                                                                                                |
| Cl                                                                                                                                                                                                                                                                                               | 0.44                                                                                                                                                                                                                                    | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.41                                                                                                                                                                                                                                                                                           | 0.40                                                                                                                                                                                                                                                                                                                                      | 0.18                                                                                                                                                                                                              | 0.21                                                                                                                                                                                                                                                                                          | 0.18                                                                                                                                                                                                     | 0.35                                                                                                                                                                                                                               |
| Subtotal <sup>b</sup>                                                                                                                                                                                                                                                                            | 79.05                                                                                                                                                                                                                                   | 66.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 78.86                                                                                                                                                                                                                                                                                          | 67.04                                                                                                                                                                                                                                                                                                                                     | 79.74                                                                                                                                                                                                             | 72.48                                                                                                                                                                                                                                                                                         | 70.52                                                                                                                                                                                                    | 73.86                                                                                                                                                                                                                              |
| Si                                                                                                                                                                                                                                                                                               | 3 810                                                                                                                                                                                                                                   | 3 499                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 842                                                                                                                                                                                                                                                                                          | 3 528                                                                                                                                                                                                                                                                                                                                     | 3 544                                                                                                                                                                                                             | 3 512                                                                                                                                                                                                                                                                                         | 3 495                                                                                                                                                                                                    | 3 844                                                                                                                                                                                                                              |
| Ti                                                                                                                                                                                                                                                                                               | 0.024                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.022                                                                                                                                                                                                                                                                                          | 0.002                                                                                                                                                                                                                                                                                                                                     | 0.000                                                                                                                                                                                                             | 0.002                                                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                    | 0.013                                                                                                                                                                                                                              |
| Al                                                                                                                                                                                                                                                                                               | 1 072                                                                                                                                                                                                                                   | 0.588                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 105                                                                                                                                                                                                                                                                                          | 0.551                                                                                                                                                                                                                                                                                                                                     | 0.552                                                                                                                                                                                                             | 1 472                                                                                                                                                                                                                                                                                         | 0.540                                                                                                                                                                                                    | 1 134                                                                                                                                                                                                                              |
| Cr                                                                                                                                                                                                                                                                                               | 0.001                                                                                                                                                                                                                                   | 0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.001                                                                                                                                                                                                                                                                                          | 0.000                                                                                                                                                                                                                                                                                                                                     | 0.000                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                    | 0.003                                                                                                                                                                                                                              |
| Fe                                                                                                                                                                                                                                                                                               | 0.621                                                                                                                                                                                                                                   | 0.391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.472                                                                                                                                                                                                                                                                                          | 0.374                                                                                                                                                                                                                                                                                                                                     | 0.396                                                                                                                                                                                                             | 0.269                                                                                                                                                                                                                                                                                         | 0.382                                                                                                                                                                                                    | 0.328                                                                                                                                                                                                                              |
| Mn                                                                                                                                                                                                                                                                                               | 0.003                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.001                                                                                                                                                                                                                                                                                          | 0.001                                                                                                                                                                                                                                                                                                                                     | 0.003                                                                                                                                                                                                             | 0.001                                                                                                                                                                                                                                                                                         | 0.001                                                                                                                                                                                                    | 0.000                                                                                                                                                                                                                              |
| Ni                                                                                                                                                                                                                                                                                               | 0.002                                                                                                                                                                                                                                   | 0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                          | 0.000                                                                                                                                                                                                                                                                                                                                     | 0.000                                                                                                                                                                                                             | 0.006                                                                                                                                                                                                                                                                                         | 0.002                                                                                                                                                                                                    | 0.000                                                                                                                                                                                                                              |
| Mg                                                                                                                                                                                                                                                                                               | 0.648                                                                                                                                                                                                                                   | 2.459                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.750                                                                                                                                                                                                                                                                                          | 2.365                                                                                                                                                                                                                                                                                                                                     | 2.433                                                                                                                                                                                                             | 1.042                                                                                                                                                                                                                                                                                         | 2.502                                                                                                                                                                                                    | 0.730                                                                                                                                                                                                                              |
| Ca                                                                                                                                                                                                                                                                                               | 0.044                                                                                                                                                                                                                                   | 0.106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.041                                                                                                                                                                                                                                                                                          | 0.173                                                                                                                                                                                                                                                                                                                                     | 0.172                                                                                                                                                                                                             | 0.135                                                                                                                                                                                                                                                                                         | 0.133                                                                                                                                                                                                    | 0.118                                                                                                                                                                                                                              |
| Ba                                                                                                                                                                                                                                                                                               | 0.001                                                                                                                                                                                                                                   | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                          | 0.002                                                                                                                                                                                                                                                                                                                                     | 0.002                                                                                                                                                                                                             | 0.000                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                    | 0.000                                                                                                                                                                                                                              |
| Na                                                                                                                                                                                                                                                                                               | 0.086                                                                                                                                                                                                                                   | 0.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.088                                                                                                                                                                                                                                                                                          | 0.084                                                                                                                                                                                                                                                                                                                                     | 0.028                                                                                                                                                                                                             | 0.106                                                                                                                                                                                                                                                                                         | 0.135                                                                                                                                                                                                    | 0.086                                                                                                                                                                                                                              |
| K                                                                                                                                                                                                                                                                                                | 0.549                                                                                                                                                                                                                                   | 0.041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.465                                                                                                                                                                                                                                                                                          | 0.012                                                                                                                                                                                                                                                                                                                                     | 0.005                                                                                                                                                                                                             | 0.338                                                                                                                                                                                                                                                                                         | 0.011                                                                                                                                                                                                    | 0.486                                                                                                                                                                                                                              |
| Al(IV)                                                                                                                                                                                                                                                                                           | 0.167                                                                                                                                                                                                                                   | 0.501                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.135                                                                                                                                                                                                                                                                                          | 0.470                                                                                                                                                                                                                                                                                                                                     | 0.456                                                                                                                                                                                                             | 0.486                                                                                                                                                                                                                                                                                         | 0.504                                                                                                                                                                                                    | 0.143                                                                                                                                                                                                                              |
| Al(VI)                                                                                                                                                                                                                                                                                           | 0.906                                                                                                                                                                                                                                   | 0.086                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.970                                                                                                                                                                                                                                                                                          | 0.081                                                                                                                                                                                                                                                                                                                                     | 0.096                                                                                                                                                                                                             | 0.986                                                                                                                                                                                                                                                                                         | 0.036                                                                                                                                                                                                    | 0.991                                                                                                                                                                                                                              |
| Mg + Fe                                                                                                                                                                                                                                                                                          | 1.273                                                                                                                                                                                                                                   | 2.852                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.222                                                                                                                                                                                                                                                                                          | 2.740                                                                                                                                                                                                                                                                                                                                     | 2.833                                                                                                                                                                                                             | 1.318                                                                                                                                                                                                                                                                                         | 2.887                                                                                                                                                                                                    | 1.059                                                                                                                                                                                                                              |
