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Abstract—Calcium-aluminum-rich inclusions (CAls) were among the first solids in the solar system
and were, similar to chondrules, created at very high temperatures. While in chondrules, trapped
noble gases have recently been detected, the presence of trapped gases in CAls is unclear but could
have important implications for CAI formation and for early solar system evolution in general. To
reassess this question, He, Ne, and Ar isotopes were measured in small, carefully separated and, thus,
uncontaminated samples of CAls from the CV3 chondrites Allende, Axtell, and Efremovka.

The 20Ne/?2Ne ratios of all CAls studied here are <0.9, indicating the absence of trapped Ne as,
e.g., Ne-HL, Ne-Q, or solar wind Ne. The 2!Ne/22Ne ratios range from 0.86 to 0.72, with fine-grained,
more altered CAls usually showing lower values than coarse-grained, less altered CAls. This is
attributed to variable amounts of cosmogenic Ne produced from Na-rich alteration phases rather than
to the presence of Ne-G or Ne-R (essentially pure 22Ne) in the samples. Our interpretation is
supported by model calculations of the isotopic composition of cosmogenic Ne in minerals common
in CAls. The 3°Ar/38Ar ratios are between 0.7 and 4.8, with fine-grained CAls within one meteorite
showing higher ratios than the coarse-grained ones. This agrees with higher concentrations of
cosmogenic °Ar produced by neutron capture on 33Cl with subsequent B~-decay in finer-grained,

more altered, and thus, more Cl-rich CAls than in coarser-grained, less altered ones.

Although our data do not strictly contradict the presence of small amounts of Ne-G, Ne-R, or
trapped Ar in the CAls, our noble gas signatures are most simply explained by cosmogenic
production, mainly from Na-, Ca-, and Cl-rich minerals.

INTRODUCTION

With ages of up to 4.57 Ga (Amelin et al. 2002), calcium-
aluminum-rich refractory inclusions (CAls) are among the
first solids formed in the solar system. Despite extensive
research, the location and mechanism of CAI formation is still
unknown. Direct condensation from a nebular gas as well as
CAI formation as a result of intense evaporation are discussed
(MacPherson et al. 1988, and references therein). CAls—Ilike
chondrules—were formed at temperatures of up to ~1700 K,
but—in contrast to chondrules—cooled much slower at rates
of 2-50 K/hr (Jones et al. 2000). Based on this prolonged high
temperature processing, primordial trapped noble gases
would not be expected to have remained in CAls.
Nevertheless, it might be imagined that small amounts of
trapped noble gases in particularly stable carrier phases
survived the high temperature processing similar to the small
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amounts of trapped Ne and Ar that survived chondrule
formation (Vogel et al. 2004). Such stable carriers may be
presolar diamonds containing Ne-HL, presolar SiC rich in
22Ne, or the carbonaceous phase Q carrying large amounts of
heavy primordial noble gases (see Ott [2002] for a summary
of meteoritic trapped noble gas components). CAls might also
contain primordial solar noble gases if they were formed close
to the young Sun, as proposed by Shu et al. (1997, 2001). This
would have profound implications for developing models of
CAI formation and for our understanding of nebular evolution
in general.

A comprehensive study of noble gases in Allende CAls
was published by Smith et al. (1977). The authors found
trapped 2°Ne in volatile-rich Allende CAls but could not
ascribe it to a specific component like solar wind (SW) Ne, Ne-
Q, or Ne-HL. Enrichments in 22Ne and 3°Ar were attributed to
cosmogenic production from Na and Cl, respectively.
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Gobel et al. (1982) measured noble gases in Allende
CAls along with Na, Cl, and Ca concentrations and, thus,
could address the production of cosmogenic Ne and Ar more
quantitatively, although, e.g., a correlation of the 2!Ne/22Ne
ratio and the Na content of the samples was difficult to assess.
Finally, the authors attributed 2*Ne excesses to spallation
reactions on Na rather than to the presence of the 22Ne-rich
component Ne-G or Ne-R (carried by presolar graphite and
presolar SiC; see Ott 2002). Furthermore, they found that
excess 3°Ar was proportional to the CI concentration in the
CAls and, consequently, concluded that it was of cosmogenic
origin. On the other hand, 2°Ne/*2Ne ratios above the
chondritic cosmogenic value point to the presence of trapped
Ne-HL, Ne-Q, or SW-Ne in some CAls.

In contrast, Russell et al. (1998) interpreted a 22Ne
overabundance in CAls from Vigarano as a contribution from
nearly pure 22Ne carried by presolar SiC. The associated
trapped Ar was described as “planetary,” a mixture of noble
gases of phase Q and presolar grains (e.g., Busemann 1998).

