Book Review

Robert Haag is a meteorite dealer and collector who calls himself “The Meteorite Man.” He is well known in the meteorite community, and many museum and university curators have acquired specimens from him. Richard Norton’s popular book, *Rocks from space*, devotes an entire chapter to Haag’s exploits. We learn there that Haag’s business ventures evolved from selling “space passports” for five bucks a piece to buying and selling rare meteorites for hundreds of thousands of dollars. Since the 1980s, Haag has published pamphlets or booklets replete with color photographs of his private collection. By the time the 10th anniversary edition appeared in 1991, the pamphlet had transformed into a 60-page booklet with numerous photographs, extensive figure captions, anecdotes, and scientific tutorials. The highlights of these books are the meteorites themselves—handsome, museum-quality specimens that have been beautifully photographed.

This latest book is Haag’s 13th publication and the most extensive. It boasts “over 280 all new photographs” (most in natural light) and has dispensed with most of the anecdotes and tutorials. This is a welcome development. The pictures are impressive and of significant scientific value. One can see the extreme angularity and fragmental nature of olivine in the Otinapa pallasite (p. 37), the inhomogeneous distribution of vesicles in the Ibitira eucrite (p. 67), the petrofabric in CV3 Leoville (p. 81), a large metal clast in EL6 Hvittis (p. 73), and the near-identical structures of the LL6 chondrites Saint-Séverin and Ensisheim (p. 89).

On a personal level, I learned that Haag and I have a connection. The Correo H4 chondrite is the first stone meteorite found by Haag; it is also the subject of my first (1981) paper in this journal: *Meteoritics* 16:9–12.

The book suffers a bit from poor proofreading. A few meteorite names are misspelled, e.g., Neenack instead of Neenach (p. 102), Raglan instead of Ragland (p. 75, although, it is spelled correctly on p. 94), and Guizba instead of Gujba (p. 83). Allan Hills 76009 is listed as Antarctica 76009 (p. 102). Many of the glossary entries are inaccurate. Asteroids are described as not having fixed orbits, Neumann lines are called Newman lines, hypersthene is called a silica (instead of silicate) mineral (incorrectly implying a formula of SiO₂), the formula given for olivine is (Mg, Fe)SiO instead of (Mg, Fe₂SiO₄), and a hexahedrite is defined as a “six-sided crystal structure found in nickel-iron meteorites” rather than a label for those iron meteorites that consist entirely of single crystals of kamacite. (The term hexahedrite is derived from the regular hexahedron (i.e., cubic) structures of these large kamacite crystals.) Particularly puzzling is the formula given for plagioclase: FAL,SL,Og.

However, I don’t wish to be picayune. These problems are of little consequence if you approach Haag’s book the way teenage boys approach Playboy magazine. Don’t read it!

Alan E. Rubin

Institute of Geophysics and Planetary Physics
University of California
Los Angeles, California 90095–1567
USA