| Ca + K + Na                                                                                                                                                                                                                                                                                      | 0.680                                                                                                                                                                                                                                   | 0.240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.594                                                                                                                                                                                                                                                                                          | 0.270                                                                                                                                                                                                                                                                                                                                     | 0.206                                                                                                                                                                                                             | 0.579                                                                                                                                                                                                                                                                                         | 0.279                                                                                                                                                                                                    | 0.691                                                                                                                                                                                                                              |
| Pt.                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                      | 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22                                                                                                                                                                                                                                                                                             | 49                                                                                                                                                                                                                                                                                                                                        | 50                                                                                                                                                                                                                | 54                                                                                                                                                                                                                                                                                            | 55                                                                                                                                                                                                       | 56                                                                                                                                                                                                                                 |
| I a<br>Unit VI                                                                                                                                                                                                                                                                                   | -0                                                                                                                                                                                                                                      | -1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                           | 20                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                          | 20                                                                                                                                                                                                                                 |
| Yax-1                                                                                                                                                                                                                                                                                            | 882.78                                                                                                                                                                                                                                  | 882.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 882.78                                                                                                                                                                                                                                                                                         | 889.63                                                                                                                                                                                                                                                                                                                                    | 889.63                                                                                                                                                                                                            | 889.63                                                                                                                                                                                                                                                                                        | 889.63                                                                                                                                                                                                   | 889.63                                                                                                                                                                                                                             |
| Mineral                                                                                                                                                                                                                                                                                          | Mont                                                                                                                                                                                                                                    | Sanonite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Saponite                                                                                                                                                                                                                                                                                       | Celadonite                                                                                                                                                                                                                                                                                                                                | Saponite                                                                                                                                                                                                          | Saponite                                                                                                                                                                                                                                                                                      | Celadonite                                                                                                                                                                                               | Saponite                                                                                                                                                                                                                           |
| T                                                                                                                                                                                                                                                                                                | mont.                                                                                                                                                                                                                                   | Suponite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FLI                                                                                                                                                                                                                                                                                            | Cases                                                                                                                                                                                                                                                                                                                                     | Superinte                                                                                                                                                                                                         | Amuadula                                                                                                                                                                                                                                                                                      | Green                                                                                                                                                                                                    | Superinte                                                                                                                                                                                                                          |
| Texture                                                                                                                                                                                                                                                                                          | Surr atz                                                                                                                                                                                                                                | Flaky clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Flaky clay                                                                                                                                                                                                                                                                                     | Urreen                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                   | Annygume                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                          |                                                                                                                                                                                                                                    |
| Texture                                                                                                                                                                                                                                                                                          | Surr. qtz                                                                                                                                                                                                                               | Flaky clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Flaky clay                                                                                                                                                                                                                                                                                     | Green                                                                                                                                                                                                                                                                                                                                     | 50.10                                                                                                                                                                                                             | Amyguute                                                                                                                                                                                                                                                                                      | 52.00                                                                                                                                                                                                    | 41.07                                                                                                                                                                                                                              |
| SiO <sub>2</sub>                                                                                                                                                                                                                                                                                 | Surr. qtz<br>39.21                                                                                                                                                                                                                      | Flaky clay<br>38.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 35.69                                                                                                                                                                                                                                                                                          | 51.75                                                                                                                                                                                                                                                                                                                                     | 52.12                                                                                                                                                                                                             | 45.24                                                                                                                                                                                                                                                                                         | 52.80                                                                                                                                                                                                    | 41.97                                                                                                                                                                                                                              |
| Texture<br>SiO <sub>2</sub><br>TiO <sub>2</sub>                                                                                                                                                                                                                                                  | Surr. qtz<br>39.21<br>0.32<br>7.02                                                                                                                                                                                                      | Flaky clay<br>38.59<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Flaky clay<br>35.69<br>0.00                                                                                                                                                                                                                                                                    | 51.75<br>0.15                                                                                                                                                                                                                                                                                                                             | 52.12<br>0.04                                                                                                                                                                                                     | 45.24<br>0.06                                                                                                                                                                                                                                                                                 | 52.80<br>0.12                                                                                                                                                                                            | 41.97<br>0.00<br>5.22                                                                                                                                                                                                              |
| Texture   SiO2   TiO2   Al2O3   Cr. O                                                                                                                                                                                                                                                            | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03                                                                                                                                                                                              | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 35.69<br>0.00<br>4.56<br>0.02                                                                                                                                                                                                                                                                  | 51.75<br>0.15<br>9.07                                                                                                                                                                                                                                                                                                                     | 52.12<br>0.04<br>7.72                                                                                                                                                                                             | 45.24<br>0.06<br>5.26<br>0.00                                                                                                                                                                                                                                                                 | 52.80<br>0.12<br>8.59<br>0.03                                                                                                                                                                            | 41.97<br>0.00<br>5.23<br>0.00                                                                                                                                                                                                      |
| SiO2   TiO2   Al2O3   Cr2O3                                                                                                                                                                                                                                                                      | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29                                                                                                                                                                                     | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flaky clay<br>35.69<br>0.00<br>4.56<br>0.02<br>3.15                                                                                                                                                                                                                                            | 51.75<br>0.15<br>9.07<br>0.00<br>21.70                                                                                                                                                                                                                                                                                                    | 52.12<br>0.04<br>7.72<br>0.01<br>5.49                                                                                                                                                                             | 45.24<br>0.06<br>5.26<br>0.00<br>3.95                                                                                                                                                                                                                                                         | 52.80<br>0.12<br>8.59<br>0.03<br>21.81                                                                                                                                                                   | 41.97<br>0.00<br>5.23<br>0.00<br>4.09                                                                                                                                                                                              |
| SiO2       TiO2       Al2O3       Cr2O3       FeO       MnO                                                                                                                                                                                                                                      | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03                                                                                                                                                                             | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Flaky clay         35.69         0.00         4.56         0.02         3.15         0.00                                                                                                                                                                                                      | 51.75<br>0.15<br>9.07<br>0.00<br>21.70<br>0.10                                                                                                                                                                                                                                                                                            | 52.12<br>0.04<br>7.72<br>0.01<br>5.49<br>0.02                                                                                                                                                                     | Anygdule<br>45.24<br>0.06<br>5.26<br>0.00<br>3.95<br>0.04                                                                                                                                                                                                                                     | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03                                                                                                                                                           | 41.97<br>0.00<br>5.23<br>0.00<br>4.09<br>0.03                                                                                                                                                                                      |
| SiO2       TiO2       Al2O3       Cr2O3       FeO       MnO       NiO                                                                                                                                                                                                                            | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00                                                                                                                                                                     | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Flaky clay         35.69         0.00         4.56         0.02         3.15         0.00         0.01                                                                                                                                                                                         | 51.75<br>0.15<br>9.07<br>0.00<br>21.70<br>0.10<br>0.05                                                                                                                                                                                                                                                                                    | 52.12<br>0.04<br>7.72<br>0.01<br>5.49<br>0.02<br>0.01                                                                                                                                                             | Anygdule<br>45.24<br>0.06<br>5.26<br>0.00<br>3.95<br>0.04<br>0.01                                                                                                                                                                                                                             | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03                                                                                                                                                   | 41.97<br>0.00<br>5.23<br>0.00<br>4.09<br>0.03<br>0.04                                                                                                                                                                              |
| $\begin{array}{c} \text{SiO}_2 \\ \text{TiO}_2 \\ \text{Al}_2\text{O}_3 \\ \text{Cr}_2\text{O}_3 \\ \text{FeO} \\ \text{MnO} \\ \text{NiO} \\ \text{NiO} \\ \text{MgO} \end{array}$                                                                                                              | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00<br>3.70                                                                                                                                                             | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04<br>19.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flaky clay         35.69         0.00         4.56         0.02         3.15         0.00         0.01         17.05                                                                                                                                                                           | 51.75<br>0.15<br>9.07<br>0.00<br>21.70<br>0.10<br>0.05<br>4.25                                                                                                                                                                                                                                                                            | 52.12<br>0.04<br>7.72<br>0.01<br>5.49<br>0.02<br>0.01<br>18.92                                                                                                                                                    | Anygdule<br>45.24<br>0.06<br>5.26<br>0.00<br>3.95<br>0.04<br>0.01<br>21.34                                                                                                                                                                                                                    | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03<br>4.49                                                                                                                                           | 41.97<br>0.00<br>5.23<br>0.00<br>4.09<br>0.03<br>0.04<br>20.33                                                                                                                                                                     |
| $\begin{array}{c} \text{SiO}_2 \\ \text{TiO}_2 \\ \text{Al}_2\text{O}_3 \\ \text{Cr}_2\text{O}_3 \\ \text{FeO} \\ \text{MnO} \\ \text{NiO} \\ \text{NiO} \\ \text{MgO} \\ \text{CaO} \end{array}$                                                                                                | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00<br>3.70<br>0.83                                                                                                                                                     | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04<br>19.43<br>1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Flaky clay     35.69     0.00     4.56     0.02     3.15     0.00     0.01     17.05     1.41                                                                                                                                                                                                  | 51.75<br>0.15<br>9.07<br>0.00<br>21.70<br>0.10<br>0.05<br>4.25<br>1.04                                                                                                                                                                                                                                                                    | 52.12<br>0.04<br>7.72<br>0.01<br>5.49<br>0.02<br>0.01<br>18.92<br>0.40                                                                                                                                            | Anygdule<br>45.24<br>0.06<br>5.26<br>0.00<br>3.95<br>0.04<br>0.01<br>21.34<br>1.91                                                                                                                                                                                                            | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03<br>4.49<br>0.64                                                                                                                                   | 41.97<br>0.00<br>5.23<br>0.00<br>4.09<br>0.03<br>0.04<br>20.33<br>1.62                                                                                                                                                             |