Murty et al. (1996) reported the Ne composition of two
Efremovka CAls to be in agreement with a trapped 2°Ne/22Ne
ratio of ~10, pointing to the presence of Ne-HL or Ne-Q in the
samples. Shukolyukov et al. (2001) interpreted the Ar
isotopic composition of an Efremovka CAI as a mixture of
cosmogenic, atmospheric, and solar Ar. The Ne isotopic
composition was reported to indicate the presence of Ne-HL
carried by presolar diamonds.

To reassess the composition and origin of noble gases in
CAls, we measured He-, Ne-, and Ar-isotopes in CAls of the
three unequilibrated CV3 chondrites Allende, Axtell, and
Efremovka. Our analytical technique is particularly suited to
analyze low gas concentrations (Vogel et al. 2004), thus, only
small CAI separates were necessary. This allowed us to avoid
the outermost marginal regions of the CAIs during
separation, which greatly reduces the risk of contaminating
the samples with surrounding matrix with its significantly
higher trapped noble gas concentrations (e.g., Vogel et al.
2003). The different exposure ages, pre-atmospheric radii,
and degrees of alteration of the meteorites enable the
assessment of the effects of these parameters on the noble gas
compositions of the CAls. Also distinguished were
macroscopically fine- and coarse-grained CAls to indirectly
address the variable degrees of alteration within one
meteorite, since fine-grained CAls are often more altered
than coarse-grained CAls (e.g., MacPherson and Grossman
1984; Brearley and Jones 1998).

SAMPLES AND METHODS

Small “bulk” samples (see Table 1 for sample masses) of
macroscopically visible fine- and coarse-grained Allende and
Axtell CAls and of a fine-grained Efremovka CAI were hand-
separated with a steel needle from sawn meteorite chips (Fig.
1) under a binocular microscope. Special attention was paid to
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avoid cross-contamination of the samples with matrix
material surrounding the CAls, i.e., samples were mostly
separated from the interior parts of the CAls and the third
dimension was carefully checked. This generally precluded
sampling the outermost margins of CAls, where the
possibility of contamination by matrix material would have
been very high and the presence of indigenous trapped gases
(e.g., solar wind noble gases) would be very difficult to prove.
Additionally, samples from one fine- and one coarse-grained
Allende CAI (AI-G and Al-H) were obtained by gentle
crushing of a larger piece of Allende and subsequent
separation of small clean pieces of CAI material. The sample
labels start with the meteorite names (Al = Allende, Ax =
Axtell, Ef = Efremovka). Different CAls are distinguished by
capital letters, and several samples of one single CAI taken to
address possible heterogeneities within one CAI are
distinguished by numbers. The samples Al-D3 (see Fig. 1)
and Al-E2 are dominated by material of the Wark-Lovering
(WL) rims of the respective CAls and were taken to elucidate
possible differences in the noble gas inventory of CAI cores
and rather marginal regions. Small samples of fine-grained
matrix (labeled “Ma”) were separated from Axtell and
Efremovka also. A short description of each CAI sample is
given in Table 1. No further mineralogical or chemical
analyses were performed due to the scarcity of sample
material available, which precluded separating true aliquots
of each sample. The weighed samples were mounted into a
vacuum extraction system connected to a statically operated
noble gas mass spectrometer. Atmospheric noble gases were
removed by heating the samples in vacuum for ~24 hr at ~100
°C. For a detailed description of the noble gas extraction
technique using a Nd-YAG-laser, the gas purification,
spectrometer settings, interference corrections, and the
calibration procedure, we refer to Vogel et al. (2003). A
detailed description of the blank correction, which is essential
for measuring low gas amounts, is given by Vogel et al.
(2004). All noble gas results (except for the predominantly
radiogenic 40Ar) are given in Table 1.

RESULTS AND DISCUSSION
Helium

The 3He in the CAls (Table 1) is assumed to be
essentially entirely of spallogenic origin; concentrations are
similar to those in the respective matrix samples. This is to be
expected since the cosmogenic production of *He shows only
minor variations with target chemistry (Wieler 2002). The
3He exposure ages were calculated using an average CAI
chemistry and 3He production rates given by Leya et al.
(2000), taking into account the different meteoroid radii and
assuming average shielding conditions of the samples. The
3He exposure ages from Allende and Axtell CAls (~4.5 Ma
and ~13.6 Ma, respectively) are only slightly lower than the
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CAls show a similar pattern as the Allende CAls, again
suggesting a larger degree of alteration of fine-grained than of
coarse-grained CAls. However, literature Ca and Cl data to
support this suggestion are very scarce for this meteorite.