| SiO2       TiO2       Al2O3       Cr2O3       FeO       MnO       NiO       MgO       CaO       BaO                                                                                                                                                                                              | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00<br>3.70<br>0.83<br>0.00                                                                                                                                             | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04<br>19.43<br>1.42<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flaky clay<br>35.69<br>0.00<br>4.56<br>0.02<br>3.15<br>0.00<br>0.01<br>17.05<br>1.41<br>0.04                                                                                                                                                                                                   | 51.75<br>0.15<br>9.07<br>0.00<br>21.70<br>0.10<br>0.05<br>4.25<br>1.04<br>0.03                                                                                                                                                                                                                                                            | 52.12<br>0.04<br>7.72<br>0.01<br>5.49<br>0.02<br>0.01<br>18.92<br>0.40<br>0.02                                                                                                                                    | Anygdule<br>45.24<br>0.06<br>5.26<br>0.00<br>3.95<br>0.04<br>0.01<br>21.34<br>1.91<br>0.00                                                                                                                                                                                                    | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03<br>4.49<br>0.64<br>0.04                                                                                                                           | 41.97<br>0.00<br>5.23<br>0.00<br>4.09<br>0.03<br>0.04<br>20.33<br>1.62<br>0.00                                                                                                                                                     |
| SiO2TiO2Al2O3Cr2O3FeOMnONiOMgOCaOBaONa2O                                                                                                                                                                                                                                                         | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00<br>3.70<br>0.83<br>0.00<br>0.40                                                                                                                                     | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04<br>19.43<br>1.42<br>0.00<br>0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Flaky clay<br>35.69<br>0.00<br>4.56<br>0.02<br>3.15<br>0.00<br>0.01<br>17.05<br>1.41<br>0.04<br>0.93                                                                                                                                                                                           | 51.75<br>0.15<br>9.07<br>0.00<br>21.70<br>0.10<br>0.05<br>4.25<br>1.04<br>0.03<br>0.48                                                                                                                                                                                                                                                    | 52.12<br>0.04<br>7.72<br>0.01<br>5.49<br>0.02<br>0.01<br>18.92<br>0.40<br>0.02<br>1.20                                                                                                                            | Anygdule<br>45.24<br>0.06<br>5.26<br>0.00<br>3.95<br>0.04<br>0.01<br>21.34<br>1.91<br>0.00<br>0.33                                                                                                                                                                                            | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03<br>4.49<br>0.64<br>0.04<br>0.22                                                                                                                   | 41.97<br>0.00<br>5.23<br>0.00<br>4.09<br>0.03<br>0.04<br>20.33<br>1.62<br>0.00<br>0.39                                                                                                                                             |
| SiO2TiO2Al2O3Cr2O3FeOMnONiOMgOCaOBaONa2OK2O                                                                                                                                                                                                                                                      | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00<br>3.70<br>0.83<br>0.00<br>0.40<br>5.15                                                                                                                             | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04<br>19.43<br>1.42<br>0.00<br>0.69<br>0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flaky clay<br>35.69<br>0.00<br>4.56<br>0.02<br>3.15<br>0.00<br>0.01<br>17.05<br>1.41<br>0.04<br>0.93<br>0.16                                                                                                                                                                                   | 51.75<br>0.15<br>9.07<br>0.00<br>21.70<br>0.10<br>0.05<br>4.25<br>1.04<br>0.03<br>0.48<br>7.03                                                                                                                                                                                                                                            | 52.12<br>0.04<br>7.72<br>0.01<br>5.49<br>0.02<br>0.01<br>18.92<br>0.40<br>0.02<br>1.20<br>3.43                                                                                                                    | Anygdule<br>45.24<br>0.06<br>5.26<br>0.00<br>3.95<br>0.04<br>0.01<br>21.34<br>1.91<br>0.00<br>0.33<br>0.30                                                                                                                                                                                    | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03<br>4.49<br>0.64<br>0.04<br>0.22<br>7.68                                                                                                           | 41.97<br>0.00<br>5.23<br>0.00<br>4.09<br>0.03<br>0.04<br>20.33<br>1.62<br>0.00<br>0.39<br>0.18                                                                                                                                     |
| SiO2TiO2Al2O3Cr2O3FeOMnONiOMgOCaOBaONa2OK2OF                                                                                                                                                                                                                                                     | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00<br>3.70<br>0.83<br>0.00<br>0.40<br>5.15<br>0.34                                                                                                                     | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04<br>19.43<br>1.42<br>0.00<br>0.69<br>0.14<br>0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Flaky clay<br>35.69<br>0.00<br>4.56<br>0.02<br>3.15<br>0.00<br>0.01<br>17.05<br>1.41<br>0.04<br>0.93<br>0.16<br>0.42                                                                                                                                                                           | Green         51.75         0.15         9.07         0.00         21.70         0.10         0.05         4.25         1.04         0.03         0.48         7.03         0.05                                                                                                                                                          | 52.12<br>0.04<br>7.72<br>0.01<br>5.49<br>0.02<br>0.01<br>18.92<br>0.40<br>0.02<br>1.20<br>3.43<br>0.47                                                                                                            | Anygdule<br>45.24<br>0.06<br>5.26<br>0.00<br>3.95<br>0.04<br>0.01<br>21.34<br>1.91<br>0.00<br>0.33<br>0.30<br>0.40                                                                                                                                                                            | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03<br>4.49<br>0.64<br>0.04<br>0.22<br>7.68<br>0.07                                                                                                   | 41.97<br>0.00<br>5.23<br>0.00<br>4.09<br>0.03<br>0.04<br>20.33<br>1.62<br>0.00<br>0.39<br>0.18<br>0.47                                                                                                                             |
| $\begin{array}{c} \text{SiO}_2\\ \text{TiO}_2\\ \text{Al}_2\text{O}_3\\ \text{Cr}_2\text{O}_3\\ \text{FeO}\\ \text{MnO}\\ \text{NiO}\\ \text{MgO}\\ \text{CaO}\\ \text{BaO}\\ \text{Na}_2\text{O}\\ \text{K}_2\text{O}\\ \text{F}\\ \text{Cl} \end{array}$                                       | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00<br>3.70<br>0.83<br>0.00<br>0.40<br>5.15<br>0.34<br>0.09                                                                                                             | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04<br>19.43<br>1.42<br>0.00<br>0.69<br>0.14<br>0.19<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flaky clay       35.69       0.00       4.56       0.02       3.15       0.00       0.01       17.05       1.41       0.04       0.93       0.16       0.42       0.09                                                                                                                         | Green         51.75         0.15         9.07         0.00         21.70         0.10         0.05         4.25         1.04         0.03         0.48         7.03         0.05         0.11                                                                                                                                             | 52.12<br>0.04<br>7.72<br>0.01<br>5.49<br>0.02<br>0.01<br>18.92<br>0.40<br>0.02<br>1.20<br>3.43<br>0.47<br>0.02                                                                                                    | Anygdule<br>45.24<br>0.06<br>5.26<br>0.00<br>3.95<br>0.04<br>0.01<br>21.34<br>1.91<br>0.00<br>0.33<br>0.30<br>0.40<br>0.06                                                                                                                                                                    | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03<br>4.49<br>0.64<br>0.04<br>0.22<br>7.68<br>0.07<br>0.03                                                                                           | 41.97<br>0.00<br>5.23<br>0.00<br>4.09<br>0.03<br>0.04<br>20.33<br>1.62<br>0.00<br>0.39<br>0.18<br>0.47<br>0.05                                                                                                                     |
| $\begin{tabular}{lllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                            | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00<br>3.70<br>0.83<br>0.00<br>0.40<br>5.15<br>0.34<br>0.09<br>70.33                                                                                                    | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04<br>19.43<br>1.42<br>0.00<br>0.69<br>0.14<br>0.19<br>0.07<br>70.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Flaky clay       35.69       0.00       4.56       0.02       3.15       0.00       0.01       17.05       1.41       0.04       0.93       0.16       0.42       0.09       63.52                                                                                                             | Green         51.75         0.15         9.07         0.00         21.70         0.10         0.05         4.25         1.04         0.03         0.48         7.03         0.05         0.11         95.79                                                                                                                               | 52.12<br>0.04<br>7.72<br>0.01<br>5.49<br>0.02<br>0.01<br>18.92<br>0.40<br>0.02<br>1.20<br>3.43<br>0.47<br>0.02<br>89.87                                                                                           | Anygdule<br>45.24<br>0.06<br>5.26<br>0.00<br>3.95<br>0.04<br>0.01<br>21.34<br>1.91<br>0.00<br>0.33<br>0.30<br>0.40<br>0.06<br>78.88                                                                                                                                                           | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03<br>4.49<br>0.64<br>0.04<br>0.22<br>7.68<br>0.07<br>0.03<br>96.57                                                                                  | 41.97<br>0.00<br>5.23<br>0.00<br>4.09<br>0.03<br>0.04<br>20.33<br>1.62<br>0.00<br>0.39<br>0.18<br>0.47<br>0.05<br>74.40                                                                                                            |
| Texture<br>SiO <sub>2</sub><br>TiO <sub>2</sub><br>Al <sub>2</sub> O <sub>3</sub><br>Cr <sub>2</sub> O <sub>3</sub><br>FeO<br>MnO<br>NiO<br>MgO<br>CaO<br>BaO<br>Na <sub>2</sub> O<br>K <sub>2</sub> O<br>F<br>Cl<br>Subtotal <sup>b</sup><br>Si                                                 | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00<br>3.70<br>0.83<br>0.00<br>0.40<br>5.15<br>0.34<br>0.09<br>70.33<br>3.782                                                                                           | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04<br>19.43<br>1.42<br>0.00<br>0.69<br>0.14<br>0.19<br>0.07<br>70.26<br>3.472                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Flaky clay<br>35.69<br>0.00<br>4.56<br>0.02<br>3.15<br>0.00<br>0.01<br>17.05<br>1.41<br>0.04<br>0.93<br>0.16<br>0.42<br>0.09<br>63.52<br>3.541                                                                                                                                                 | Green         51.75         0.15         9.07         0.00         21.70         0.10         0.05         4.25         1.04         0.03         0.48         7.03         0.05         0.11         95.79         3.778                                                                                                                 | 52.12<br>0.04<br>7.72<br>0.01<br>5.49<br>0.02<br>0.01<br>18.92<br>0.40<br>0.02<br>1.20<br>3.43<br>0.47<br>0.02<br>89.87<br>3.691                                                                                  | Anygdule<br>45.24<br>0.06<br>5.26<br>0.00<br>3.95<br>0.04<br>0.01<br>21.34<br>1.91<br>0.00<br>0.33<br>0.30<br>0.40<br>0.06<br>78.88<br>3.598                                                                                                                                                  | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03<br>4.49<br>0.64<br>0.04<br>0.22<br>7.68<br>0.07<br>0.03<br>96.57<br>3.822                                                                         | 41.97<br>0.00<br>5.23<br>0.00<br>4.09<br>0.03<br>0.04<br>20.33<br>1.62<br>0.00<br>0.39<br>0.18<br>0.47<br>0.05<br>74.40<br>3.550                                                                                                   |
| Texture<br>$SiO_2$<br>$TiO_2$<br>$Al_2O_3$<br>$Cr_2O_3$<br>FeO<br>MnO<br>NiO<br>MgO<br>CaO<br>BaO<br>$Na_2O$<br>$K_2O$<br>F<br>Cl<br>$Subtotal^b$<br>Si<br>Ti                                                                                                                                    | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00<br>3.70<br>0.83<br>0.00<br>0.40<br>5.15<br>0.34<br>0.09<br>70.33<br>3.782<br>0.023                                                                                  | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04<br>19.43<br>1.42<br>0.00<br>0.69<br>0.14<br>0.19<br>0.07<br>70.26<br>3.472<br>0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Flaky clay       35.69       0.00       4.56       0.02       3.15       0.00       0.01       17.05       1.41       0.04       0.93       0.16       0.42       0.09       63.52       3.541       0.000                                                                                     | 51.75         0.15         9.07         0.00         21.70         0.10         0.05         4.25         1.04         0.03         0.48         7.03         0.05         0.11         95.79         3.778         0.008                                                                                                                 | $52.12 \\ 0.04 \\ 7.72 \\ 0.01 \\ 5.49 \\ 0.02 \\ 0.01 \\ 18.92 \\ 0.40 \\ 0.02 \\ 1.20 \\ 3.43 \\ 0.47 \\ 0.02 \\ 89.87 \\ 3.691 \\ 0.002$                                                                       | Anygdule<br>45.24<br>0.06<br>5.26<br>0.00<br>3.95<br>0.04<br>0.01<br>21.34<br>1.91<br>0.00<br>0.33<br>0.30<br>0.40<br>0.06<br>78.88<br>3.598<br>0.004                                                                                                                                         | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03<br>4.49<br>0.64<br>0.04<br>0.22<br>7.68<br>0.07<br>0.03<br>96.57<br>3.822<br>0.007                                                                | $\begin{array}{c} 41.97\\ 0.00\\ 5.23\\ 0.00\\ 4.09\\ 0.03\\ 0.04\\ 20.33\\ 1.62\\ 0.00\\ 0.39\\ 0.18\\ 0.47\\ 0.05\\ 74.40\\ 3.550\\ 0.000\\ \end{array}$                                                                         |
| Texture<br>$SiO_2$<br>$TiO_2$<br>$Al_2O_3$<br>$Cr_2O_3$<br>FeO<br>MnO<br>NiO<br>MgO<br>CaO<br>BaO<br>$Na_2O$<br>$K_2O$<br>F<br>Cl<br>$Subtotal^b$<br>Si<br>Ti<br>Al                                                                                                                              | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00<br>3.70<br>0.83<br>0.00<br>0.40<br>5.15<br>0.34<br>0.09<br>70.33<br>3.782<br>0.023<br>0.902                                                                         | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04<br>19.43<br>1.42<br>0.00<br>0.69<br>0.14<br>0.19<br>0.07<br>70.26<br>3.472<br>0.002<br>0.600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Flaky clay       35.69       0.00       4.56       0.02       3.15       0.00       0.01       17.05       1.41       0.04       0.93       0.16       0.42       0.09       63.52       3.541       0.000       0.533                                                                         | 51.75       0.15       9.07       0.00       21.70       0.10       0.05       4.25       1.04       0.03       0.48       7.03       0.05       0.11       95.79       3.778       0.008       0.780                                                                                                                                     | $52.12 \\ 0.04 \\ 7.72 \\ 0.01 \\ 5.49 \\ 0.02 \\ 0.01 \\ 18.92 \\ 0.40 \\ 0.02 \\ 1.20 \\ 3.43 \\ 0.47 \\ 0.02 \\ 89.87 \\ 3.691 \\ 0.002 \\ 0.644 $                                                             | Anygdule<br>45.24<br>0.06<br>5.26<br>0.00<br>3.95<br>0.04<br>0.01<br>21.34<br>1.91<br>0.00<br>0.33<br>0.30<br>0.40<br>0.06<br>78.88<br>3.598<br>0.004<br>0.493                                                                                                                                | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03<br>4.49<br>0.64<br>0.04<br>0.22<br>7.68<br>0.07<br>0.03<br>96.57<br>3.822<br>0.007<br>0.733                                                       | $\begin{array}{c} 41.97\\ 0.00\\ 5.23\\ 0.00\\ 4.09\\ 0.03\\ 0.04\\ 20.33\\ 1.62\\ 0.00\\ 0.39\\ 0.18\\ 0.47\\ 0.05\\ 74.40\\ 3.550\\ 0.000\\ 0.522\end{array}$                                                                    |
| Texture<br>$SiO_2$<br>$TiO_2$<br>$Al_2O_3$<br>$Cr_2O_3$<br>FeO<br>MnO<br>NiO<br>MgO<br>CaO<br>BaO<br>$Na_2O$<br>$K_2O$<br>F<br>Cl<br>$Subtotal^b$<br>Si<br>Ti<br>Al<br>Cr                                                                                                                        | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00<br>3.70<br>0.83<br>0.00<br>0.40<br>5.15<br>0.34<br>0.09<br>70.33<br>3.782<br>0.023<br>0.902<br>0.003                                                                | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04<br>19.43<br>1.42<br>0.00<br>0.69<br>0.14<br>0.19<br>0.07<br>70.26<br>3.472<br>0.002<br>0.600<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Flaky clay       35.69       0.00       4.56       0.02       3.15       0.00       0.11       17.05       1.41       0.04       0.93       0.16       0.42       0.09       63.52       3.541       0.000       0.533       0.001                                                             | 51.75       0.15       9.07       0.00       21.70       0.10       0.05       4.25       1.04       0.03       0.48       7.03       0.05       0.11       95.79       3.778       0.008       0.780       0.000                                                                                                                         | 52.12<br>0.04<br>7.72<br>0.01<br>5.49<br>0.02<br>0.01<br>18.92<br>0.40<br>0.02<br>1.20<br>3.43<br>0.47<br>0.02<br>89.87<br>3.691<br>0.002<br>0.644<br>0.001                                                       | Aniygdule<br>45.24<br>0.06<br>5.26<br>0.00<br>3.95<br>0.04<br>0.01<br>21.34<br>1.91<br>0.00<br>0.33<br>0.30<br>0.40<br>0.06<br>78.88<br>3.598<br>0.004<br>0.493<br>0.000                                                                                                                      | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03<br>4.49<br>0.64<br>0.04<br>0.22<br>7.68<br>0.07<br>0.03<br>96.57<br>3.822<br>0.007<br>0.733<br>0.002                                              | $\begin{array}{c} 41.97\\ 0.00\\ 5.23\\ 0.00\\ 4.09\\ 0.03\\ 0.04\\ 20.33\\ 1.62\\ 0.00\\ 0.39\\ 0.18\\ 0.47\\ 0.05\\ 74.40\\ 3.550\\ 0.000\\ 0.522\\ 0.000\\ \end{array}$                                                         |
| Texture<br>SiO <sub>2</sub><br>TiO <sub>2</sub><br>Al <sub>2</sub> O <sub>3</sub><br>Cr <sub>2</sub> O <sub>3</sub><br>FeO<br>MnO<br>NiO<br>MgO<br>CaO<br>BaO<br>Na <sub>2</sub> O<br>K <sub>2</sub> O<br>F<br>Cl<br>Subtotal <sup>b</sup><br>Si<br>Ti<br>Al<br>Cr<br>Fe                         | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00<br>3.70<br>0.83<br>0.00<br>0.40<br>5.15<br>0.34<br>0.09<br>70.33<br>3.782<br>0.023<br>0.902<br>0.003<br>0.991                                                       | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04<br>19.43<br>1.42<br>0.00<br>0.69<br>0.14<br>0.19<br>0.07<br>70.26<br>3.472<br>0.002<br>0.600<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000000                                                                                                                                                                                      | Flaky clay       35.69       0.00       4.56       0.02       3.15       0.00       0.11       17.05       1.41       0.04       0.93       0.16       0.42       0.09       63.52       3.541       0.000       0.533       0.001       0.261                                                 | Green         51.75         0.15         9.07         0.00         21.70         0.10         0.05         4.25         1.04         0.03         0.48         7.03         0.05         0.11         95.79         3.778         0.008         0.780         0.000         1.325                                                         | 52.12<br>0.04<br>7.72<br>0.01<br>5.49<br>0.02<br>0.01<br>18.92<br>0.40<br>0.02<br>1.20<br>3.43<br>0.47<br>0.02<br>89.87<br>3.691<br>0.002<br>0.644<br>0.001<br>0.325                                              | Aniygdule<br>45.24<br>0.06<br>5.26<br>0.00<br>3.95<br>0.04<br>0.01<br>21.34<br>1.91<br>0.00<br>0.33<br>0.30<br>0.40<br>0.06<br>78.88<br>3.598<br>0.004<br>0.493<br>0.000<br>0.263                                                                                                             | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03<br>4.49<br>0.64<br>0.04<br>0.22<br>7.68<br>0.07<br>0.03<br>96.57<br>3.822<br>0.007<br>0.733<br>0.002<br>1.320                                     | $\begin{array}{c} 41.97\\ 0.00\\ 5.23\\ 0.00\\ 4.09\\ 0.03\\ 0.04\\ 20.33\\ 1.62\\ 0.00\\ 0.39\\ 0.18\\ 0.47\\ 0.05\\ 74.40\\ 3.550\\ 0.000\\ 0.522\\ 0.000\\ 0.522\\ 0.000\\ 0.290 \end{array}$                                   |
| SiO2TiO2Al2O3Cr2O3FeOMnONiOMgOCaOBaONa2OK2OFClSubtotalbSiTiAlCrFeMn                                                                                                                                                                                                                              | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00<br>3.70<br>0.83<br>0.00<br>0.40<br>5.15<br>0.34<br>0.09<br>70.33<br>3.782<br>0.023<br>0.902<br>0.003<br>0.991<br>0.003                                              | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04<br>19.43<br>1.42<br>0.00<br>0.69<br>0.14<br>0.19<br>0.07<br>70.26<br>3.472<br>0.002<br>0.600<br>0.000<br>0.000<br>0.300<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Flaky clay       35.69       0.00       4.56       0.02       3.15       0.00       0.01       17.05       1.41       0.04       0.93       0.16       0.42       0.09       63.52       3.541       0.000       0.533       0.001       0.261       0.000                                     | Green         51.75         0.15         9.07         0.00         21.70         0.10         0.05         4.25         1.04         0.03         0.48         7.03         0.05         0.11         95.79         3.778         0.008         0.780         0.000         1.325         0.006                                           | 52.12<br>0.04<br>7.72<br>0.01<br>5.49<br>0.02<br>0.01<br>18.92<br>0.40<br>0.02<br>1.20<br>3.43<br>0.47<br>0.02<br>89.87<br>3.691<br>0.002<br>0.644<br>0.001<br>0.325<br>0.001                                     | Aniygdule<br>45.24<br>0.06<br>5.26<br>0.00<br>3.95<br>0.04<br>0.01<br>21.34<br>1.91<br>0.00<br>0.33<br>0.30<br>0.40<br>0.06<br>78.88<br>3.598<br>0.004<br>0.493<br>0.000<br>0.263<br>0.003                                                                                                    | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03<br>4.49<br>0.64<br>0.04<br>0.22<br>7.68<br>0.07<br>0.03<br>96.57<br>3.822<br>0.007<br>0.733<br>0.002<br>1.320<br>0.002                            | $\begin{array}{c} 41.97\\ 0.00\\ 5.23\\ 0.00\\ 4.09\\ 0.03\\ 0.04\\ 20.33\\ 1.62\\ 0.00\\ 0.39\\ 0.18\\ 0.47\\ 0.05\\ 74.40\\ 3.550\\ 0.000\\ 0.522\\ 0.000\\ 0.522\\ 0.000\\ 0.290\\ 0.002\\ \end{array}$                         |
| SiO2TiO2Al2O3Cr2O3FeOMnONiOMgOCaOBaONa2OK2OFClSubtotalbSiTiAlCrFeMnNi                                                                                                                                                                                                                            | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00<br>3.70<br>0.83<br>0.00<br>0.40<br>5.15<br>0.34<br>0.09<br>70.33<br>3.782<br>0.023<br>0.902<br>0.003<br>0.991<br>0.003<br>0.000                                     | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04<br>19.43<br>1.42<br>0.00<br>0.69<br>0.14<br>0.19<br>0.07<br>70.26<br>3.472<br>0.002<br>0.600<br>0.000<br>0.000<br>0.300<br>0.000<br>0.003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Flaky clay       35.69       0.00       4.56       0.02       3.15       0.00       0.01       17.05       1.41       0.04       0.93       0.16       0.42       0.09       63.52       3.541       0.000       0.533       0.001       0.261       0.000       0.001                         | Green         51.75         0.15         9.07         0.00         21.70         0.10         0.05         4.25         1.04         0.03         0.48         7.03         0.05         0.11         95.79         3.778         0.008         0.780         0.000         1.325         0.006         0.003                             | 52.12<br>0.04<br>7.72<br>0.01<br>5.49<br>0.02<br>0.01<br>18.92<br>0.40<br>0.02<br>1.20<br>3.43<br>0.47<br>0.02<br>89.87<br>3.691<br>0.002<br>0.644<br>0.001<br>0.325<br>0.001<br>0.001                            | Aniygdule       45.24       0.06       5.26       0.00       3.95       0.04       0.01       21.34       1.91       0.00       0.33       0.30       0.40       0.06       78.88       3.598       0.004       0.493       0.000       0.263       0.003       0.000                         | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03<br>4.49<br>0.64<br>0.04<br>0.22<br>7.68<br>0.07<br>0.03<br>96.57<br>3.822<br>0.007<br>0.733<br>0.002<br>1.320<br>0.002<br>0.001                   | $\begin{array}{c} 41.97\\ 0.00\\ 5.23\\ 0.00\\ 4.09\\ 0.03\\ 0.04\\ 20.33\\ 1.62\\ 0.00\\ 0.39\\ 0.18\\ 0.47\\ 0.05\\ 74.40\\ 3.550\\ 0.000\\ 0.522\\ 0.000\\ 0.522\\ 0.000\\ 0.290\\ 0.002\\ 0.003\\ \end{array}$                 |
| SiO2TiO2Al2O3Cr2O3FeOMnONiOMgOCaOBaONa2OK2OFClSubtotalbSiTiAlCrFeMnNiMg                                                                                                                                                                                                                          | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00<br>3.70<br>0.83<br>0.00<br>0.40<br>5.15<br>0.34<br>0.09<br>70.33<br>3.782<br>0.023<br>0.902<br>0.003<br>0.902<br>0.003<br>0.991<br>0.003<br>0.000<br>0.532          | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04<br>19.43<br>1.42<br>0.00<br>0.69<br>0.14<br>0.19<br>0.07<br>70.26<br>3.472<br>0.002<br>0.600<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.003<br>2.606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Flaky clay       35.69       0.00       4.56       0.02       3.15       0.00       0.01       17.05       1.41       0.04       0.93       0.16       0.42       0.09       63.52       3.541       0.000       0.533       0.001       0.261       0.000       0.001       2.523             | 51.75       0.15       9.07       0.00       21.70       0.10       0.05       4.25       1.04       0.03       0.48       7.03       0.05       0.11       95.79       3.778       0.008       0.780       0.000       1.325       0.006       0.003       0.463                                                                         | 52.12<br>0.04<br>7.72<br>0.01<br>5.49<br>0.02<br>0.01<br>18.92<br>0.40<br>0.02<br>1.20<br>3.43<br>0.47<br>0.02<br>89.87<br>3.691<br>0.002<br>0.644<br>0.001<br>0.325<br>0.001<br>0.001<br>1.997                   | Aniygdule       45.24       0.06       5.26       0.00       3.95       0.04       0.01       21.34       1.91       0.00       0.33       0.30       0.40       0.06       78.88       3.598       0.004       0.493       0.000       0.263       0.003       0.000       2.530             | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03<br>4.49<br>0.64<br>0.04<br>0.22<br>7.68<br>0.07<br>0.03<br>96.57<br>3.822<br>0.007<br>0.733<br>0.002<br>1.320<br>0.002<br>0.001<br>0.485          | $\begin{array}{c} 41.97\\ 0.00\\ 5.23\\ 0.00\\ 4.09\\ 0.03\\ 0.04\\ 20.33\\ 1.62\\ 0.00\\ 0.39\\ 0.18\\ 0.47\\ 0.05\\ 74.40\\ 3.550\\ 0.000\\ 0.522\\ 0.000\\ 0.522\\ 0.000\\ 0.290\\ 0.002\\ 0.003\\ 2.564 \end{array}$           |
| Texture<br>SiO <sub>2</sub><br>TiO <sub>2</sub><br>Al <sub>2</sub> O <sub>3</sub><br>Cr <sub>2</sub> O <sub>3</sub><br>FeO<br>MnO<br>NiO<br>MgO<br>CaO<br>BaO<br>Na <sub>2</sub> O<br>K <sub>2</sub> O<br>F<br>Cl<br>Subtotal <sup>b</sup><br>Si<br>Ti<br>Al<br>Cr<br>Fe<br>Mn<br>Ni<br>Mg<br>Ca | Surr. qtz<br>39.21<br>0.32<br>7.93<br>0.03<br>12.29<br>0.03<br>0.00<br>3.70<br>0.83<br>0.00<br>0.40<br>5.15<br>0.34<br>0.09<br>70.33<br>3.782<br>0.023<br>0.902<br>0.003<br>0.902<br>0.003<br>0.991<br>0.003<br>0.000<br>0.532<br>0.085 | Flaky clay<br>38.59<br>0.03<br>5.66<br>0.00<br>3.99<br>0.00<br>0.04<br>19.43<br>1.42<br>0.00<br>0.69<br>0.14<br>0.19<br>0.07<br>70.26<br>3.472<br>0.002<br>0.600<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.002<br>0.002<br>0.000<br>0.002<br>0.000<br>0.002<br>0.000<br>0.003<br>2.666<br>0.00<br>0.00<br>0.00<br>0.004<br>19.43<br>1.42<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.0000<br>0.00000<br>0.0000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.00000<br>0.000000<br>0.00000000 | Flaky clay       35.69       0.00       4.56       0.02       3.15       0.00       0.01       17.05       1.41       0.04       0.93       0.16       0.42       0.09       63.52       3.541       0.000       0.533       0.001       0.261       0.000       0.001       2.523       0.150 | Green         51.75         0.15         9.07         0.00         21.70         0.10         0.05         4.25         1.04         0.03         0.48         7.03         0.05         0.11         95.79         3.778         0.008         0.780         0.000         1.325         0.006         0.003         0.463         0.082 | 52.12<br>0.04<br>7.72<br>0.01<br>5.49<br>0.02<br>0.01<br>18.92<br>0.40<br>0.02<br>1.20<br>3.43<br>0.47<br>0.02<br>89.87<br>3.691<br>0.002<br>0.644<br>0.001<br>0.325<br>0.001<br>0.325<br>0.001<br>1.997<br>0.030 | Aniygdule       45.24       0.06       5.26       0.00       3.95       0.04       0.01       21.34       1.91       0.00       0.33       0.30       0.40       0.06       78.88       3.598       0.004       0.493       0.000       0.263       0.003       0.000       2.530       0.163 | 52.80<br>0.12<br>8.59<br>0.03<br>21.81<br>0.03<br>0.03<br>4.49<br>0.64<br>0.04<br>0.22<br>7.68<br>0.07<br>0.03<br>96.57<br>3.822<br>0.007<br>0.733<br>0.002<br>1.320<br>0.002<br>0.001<br>0.485<br>0.049 | $\begin{array}{c} 41.97\\ 0.00\\ 5.23\\ 0.00\\ 4.09\\ 0.03\\ 0.04\\ 20.33\\ 1.62\\ 0.00\\ 0.39\\ 0.18\\ 0.47\\ 0.05\\ 74.40\\ 3.550\\ 0.000\\ 0.522\\ 0.000\\ 0.522\\ 0.000\\ 0.290\\ 0.002\\ 0.003\\ 2.564\\ 0.147\\ \end{array}$ |

Table 3. Clay mineral chemistry.<sup>a</sup> Continued.

| Pt.         | 20        | 21         | 22         | 49         | 50       | 54       | 55         | 56       |
|-------------|-----------|------------|------------|------------|----------|----------|------------|----------|
| Unit VI     | 000 70    | 000 70     | 000 70     | 000 (2     | 000 (2   | 880 (2   | 000 (2     | 880 (3   |
| Yax-1       | 882.78    | 882.78     | 882.78     | 889.63     | 889.63   | 889.63   | 889.63     | 889.63   |
| Mineral     | Mont.     | Saponite   | Saponite   | Celadonite | Saponite | Saponite | Celadonite | Saponite |
| Texture     | Surr. qtz | Flaky clay | Flaky clay | Green      |          | Amygdule | Green      |          |
| Na          | 0.076     | 0.121      | 0.179      | 0.067      | 0.165    | 0.051    | 0.031      | 0.064    |
| Κ           | 0.634     | 0.016      | 0.020      | 0.655      | 0.310    | 0.030    | 0.710      | 0.019    |
| Al(IV)      | 0.195     | 0.526      | 0.459      | 0.214      | 0.308    | 0.398    | 0.171      | 0.450    |
| Al(VI)      | 0.707     | 0.074      | 0.075      | 0.566      | 0.337    | 0.095    | 0.562      | 0.072    |
| Mg + Fe     | 1.526     | 2.909      | 2.784      | 1.796      | 2.323    | 2.796    | 1.808      | 2.859    |
| Ca + K + Na | 0.795     | 0.273      | 0.350      | 0.804      | 0.506    | 0.244    | 0.791      | 0.230    |