If the elevated 36Ar/38Ar ratios of the fine-grained CAls
were due to contributions of trapped Ar, one would—similar
to Ne—expect the clearest signal of trapped Ar in the least
altered (fine-grained) Efremovka CAI with its small
preatmospheric size (Murty et al. 1996) and, thus, minor
amounts of 3%Ar,. Clearly, this is not the case; in contrast,
those samples show particularly low 3°Ar/38Ar ratios of ~0.7
(Fig. 5). Higher 3°Ar/38Ar ratios of ~4 for an Efremovka CAI
reported earlier (Murty et al. 1997) need to be reassessed due
to an inappropriate mass discrimination correction (Rai et al.
2003).

We estimated possible Arg, and Arg, concentrations using
the model by Leya et al. (2000) and—as far as available—
literature Ca and CI concentration ranges for fine- and coarse-
grained CAls of the meteorites also studied by us and the
exposure times to cosmic radiation for the respective host
meteoroids. Using Ca production rates based on those given
by Hohenberg et al. (1978) converted to 47 irradiation and our
Cl production rates (data not shown), our measured Ar data
are reproduced well.

We infer that—in line with Gobel et al. (1982) and Smith
et al. (1977)—the Ar signatures in fine- and coarse-grained
CAls of the three different primitive meteorites studied here
can consistently be explained as mixtures of the two
cosmogenic Ar components produced from Ca and Cl. There
is no need to introduce a trapped Ar component, as more
recently suggested by Russell et al. (1998) and Shukolyukov
et al. (2001). In particular, our Ar data of the fine-grained,
least-altered Efremovka CAI strongly argue against the
presence of a trapped Ar component like Ar-Q or SW-Ar in
the studied CAls.

CONCLUSIONS

We reassessed the composition and origin of noble gases
in CAls to draw conclusions on possible CAI formation
mechanisms. In particular, if CAls contained primordial solar
noble gases, this could support CAI formation close to the
young Sun and, thus, have profound implications on early
solar system evolution.

In contrast to earlier studies performed by step-wise
heating of large bulk samples, in none of our total extractions
of small bulk samples of fine- and coarse-grained CAls from
Allende, Axtell, and Efremovka could we detect measurable
amounts of trapped Ne. The Ne isotopic composition of the
studied CAls is explained by cosmogenic production from
Al- and especially Na-rich secondary minerals: the more
altered, fine-grained Allende and Axtell CAls show lower
2INe/22Ne ratios, probably due to higher Na concentrations
than their coarse-grained counterparts. Similarly, 3°Ar/38Ar
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ratios are higher in fine-grained Allende and Axtell CAls than
in the coarse-grained ones. This is ascribed to higher
production of 3°Ar from neutron capture on Cl in fine-grained
than in coarse-grained CAls. This hypothesis is supported by
higher literature Na and Cl concentrations in fine-grained
Allende CAls than in their coarse-grained counterparts.

The studied fine-grained Efremovka CAI does not show
a significant shift toward lower 2!Ne/?2Ne or elevated 3Ar/
38 Ar ratios caused by the presence of secondary Na- or Cl-rich
minerals. This agrees with reports in the literature about the
virtual absence of secondary alteration phases in Efremovka
CAls.

Compared to chondrules, in which small remnants of
trapped Ne and Ar were detected (Vogel et al. 2004), CAls
experienced high temperatures for a prolonged period since
they cooled distinctly more slowly (Jones et al. 2000). This
seems to have caused a quantitative release of any trapped Ne
and Ar from the studied CAls that might have been present in
the CAI precursor material.

It might be imagined that a formation of CAls close to the
young Sun could have resulted in the uptake of primordial
solar noble gases, as was suggested for chondrules of an
enstatite chondrite (Okazaki et al. 2001). Although the
absence of primordial solar noble gases in the studied CAI
samples does not strictly exclude this formation scenario (also
taking into account that the outermost microns of the CAls
were not sampled), the noble gas data suggest that the CAls
were formed in high temperature events that did not directly
involve the young Sun as the heat source. Such a scenario was
also concluded for chondrule formation (Vogel et al. 2004).
However, it would certainly be worth studying the noble gas
compositions in the more rare CAls in different chondrite
groups, in particular those of enstatite chondrites, in one of
which chondrules with high solar-like noble gas
concentrations have been reported.
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