Table 3. Clay mineral chemistry.<sup>a</sup> Continued.

<sup>a</sup>Mont = Montmorillonite: (Na, Ca)<sub>0.3</sub>(Al, Mg)<sub>2</sub>Si<sub>4</sub>O<sub>10</sub>(OH)<sub>2</sub>.nH<sub>2</sub>O; Saponite: (Ca/2, Na)<sub>0.3</sub>(Mg, Fe<sup>2+</sup>)<sub>3</sub>(Si, Al)<sub>4</sub>O<sub>10</sub>(OH)<sub>2</sub>.4H<sub>2</sub>O; montmorillonite is very finegrained and grey or colorless lining amygdules, shards, and veins; saponite is coarser and bladed, forming thick, brownish linings around shards, amygdules, and veins; celadonite is greenish-brown.

<sup>b</sup>Subtotal not including H<sub>2</sub>O; formula calculation based on 11 oxygens (water-free).

through mineral chemistry (Table 3, Fig. 9) typically replace clinopyroxene in melt fragments throughout the fragmental impactite sequence. They also line and fill, amygdales and veins and replace the matrix. Mg-rich saponite is brownish and fibrous, while the K-montmorillonite is generally clear, fine-grained, and concentrically zoned within amygdales. Compositions of the clays are intermediate between the two end members saponite and montmorillonite, with the Yax-1 montmorillonite containing some Mg and the saponite containing some Al<sub>2</sub>O<sub>3</sub> (Table 3). Both minerals are elevated in potassium (Fig. 9). Characteristic bright green celadonite is abundant as a secondary phase in veins and amydales and fills open spaces throughout the impactite sequence. Veins of celadonite also crosscut the strongly magnetic mafic basement clasts that are found throughout the suevite in Yax-1 (889.63 m) (see Pilkington et al. 2004). Although not exclusive, Mg-saponite dominates the upper 40 m of the impactites, while K-montmorillonite is abundant in the lower ~60 m (Fig. 2).

Chlorite, which is optically and chemically distinctive from the saponite-montmorillonite-celadonite clay minerals, was not identified by mineral chemistry or petrographically in 25 thin sections nor by X-ray diffraction of 10 samples through the impactite sequence (Fig. 2). This is in contrast to a report by Zürcher and Kring (2003) based solely on mineral chemistry and petrography. Neither is there evidence of clay replacing chlorite or interstratified clay-chlorite minerals. Trace chlorite was identified in a small basement fragment of sericite-feldspar schist and, clearly, is not part of the alteration assemblage. Chlorite is chemically quite different from the composition of the prevalent Chicxulub clay minerals, with chlorite being much more Al- and Fe-rich and Si- and K-poor relative to the comparatively Si-, Mg-, and K-rich clays found in all of the rocks examined in Yax-1.

Chalcedony occurs within the upper reworked units (806.41, 807.99, and 818.05), with a light green, amorphous mineral with an intense blue fluorescence (Fig. 8d). These

amorphous minerals line amygdales, some of which were infilled earlier with fine euhedral K-feldspar.

K-feldspar occurs as euhedral rhomb shaped crystals lining voids, occurring as replacement alteration haloes on veins commonly associated with Mg-saponite and fine magnetite in the matrix (Fig. 4b). K-feldspar-magnetite replacement haloes on veins are found near the upper and lower contacts of the in situ brecciated melt, unit 5 (861 to 885 m) (Fig. 2). Trace amounts of coarse end member albite formed later in veins, voids, and within porous melt fragments (Fig. 4b, 8b, and 8c).

Trace amounts of sulfide are present in the impactite sequence. Pyrite, chalcopyrite, low-iron sphalerite and rare galena were observed. (Co-Ni) pyrite is associated with chalcopyrite near the base of the impactite sequence (894.88). Fine,  $<50 \mu m$  grains are cored by sphalerite and rimmed with chalcopyrite dusted with very fine ( $<5 \mu m$ ) galena.

The last mineral phase to form was secondary calcite. It replaces earlier dolomite in the impact breccia and pseudomorphs "glass" shards. Calcite locally forms the matrix to altered melt fragments and fills amygdales, some of which are already lined with K-feldspar or clay minerals and fractures (Fig. 8e). Earlier-formed dolomite rhombs in the secondary carbonate matrix of the impactite are overgrown by late calcite. Calcite also occurs in unit 1 (806.41) as spherical grains, possibly droplets and as fragments in silicate glass, which is presently altered to K-montmorillonite (Fig. 8f). Secondary calcite veining is most abundant in units 1 to 3 and least common in the in situ-brecciated silicate melt rock of unit 5.

#### Geochemistry

The geochemistry of altered melt in units 3 and 6 are compared with the least-altered andesitic composition of unit 5 in Yax-1 as well as melt compositions from Y-6 and C-1 (Figs. 5 and 6). The unit 6 suevite has significantly elevated

| Table 4.      | Sulfide n  | nineral che | mistry fro | om the bas | al Tertiary | / rocks, Ya | 1x-1. <sup>a</sup> |                          |           |           |           |           |             |            |           |
|---------------|------------|-------------|------------|------------|-------------|-------------|--------------------|--------------------------|-----------|-----------|-----------|-----------|-------------|------------|-----------|
| Depth         | 770.43     | 770.43      | 770.43     | 770.43     | 770.43      | 772.46      | 772.46             | 783.65                   | 783.65    | 783.65    | 785.64    | 785.64    | 785.64      | 787.85     | 787.85    |
| Mineral       | Sphalerite | Marcasite   | Marcasite  | Marcasite  | Marcasite   | Marcasite   | Marcasite          | Marcasite                | Marcasite | Marcasite | Marcasite | Marcasite | Marcasite   | Sphalerite | Marcasite |
|               | Tiny       |             |            |            |             |             |                    | Lace-like<br>intergrowth |           |           |           | Coarse,   |             |            |           |
|               | crystal in |             |            | Fine gr.   |             | Pseudo-     | Pseudo-            | W.                       |           | Fortress  | Coarse,   | euh. X,   | Coarse,     | Tiny incl. | Blocky,   |
| Descrip.      | py         | Bladed      | Massive    | spongy     | Edge        | cubic xx    | cubic xx           | carbonate                |           | shaped    | euh. X    | core      | euh. X, rim | in py      | euh.      |
| >             | 0.04       | 0.00        | 0.00       | 0.00       | 0.00        | 0.00        | 0.02               | 0.01                     | 0.02      | 0.01      | 0.02      | 0.01      | 0.02        | 0.01       | 0.02      |
| Mn            | 0.02       | 0.00        | 0.02       | 0.05       | 0.00        | 0.00        | 0.01               | 0.01                     | 0.02      | 0.00      | 0.01      | 0.01      | 0.00        | 0.03       | 0.02      |
| Fe            | 3.09       | 46.95       | 47.28      | 47.48      | 47.77       | 47.57       | 47.68              | 47.16                    | 47.47     | 47.84     | 47.10     | 47.31     | 47.05       | 2.55       | 46.56     |
| Ni            | 0.02       | 0.01        | 0.01       | 0.01       | 0.02        | 0.00        | 0.01               | 0.03                     | 0.02      | 0.01      | 0.12      | 0.00      | 0.02        | 0.01       | 0.01      |
| Cu            | 1.06       | 0.00        | 0.02       | 0.01       | 0.03        | 0.00        | 0.05               | 0.05                     | 0.00      | 0.02      | 0.06      | 0.02      | 0.02        | 0.35       | 0.01      |
| Zn            | 65.45      | 0.00        | 0.02       | 0.02       | 0.06        | 0.01        | 0.01               | 0.02                     | 0.00      | 0.03      | 0.04      | 0.00      | 0.00        | 67.34      | 0.00      |
| Cd            | 1.39       | 0.02        | 0.00       | 0.05       | 0.05        | 0.07        | 0.00               | 0.00                     | 0.04      | 0.04      | 0.01      | 0.02      | 0.04        | 0.22       | 0.00      |
| In            | 0.00       | 0.03        | 0.01       | 0.00       | 0.00        | 0.01        | 0.00               | 0.00                     | 0.02      | 0.01      | 0.00      | 0.01      | 0.03        | 0.00       | 0.00      |
| Ga            | 1.08       | 0.03        | 0.00       | 0.00       | 0.00        | 0.00        | 0.00               | 0.00                     | 0.00      | 0.01      | 0.00      | 0.00      | 0.03        | 0.47       | 0.02      |
| Sn            | 0.22       | 0.03        | 0.01       | 0.00       | 0.01        | 0.00        | 0.00               | 0.00                     | 0.01      | 0.00      | 0.01      | 0.01      | 0.00        | 0.23       | 0.00      |
| Ag            | 0.03       | 0.07        | 0.00       | 0.06       | 0.02        | 0.00        | 0.00               | 0.00                     | 0.01      | 0.01      | 0.06      | 0.06      | 0.02        | 0.00       | 0.00      |
| Au            | 0.00       | 0.04        | 0.09       | 0.00       | 0.07        | 0.11        | 0.00               | 0.00                     | 0.03      | 0.00      | 0.00      | 0.05      | 0.00        | 0.00       | 0.13      |
| Hg            | 0.00       | 0.08        | 0.06       | 0.00       | 0.01        | 0.08        | 0.10               | 0.01                     | 0.07      | 0.02      | 0.10      | 0.01      | 0.00        | 0.01       | 0.07      |
| Bi            | 0.00       | 0.01        | 0.00       | 0.00       | 0.09        | 0.03        | 0.02               | 0.06                     | 0.00      | 0.00      | 0.05      | 0.00      | 0.02        | 0.00       | 0.00      |
| Te            | 0.00       | 0.00        | 0.03       | 0.00       | 0.05        | 0.00        | 0.05               | 0.00                     | 0.00      | 0.00      | 0.02      | 0.00      | 0.00        | 0.01       | 0.00      |
| $\mathbf{Sb}$ | 0.00       | 0.02        | 0.00       | 0.01       | 0.00        | 0.00        | 0.00               | 0.00                     | 0.00      | 0.03      | 0.00      | 0.01      | 0.00        | 0.01       | 0.02      |
| $\mathbf{As}$ | 0.01       | 0.00        | 0.00       | 0.01       | 0.00        | 0.00        | 0.00               | 0.02                     | 0.00      | 0.00      | 0.01      | 0.03      | 0.02        | 0.06       | 0.00      |
| Se            | 0.00       | 0.00        | 0.00       | 0.00       | 0.00        | 0.01        | 0.02               | 0.04                     | 0.00      | 0.02      | 0.00      | 0.02      | 0.00        | 0.01       | 0.00      |
| s             | 31.97      | 53.39       | 53.74      | 53.36      | 53.49       | 53.62       | 53.29              | 53.44                    | 53.89     | 53.72     | 53.91     | 54.01     | 53.67       | 32.65      | 54.08     |
| Total         | 104.37     | 100.67      | 101.27     | 101.04     | 101.67      | 101.50      | 101.26             | 100.84                   | 101.63    | 101.77    | 101.50    | 101.56    | 100.93      | 103.94     | 100.94    |
| >             | 0.000      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000       | 0.000              | 0.000                    | 0.000     | 0.000     | 0.000     | 0.000     | 0.000       | 0.000      | 0.000     |
| Mn            | 0.000      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000       | 0.000              | 0.000                    | 0.000     | 0.000     | 0.000     | 0.000     | 0.000       | 0.000      | 0.000     |
| Fe            | 0.026      | 0.335       | 0.335      | 0.338      | 0.338       | 0.337       | 0.339              | 0.336                    | 0.335     | 0.338     | 0.333     | 0.334     | 0.334       | 0.022      | 0.330     |
| Ni            | 0.000      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000       | 0.000              | 0.000                    | 0.000     | 0.000     | 0.001     | 0.000     | 0.000       | 0.000      | 0.000     |
| Cu            | 0.008      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000       | 0.000              | 0.000                    | 0.000     | 0.000     | 0.000     | 0.000     | 0.000       | 0.003      | 0.000     |
| Zn            | 0.476      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000       | 0.000              | 0.000                    | 0.000     | 0.000     | 0.000     | 0.000     | 0.000       | 0.488      | 0.000     |
| Cd            | 0.006      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000       | 0.000              | 0.000                    | 0.000     | 0.000     | 0.000     | 0.000     | 0.000       | 0.001      | 0.000     |
| ц             | 0.000      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000       | 0.000              | 0.000                    | 0.000     | 0.000     | 0.000     | 0.000     | 0.000       | 0.000      | 0.000     |
| Ca            | 0.00/      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000       | 0.000              | 0.000                    | 0.000     | 0.000     | 0.000     | 0.000     | 0.000       | 0.003      | 0.000     |
| Sn            | 0.001      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000       | 0.000              | 0.000                    | 0.000     | 0.000     | 0.000     | 0.000     | 0.000       | 0.001      | 0.000     |
| Ag            | 0.000      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000       | 0.000              | 0.000                    | 0.000     | 0.000     | 0.000     | 0.000     | 0.000       | 0.000      | 0.000     |
| Au            | 0.000      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000       | 0.000              | 0.000                    | 0.000     | 0.000     | 0.000     | 0.000     | 0.000       | 0.000      | 0.000     |
| Hg            | 0.000      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000       | 0.000              | 0.000                    | 0.000     | 0.000     | 0.000     | 0.000     | 0.000       | 0.000      | 0.000     |
| Bi            | 0.000      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000       | 0.000              | 0.000                    | 0.000     | 0.000     | 0.000     | 0.000     | 0.000       | 0.000      | 0.000     |
| Te            | 0.000      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000       | 0.000              | 0.000                    | 0.000     | 0.000     | 0.000     | 0.000     | 0.000       | 0.000      | 0.000     |
| $\mathbf{Sb}$ | 0.000      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000       | 0.000              | 0.000                    | 0.000     | 0.000     | 0.000     | 0.000     | 0.000       | 0.000      | 0.000     |
| $\mathbf{As}$ | 0.000      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000       | 0.000              | 0.000                    | 0.000     | 0.000     | 0.000     | 0.000     | 0.000       | 0.000      | 0.000     |
| Se            | 0.000      | 0.000       | 0.000      | 0.000      | 0.000       | 0.000       | 0.000              | 0.000                    | 0.000     | 0.000     | 0.000     | 0.000     | 0.000       | 0.000      | 0.000     |
| S             | 0.474      | 0.664       | 0.664      | 0.661      | 0.660       | 0.662       | 0.660              | 0.663                    | 0.663     | 0.661     | 0.665     | 0.665     | 0.665       | 0.482      | 0.669     |
| Total         | 1.000      | 1.000       | 1.000      | 1.000      | 1.000       | 1.000       | 1.000              | 1.000                    | 1.000     | 1.000     | 1.000     | 1.000     | 1.000       | 1.000      | 1.000     |

| Table 4.               | Sulfide m     | vineral che    | mistry fro | m the base | al Tertiary | rocks, Ya | x-1. <sup>a</sup> Coni | tinued.   |           |           |            |            |            |            |            |
|------------------------|---------------|----------------|------------|------------|-------------|-----------|------------------------|-----------|-----------|-----------|------------|------------|------------|------------|------------|
| Depth                  | 787.85        | 787.85         | 787.85     | 787.85     | 787.85      | 788.64    | 788.64                 | 788.64    | 788.64    | 788.64    | 789.61     | 789.61     | 789.61     | 789.61     | 789.61     |
| Mineral                | Marcasite     | Marcasite      | Marcasite  | Marcasite  | Marcasite   | Marcasite | Marcasite              | Marcasite | Marcasite | Marcasite | Pyrrhotite | Pyrrhotite | Pyrrhotite | Pyrrhotite | Pyrrhotite |
|                        | Blocky,       | Blocky,        | Spongy     |            |             |           |                        |           |           |           | Euhedral   | Bladed,    | Bladed,    |            | Bladed,    |
| Descrip.               | core          | rim            | core       | Solid rim  | Massive     | Bladed    | Bladed                 | Massive   | Massive   | Massive   | bladed     | rim        | core       | Bladed     | rim        |
| Λ                      | 0.00          | 0.01           | 0.01       | 0.00       | 0.00        | 0.02      | 0.01                   | 0.02      | 0.00      | 0.01      | 0.01       | 0.01       | 0.01       | 0.01       | 0.01       |
| Mn                     | 0.01          | 0.00           | 0.02       | 0.01       | 0.00        | 0.00      | 0.00                   | 0.00      | 0.00      | 0.00      | 0.00       | 0.00       | 0.01       | 0.03       | 0.00       |
| Fe                     | 48.52         | 47.70          | 46.24      | 47.83      | 47.89       | 47.90     | 47.65                  | 48.25     | 47.72     | 47.42     | 60.42      | 60.42      | 60.72      | 60.60      | 60.41      |
| Ņ                      | 0.03          | 0.00           | 0.00       | 0.01       | 0.01        | 0.00      | 0.00                   | 0.00      | 0.00      | 0.00      | 0.02       | 0.05       | 0.05       | 0.01       | 0.23       |
| Cu                     | 0.04          | 0.00           | 0.03       | 0.04       | 0.00        | 0.02      | 0.02                   | 0.00      | 0.02      | 0.00      | 0.00       | 0.00       | 0.09       | 0.00       | 0.00       |
| Zn                     | 0.02          | 0.04           | 0.04       | 0.00       | 0.00        | 0.00      | 0.00                   | 0.01      | 0.03      | 0.00      | 0.04       | 0.05       | 0.03       | 0.03       | 0.02       |
| Cd                     | 0.00          | 0.04           | 0.01       | 0.04       | 0.00        | 0.00      | 0.02                   | 0.03      | 0.00      | 0.00      | 0.00       | 0.01       | 0.00       | 0.00       | 0.02       |
| ln                     | 0.03          | 0.00           | 0.03       | 0.00       | 0.02        | 0.00      | 0.02                   | 0.02      | 0.00      | 0.00      | 0.03       | 0.00       | 0.00       | 0.00       | 0.00       |
| Ga                     | 0.02          | 0.00           | 0.00       | 0.00       | 0.01        | 0.00      | 0.01                   | 0.00      | 0.00      | 0.01      | 0.04       | 0.02       | 0.00       | 0.00       | 0.00       |
| Sn                     | 0.02          | 0.00           | 0.00       | 0.02       | 0.00        | 0.00      | 0.01                   | 0.00      | 0.02      | 0.00      | 0.05       | 0.00       | 0.00       | 0.00       | 0.01       |
| Ag                     | 0.00          | 0.00           | 0.00       | 0.01       | 0.00        | 0.07      | 0.00                   | 0.05      | 0.03      | 0.02      | 0.00       | 0.00       | 0.04       | 0.00       | 0.00       |
| Au                     | 0.01          | 0.09           | 0.00       | 0.00       | 0.00        | 0.00      | 0.00                   | 0.05      | 0.01      | 0.04      | 0.00       | 0.00       | 0.12       | 0.00       | 0.00       |
| Hg                     | 0.06          | 0.00           | 0.03       | 0.00       | 0.00        | 0.00      | 0.00                   | 0.00      | 0.00      | 0.12      | 0.00       | 0.00       | 0.04       | 0.12       | 0.02       |
| , Bi                   | 0.04          | 0.00           | 0.01       | 0.06       | 0.03        | 0.00      | 0.04                   | 0.00      | 0.00      | 0.00      | 0.01       | 0.00       | 0.00       | 0.00       | 0.00       |
| Te                     | 0.00          | 0.02           | 0.00       | 0.00       | 0.00        | 0.02      | 0.00                   | 0.01      | 0.00      | 0.00      | 0.08       | 0.00       | 0.01       | 0.01       | 0.00       |
| Sb                     | 0,00          | 0.00           | 0.00       | 0.02       | 0.00        | 0.01      | 0.01                   | 0.00      | 0.00      | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | 0.01       |
| As                     | 00'0          | 0.02           | 0.00       | 0.02       | 0.00        | 0.00      | 0.01                   | 0.01      | 0.00      | 0.02      | 0.00       | 0.07       | 0.05       | 0.01       | 0.00       |
| Se                     | 0.00          | 0.00           | 0.03       | 0.00       | 0.02        | 0.00      | 0.00                   | 0.00      | 0.00      | 0.00      | 0.00       | 0.00       | 0.00       | 0.00       | 0.00       |
| S                      | 54.60         | 54.79          | 52.62      | 54.55      | 54.53       | 54.46     | 54.47                  | 54.43     | 54.42     | 54.03     | 39.67      | 40.16      | 40.44      | 39.58      | 40.08      |
| Total                  | 103.41        | 102.71         | 99.07      | 102.62     | 102.50      | 102.49    | 102.27                 | 102.90    | 102.26    | 101.68    | 100.36     | 100.77     | 101.62     | 100.39     | 100.82     |
| >                      | 0.000         | 0.000          | 0.000      | 0.000      | 0.000       | 0.000     | 0.000                  | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Mn                     | 0.000         | 0.000          | 0.000      | 0.000      | 0.000       | 0.000     | 0.000                  | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Fe                     | 0.337         | 0.333          | 0.335      | 0.335      | 0.335       | 0.335     | 0.334                  | 0.337     | 0.335     | 0.335     | 0.466      | 0.463      | 0.462      | 0.467      | 0.463      |
| Ni                     | 0.000         | 0.000          | 0.000      | 0.000      | 0.000       | 0.000     | 0.000                  | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.000      | 0.002      |
| Cu                     | 0.000         | 0.000          | 0.000      | 0.000      | 0.000       | 0.000     | 0.000                  | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.001      | 0.000      | 0.000      |
| Zn                     | 0.000         | 0.000          | 0.000      | 0.000      | 0.000       | 0.000     | 0.000                  | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Cd                     | 0.000         | 0.000          | 0.000      | 0.000      | 0.000       | 0.000     | 0.000                  | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| In                     | 0.000         | 0.000          | 0.000      | 0.000      | 0.000       | 0.000     | 0.000                  | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Ga                     | 0.000         | 0.000          | 0.000      | 0.000      | 0.000       | 0.000     | 0.000                  | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Sn                     | 0.000         | 0.000          | 0.000      | 0.000      | 0.000       | 0.000     | 0.000                  | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Ag                     | 0.000         | 0.000          | 0.000      | 0.000      | 0.000       | 0.000     | 0.000                  | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Au                     | 0.000         | 0.000          | 0.000      | 0.000      | 0.000       | 0.000     | 0.000                  | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Hg                     | 0.000         | 0.000          | 0.000      | 0.000      | 0.000       | 0.000     | 0.000                  | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Bi                     | 0.000         | 0.000          | 0.000      | 0.000      | 0.000       | 0.000     | 0.000                  | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Te                     | 0.000         | 0.000          | 0.000      | 0.000      | 0.000       | 0.000     | 0.000                  | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| $\mathbf{Sb}$          | 0.000         | 0.000          | 0.000      | 0.000      | 0.000       | 0.000     | 0.000                  | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| $\mathbf{As}$          | 0.000         | 0.000          | 0.000      | 0.000      | 0.000       | 0.000     | 0.000                  | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| Se                     | 0.000         | 0.000          | 0.000      | 0.000      | 0.000       | 0.000     | 0.000                  | 0.000     | 0.000     | 0.000     | 0.000      | 0.000      | 0.000      | 0.000      | 0.000      |
| s                      | 0.661         | 0.666          | 0.664      | 0.665      | 0.665       | 0.664     | 0.665                  | 0.662     | 0.665     | 0.665     | 0.533      | 0.536      | 0.536      | 0.532      | 0.535      |
| Total                  | 1.000         | 1.000          | 1.000      | 1.000      | 1.000       | 1.000     | 1.000                  | 1.000     | 1.000     | 1.000     | 1.000      | 1.000      | 1.000      | 1.000      | 1.000      |
| <sup>a</sup> Co and Pt | b were analyz | ted but not de | tected.    |            |             |           |                        |           |           |           |            |            |            |            |            |



Fig. 7. Upper continental crust-normalized REE patterns for the silicate melt in the annular trough at Yax-1.

 $K_2O$  contents reaching up to 7 wt%, and some samples of unit 3 show only a minor addition of  $K_2O$  (Fig. 6). The suevite (unit 6) composition at the base of the sequence trends into the trachyandesite fields due to this addition of  $K_2O$  (Fig 5 and 6; Table 1). All of the suevite and melt

samples in Yax-1 show elevated MgO relative to that in Y-6 and C-1 (Fig. 6).

## MINERALIZATION IN THE LOWER TERTIARY SEQUENCE

Above the impactite sequence at 894.88 m are coarse 1– 3 cm sulfide-smectite aggregates in the Tertiary limestone cover rocks (Fig. 10). They are composed of bladed to blocky pseudo-cubic marcasite with minor anhedral pyrrhotite, pyrite, and trace sphalerite. Strongly anisotropic, skeletal, sievetextured marcasite is overgrown by blocky pseudo-cubic, euhedral marcasite in a calcite matrix (Fig. 11). In sample 789.61, the Fe-sulfide phase is pyrrhotite. Trace amounts of sphalerite occur within marcasite as fine <5  $\mu$ m grains with elevated Ga and Cd. The mineral chemistry indicates elevated trace element values in Ag, Te, Au, Ni, and Bi, irrespective of the marcasite crystal habit (Table 4; Fig. 12).

#### DISCUSSION

The least-altered andesitic composition of the melt in Yax-1 differs significantly from melt compositions in Y-6 and C-1 which are located closer to the center of the crater (Figs. 1 and 6). Yax-1 melt composition shows elevated MgO, while the Y-6 and C-1 silicate melt has elevated SiO<sub>2</sub>, which may reflect either dilution due to Mg metasomatism reflected by the ubiquitous smectite in Yax-1 or may reflect compositional heterogeneities in the impact melt (Fig. 6). Schuraytz and others (1994) also show variation in melt geochemistry from two holes (Y-6 and C-1) closer to the center of the crater, attributing differences to variations in local target rocks and depth of melting. Studies of the Y-6 core, also drilled in the annular trough ~20 km north of Yax-1, suggest that the silicate melt was not appreciably hydrothermally altered (Kring and Boynton 1992), but the chemistry indicates elevated SiO<sub>2</sub> and Na<sub>2</sub>O relative to the composition of silicate melt in Yax-1.

In modern and ancient seafloor hydrothermal systems (Galley 1993; Alt 1995; Hannington et al. 1995), the addition of Mg and K (Mg-smectite and K-feldspar) from seawater sources occurs in relatively cool recharge zones (T = 0-150 °C). Metasomatic reactions between down-welling seawater and the volcanic pile occur at progressively higher temperatures with depth, producing stacked extensive semiconformable alteration zones, the strike length of which is limited to strata overlying the heat source to the sub-seafloor convective system (Galley 1993). Zonation is characterized at shallow levels by Mg-K-enriched clay-zeolite metasomatic facies (50-140 °C), followed downward by Na-Mg enrichment at moderate temperatures (140-300 °C) reflected in chloritealbite alteration  $\pm$  mixed layered chlorite-smectite to chlorite and high temperature, Na-Ca-Fe-enriched greenschistamphibolite metasomatic facies (>300 °C) at depths proximal



Fig. 8. Representative alteration types in the Yax-1 drill core, Chicxulub: a) bright green celadonite alteration of the reworked suevite, unit 1, 806.41m; b) dark brown K-feldspar, Fe-oxide veins near the top of unit 5, 862.25 m. The box shows the location of the SEM photo in (c); c) potassic alteration haloes on albite-Fe-oxide veins cutting unit 5, 862.25 m. Location of (b) shown in (c); d) green amorphous mineral (opal?) concentrically lining voids now filled with euhedral K-feldspar rhombs, 807.99 m, unit 1; e) vesicular shard replaced by coarse secondary calcite in a matrix of fine granular carbonate forming the matrix, 832.54 m; f) calcite fragments and droplets in altered silicate glass, K-montmorillonite, unit 1, 806.41 m.

to the heat source. The trend to lower greenschist facies minerals is reflected by the appearance of mixed layer chloritesmectite, chlorite, actinolite replacing clinopyroxene, and albite partially replacing plagioclase, but these assemblages are not present in Yax-1. High temperature reaction zones generally contain the assemblage actinolite-hornblendeclinopyroxene and epidote. In the large Sudbury impact crater, regional, vertically stacked alteration zones occur with increasing depth and paleo-temperatures (up to 250–300 °C) in the impact crater fill sequence (Ames et al. 1998, 2002b).



Fig. 9. Bivariate plot of the clay mineral compositions in Yax-1. The solid symbols are those from this study; the open symbols are for nontronite, saponite, and montmorillonite from Anthony et al. (1990); the celadonite compositions are from Pflumio (1991).



Fig. 10. Representative sulfide aggregates in the lower 25 m of the Tertiary sequence, (770.43–789.61 m) Chicxulub, Yax-1: a) euhedral marcasite crystals in Tertiary carbonates, 770.43 m; b) photomicrographs of massive marcasite rimmed with a clay-rich alteration halo, 785.64 m; c) 787.85 m; d) Bladed radiating pyrrhotite in Tertiary carbonate matrix, 789.61 m.



Fig. 11. Textural features of marcasite in the lower Tertiary carbonate sequence, Yax-1: a) optically strongly zoned heterogeneous bladed marcasite, 770.43 m; b) pseudocubic marcasite crystals, 772.48 m; c) early skeletal marcasite intergrown with carbonate (dark), 783.65 m; d) pseudocubic marcasite overgrowth on earlier skeletal marcasite, 783.65 m.

Alteration of the Yax-1 core characterized by Mgsaponite, K-montmorillonite, celadonite, Fe-oxides, and Kfeldspar is typical of low-temperature (0-150 °C) seawater recharge zones. Alkali fixation from seawater resides in Kfeldspar as well as the smectites filling fractures and vesicles in the rocks (Fig. 9). The mean FeO/FeO + MgO (wt%) content of saponite from Yax-1 is 0.21, similar to saponites affected by open, oxidizing alteration in the crust (0.3) in contrast to those saponites (~0.48) formed due to more restricted low temperature alteration (Alt 1995). Oxidizing conditions are also reflected by the abundance of Fe-oxides (Pilkington et al. 2004) and the paucity of Cu-Fe-Zn-Pb sulfide minerals within the Yax-1 impactites. Mg fixation in the Yax-1 impactites is evident by the dominant clay Mgsaponite, which, in the absence of mixed layered chloritesmectite, indicates low temperatures of formation. Zeolite minerals and chlorite were not identified in the Yax-1 core, indicating that hydrothermal temperatures >150 °C were not attained at this site in the annular trough environment. Alteration of mafic glass results in quartz-saturated fluids (Berndt et al. 1989) that precipitated in vesicles and open spaces in the Yax-1 impactite. The secondary minerals Feoxides, celadonite, Mg-saponite, K-montmorillonite, Kfeldspar formed during low temperature oxidation and fixation of alkalis and Mg due to cold seawater infiltration into the highly permeable impact sequence.

# Crater Floor Hydrothermal Vents and Massive Sulfide Deposits?

The lack of significant hydrothermal alteration of the impactites in the Yax-1 core is consistent with the core's



Fig. 12. Trace element compositions of marcasite with depth, Yax-1.

location outside of the concentric magnetic zones attributed to hydrothermal alteration by Pilkington and Hildebrand (2000). If a robust post-impact hydrothermal system developed in the Chicxulub crater-fill closer to the central basin, with its associated melt sheet and central uplift, hydrothermal vents may have developed on the crater floor as they did at Sudbury (e.g. Rousell 1984; Ames et al. 2000, 2002a). Indeed, trace element analyses from the Yax-1 core do indicate some hydrothermal discharge into the Tertiary basin at Chicxulub. Elevated Ag, Te, Ni, Au, and Bi in marcasite within the basal Tertiary carbonate rocks suggest hydrothermal enrichment from a mafic source. Magnetic mafic basement fragments in Yax-1 (Pilkington et al. 2004) and isotopic data from Y-6 and C-1 impact melts (Kettrup et al. 2000) support a significant mafic component to the basement and, consequently, to the impact melt that was generated. This has important implications for potential economic hydrothermal sulfide deposits in the Chicxulub crater. The robust paleohydrothermal system at the large Sudbury crater produced Zn-Pb-Cu-Ag-Au massive sulfide deposits and exhalites. The massive sulfide deposits indicate focused hydrothermal venting at 200-250 °C, while the exhalites that are in part carbonate-facies iron formation indicate lower temperature but extensive, diffuse low temperature venting over large areas (Ames et al. 1998, 2000, 2002a). The sulfide deposits of the Sudbury crater floor vent systems are a modest economic resource at 6.4 Mt (Ames et al 2002b), however the magmatic Ni-Cu and magmatic-hydrothermal Cu-PGE deposits that developed at the base of the Sudbury melt sheet comprise the largest mineral deposits in the world (e.g., Naldrett 2003).

#### CONCLUSIONS

The calc-alkalic basaltic andesite composition of the melt component in the Yax-1 impactites has been strongly affected by low temperature alkali-magnesium fixation and oxidation. We have demonstrated that the alteration mineral assemblages identified through petrography, X-ray diffraction, and mineral chemistry are the result of low temperature (<150 °C) seawater interaction with andesitic glass in the suevite contained in the outer annular trough at Chicxulub. This seawater recharge zone may be feeding a higher temperature impact-generated system closer to center of the crater as suggested by the hydrothermal plume trace element signature identified in the basal Tertiary sulfides reflecting hydrothermal venting into the Tertiary ocean.

Although hints of hydrothermal activity occur in the annular trough environment of the Chicxulub crater in the Tertiary system, only deep drilling closer to the center of the crater will provide conclusive evidence for a thick melt sheet and a post-impact hydrothermal system with potential economic resources.

Acknowledgments-This work was supported by the NASA Exobiology program (Grant NAG5-10744) and Natural Resources Canada. We would like to recognize the efforts of ICDP and UNAM for making the cores available and of Igor Bilot and Bradley Harvey at the Geological Survey of Canada for sample preparation and photography. Jeanne Percival is also acknowledged for clay mineral identification through X-ray diffraction. Reviews by Kalle Kirsimae, Horton Newsom, and Philippe Claeys have improved the manuscript. This is Geological Survey of Canada contribution 2003247.

*Editorial Handling*—Dr. Philippe Claeys

#### REFERENCES

- Alt J. C. 1995. Subseafloor processes in mid-ocean ridge hydrothermal systems. In *Seafloor hydrothermal systems: Physical, chemical, biological, and geological interactions,* edited by Lupton J., Mullineaux L., and Zierenberg R. Geophysical Monograph 91. Washinton D.C.: American Geophysical Union. pp. 85–114.
- Berndt M. E., Seal R. R., II, Shanks W. C., III, and Seyfried W. E. 1994. D/H fractionation during phase separation of seawater in subseafloor hydrothermal systems: Isobaric heating and adiabatic decompression (abstract). Proceedings, Goldschmidt Conference.
- Ames D. E., Gibson H. L., and Watkinson D. H. 2000. Controls on major impact-induced hydrothermal system, Sudbury structure, Canada (abstract #1873). 31st Lunar and Planetary Science Conference. CD-ROM.
- Ames D. E., Watkinson D. H., and Parrish R. R. 1998. Dating of a hydrothermal system induced by the 1850 Ma Sudbury impact event. *Geology* 26:447–450.
- Ames D. E. 2002. Sudbury targeted geosciences initiative (TGI: 2000–2003): Overview and update. Summary of field work and other activites 2002. Ontario Geological Survey Open File Report 6100. pp. 17-1–17-10.
- Ames D. E., Pope K. O., Jonasson I. R., and Hofmann B. 2002a. Chemical sediments associated with the impact-generated hydrothermal system, Vermilion formation, Sudbury structure. Geological Society of America Annual Meeting.
- Ames D. E., Golightly J. P., Lightfoot P. C., and Gibson H. L. 2002b. Vitric compositions in the Onaping formation and their relationship to the Sudbury igneous complex, Sudbury structure. *Economic Geology* 97:1541–1562.
- Anthony J. W., Bideaux R. A., Bladh K. W., and Nichols M. 1990. *Handbook of mineralogy, vol II: Silicates.* Tucson: Mineral Data Publishing.
- Baker E. T., German C. R., and Elderfield H. 1995. Hydrothermal plumes over spreading-center axes: Global distributions and geological inferences. In *Seafloor hydrothermal systems: Physical, chemical, biological, and geological interactions,* edited by Lupton J., Mullineaux L., and Zierenberg R. Geophysical Monograph 91. Washington D.C.: American Geophysical Union. pp. 47–71.
- Dressler B. O., Sharpton V. L., Morgan J., Buffler R., Moran D., Smit J., Stöffler D., and Urrutia J. 2003. Investigating a 65-Ma-old

smoking gun: Deep drilling of the Chicxulub impact structure. *EOS Transactions* 84:125.

- Farrow C. E. G. and Watkinson D. H. 1991. An evaluation of the role of fluids in Ni-Cu-PGE-bearing, mafic-ultramafic systems. *Geological Association of Canada Short Course Notes* 13:31– 67.
- Galley A. G. 1993. Characteristics of semi-conformable alteration zones associated with volcanogenic massive sulfide districts. *Journal of Geochemical Exploration* 48:175–200.
- Gill J. B. 1981. Orogenic andesites and plate tectonics. Berlin: Springer-Verlag. 390 p.
- Hannington M., Jonasson I. R., Herzig P. M., and Petersen S. 1995. Physical and chemical processes of seafloor mineralization at mid-Ocean ridges. In *Seafloor hydrothermal systems: Physical, chemical, biological, and geological interactions,* edited by Lupton J., Mullineaux L., and Zierenberg R. Geophysical Monograph 91. Washington D.C.: American Geophysical Union. pp. 115–157.
- Ivanov B. A. and Deutsch A. 1999. Sudbury impact event: Cratering mechanics and thermal history. In *Large meteorite impacts and planetary evolution II*, edited by Dressler B. O. and Sharpton V. L. Special Paper 339. Boulder: Geological Society of America. pp. 389–397.
- Kettrup B., Deutsch A., Ostermann M., and Agrinier P. 2000. Chicxulub impactites: Geochemical clues to the precursor rocks. *Meteoritics & Planetary Science* 35:1229–1238.
- Kring D. A. and Boynton W. V. 1992. Petrogenesis of an augitebearing melt-rock in the Chicxulub structure and its relationship to K/T impact spherules in Haiti. *Nature* 358:141–144.
- Le Bas M. J., Le Maitre R. W., Streckeisen A., and Znnetin B. 1986. A chemical classification of volcanic rocks based on the total alkali-silica diagram. *Journal of Petrology* 27:745–750.
- McCarville P. and Crossey L. J. 1996. Post-impact hydrothermal alteration of the Manson impact structure. Special Paper 302. Geological Society of America. pp. 347–376.
- Molnar F., Watkinson D. H., and Jones P. C. 2001. Multiple hydrothermal processes in footwall units of the North Range, Sudbury igneous complex, Canada, and implications for the genesis of vein-type Cu-Ni-PGE deposits. *Economic Geology* 96:1645–1670.
- Naldrett A. J. 2003. From impact to riches: Evolution of geological understanding as seen at Sudbury, Canada. GSA Today 13:4–9.
- Naumov M. 2002. Impact-generated hydrothermal systems: Data from Popigai, Kara, and Puchezh-Katunki impact structures. In *Impacts in Precambrian shields*, edited by Plado J. and Pesonen L. J. Berlin: Springer-Verlag. pp. 117–172.
- Pflumio C. 1991. Evidence for polyphased oceanic alteration of the extrusive sequence of the Semail Ophiolite from the Salahi Block (Northern Oman). In *Ophiolite genesis and evolution of the oceanic lithosphere*, edited by Peters T., Nicolas A., and Coleman R. G. Boston: Kluwer Academic Publishers. pp. 313– 351.
- Pilkington M. and Hildebrand A. R. 2000. Three-dimensional magnetic imaging of the Chicxulub crater. *Journal of Geophysical Research* 105:23479–23491.
- Pilkington M., Ames D. E., and Hildebrand A. R. 2004. Magnetic mineralogy of the Yaxcopoil-1 core, Chicxulub crater. *Meteoritics & Planetary Science* 39:831–841.
- Rogers D. F., Gibson H. L., Whitehead R., Checetto J., and Jonasson I. R. 1995. Structure and metal enrichment in the hanging wall carbonaceous argillites of the Paleoproterozoic Vermilion and Errington Zn-Cu-Pb massive sulfide deposits, Sudbury, Canada. *Geological Association of Canada-Mineralogical Association of Canada Program with Abstracts* 20:90.
- Rousell D. H. 1984. Mineralization in the Whitewater Group. In The

*geology and ore deposits of the Sudbury structure,* edited by Pye E. Special volume 1. Ontario: Ontario Geological Survey. pp. 219–232.

- Schuraytz B. C., Sharpton V. L., and Marin L. E. 1994. Petrology of impact-melt rocks at the Chicxulub multiring basin, Yucatán, México. *Geology* 22:868–872.
- Spry P. G., Peter J. M., and Slack J. F. 2000. Meta-exhalites as exploration guides to ore. In *Metamorphosed and metamorphogenic ore deposits*, edited by Spry P. G., Marshall B., and Vokes F. M. Littleton: Society of Economic Geologists. pp. 163–201.
- Steiner M. B. 1996. Implications of magneto-mineralogical characteristics of the Manson and Chicxulub impact rocks. In *The Cretaceous-Tertiary event and other catastrophes in earth*

*history,* edited by Ryder G., Fastovsky D., and Gartner S. Special Paper 307. Boulder: Geological Society of America. pp. 89-104.

- Vermeesch P. and Morgan J. V. 2004. Chicxulub central crater structure: Initial results from physical property measurements and combined velocity and gravity modeling. *Meteoritics & Planetary Science.* This issue.
- Whitehead R. E. S., Davies J. F., and Goodfellow W. D. 1992. Lithogeochemical patterns related to sedex mineralization, Sudbury basin, Canada. *Chemical Geology* 98:87–101.
- Zürcher L. and Kring D. A. 2003. Preliminary results on the postimpact hydrothermal alteration in the Yaxcopoil-1 hole, Chicxulub impact structure, Mexico (abstract #1735). 34th Lunar and Planetary Science Conference. CD-ROM.