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Abstract-The Murchison meteorite is a carbonaceous chondrite containing a small amount of
chondrules, various inclusions, and matrix with occasional porphyroblasts of olivine and/or pyroxene.
It also contains amino acids that may have served as the necessary components for the origin of life.
Magnetic analyses of Murchison identify an ultrasoft magnetic component due to
superparamagnetism as a significant part of the magnetic remanence. The rest of the remanence may
be due to electric discharge in the form of lightning bolts that may have formed the amino acids. The
level of magnetic remanence does not support this possibility and points to a minimum ambient field
of the remanence acquisition. We support our observation by showing that normalized mineral
magnetic acquisition properties establish a calibration curve suitable for rough paleofield
determination. When using this approach, 1-2% of the natural remanence left in terrestrial rocks with
TRM and/or CRM determines the geomagnetic field intensity irrespective of grain size or type of
magnetic mineral (with the exception of hematite). The same method is applied to the Murchison
meteorite where the measured meteorite remanence determines the paleofield minimum intensity of

200-2000 nT during and/or after the formation of the parent body.

INTRODUCTION

The amount of acquired magnetization in rocks can be
characterized by ratio (REM) between the natural remanence
(NRM) and saturated isothermal remanence (SIRM)
(Cisowski et al. 1983; Cisowski and Fuller 1986; Wasilewski
1977). Most of the rocks on Earth acquire thermal remanence
(TRM—the rocks’ temperature is lowered through the
blocking temperature) and chemical remanence (CRM—
magnetic minerals chemically precipitated) in a geomagnetic
field. Rocks can also acquire Detrital remanent magnetization
(DRM) during the sedimentation processes. However, this
DRM is often overprinted by later CRM acquired during the
cementation processes. Methods wused for paleofield
determination (Fuller 1974; Stephens and Collinson 1974;
Thellier and Thellier 1959) require an extensive sample
heating. SD (single domain) grains (<40 nm in size) that carry
the stable component of NRM have large surfaces and,
therefore, a mild heating promotes chemical reactions
destroying the original record. We offer an alternative
approach accessing an approximate value of the primitive
paleofield information without heating the sample.
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NEW METHOD

By normalizing the experimental mineral TRM
acquisitions for SD, PSD (pseudo single domain), and MD
(multi domain) minerals (Dunlop and Waddington 1975;
Kletetschka, Wasilewski, and Taylor 2000; Ozdemir and
O’Reilly 1982; Tucker and O’Reilly 1980; Wasilewski 1981)
we obtain a uniform trend, indicating that magnetic grains of
various mineral domain-states and/or mineral types saturate
near 20 mT (see Fig. 1). The only exception from this trend is
MD hematite, which saturates near 0.1 mT due to its low
spontaneous magnetization and demagnetizing field, allowing
domain walls to nearly saturate in magnetic fields of low
intensity (Dunlop and Kletetschka 2001; Kletetschka,
Wasilewski, and Taylor 2000). The normalized TRM
acquisition trends allow quick and rough estimation of a
paleofield in rocks that formed in an unknown magnetic
environment. To test this approach, we used NRM and SIRM
values from 85 terrestrial samples of various origin (Table 1)
(Goddard database). Statistical means of NRM/SIRM ratios
are 0.009 £ 0.002, 0.011 + 0.004, and 0.017 £ 0.003 for
metamorphic, sedimentary (with CRM), and igneous rock
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Fig. 1. RM/SIRM (RM is a remanent magnetization, e.g. CRM, TRM) is plotted against an acquisition magnetic field for various materials.
This plot provides a basis for paleofield estimates. Data are calculated from TRM acquisitions on 40 nm titanomagnetite (Ozdemir and
O’Reilly 1982), 1900 nm and 2 mm titanomagnetite (Tucker and O’Reilly 1980), Columbia plateau basalt (Dunlop and Waddington 1975),
iron-nickel spheres (Wasilewski 1981), and 1 mm hematite and magnetite (Kletetschka, Wasilewski, and Taylor 2000). The acquisition trend

of all data except hematite is emphasized by the dashed line.

types, respectively. The statistical spread is caused by
multiple remanent components in some of these rocks with
contrasting direction recorded throughout the rocks’ history.
When we use these statistical means in Fig. 1, we obtain
acquisition fields between 35,000 and 65,000 nT. This range
of values falls within the actual values of geomagnetic fields.
This 1% of TRM remanence left in various rock has been
noted previously. Cisowski observed that a typical ratio in
fine-grained magnetic material for TRM acquired in
geomagnetic field will be of an order of 10~2 (Cisowski and
Fuller 1986). Sedimentary samples where fine-grained
secondary magnetite forms by chemical precipitation, giving
rise to CRM, again gives magnetization about 1 part in 100 of
SIRM (Hart and Fuller 1988). In light of these observations
and the experimental data presented in Fig. 1, we apply an
extension of the curve approximated by the data (Fig. 1) for
estimation of pre-existing magnetic fields recorded in the
Murchison meteorite.

MAGNETIC SIGNATURE OF MURCHISON

NRM measurements of the interior piece of Murchison
revealed a peculiar magnetic instability. The natural remanent
magnetization (NRM ~5 E-05 A m?/kg, consistent with

values observed previously [Banerjee and Hargraves 1972])
drifted as soon as the sample was shielded from the terrestrial
field. This magnetic sensitivity, caused by fields as low as the
geomagnetic field, has never been reported in the Murchison
meteorite despite multiple magnetic analyses (Brecher and
Arrhenius 1974; Banerjee and Hargraves 1972). Similar soft
behavior has been observed in chondrules extracted from the
Bjurbole meteorite  (Kletetschka, = Wasilewski, and
Berdichevsky 2001). The effect of exposing and shielding
meteorite fragments to and from the geomagnetic field,
respectively, is illustrated in Fig. 2, where the acquired/
relaxed component is shown to increase linearly with the
logarithm of time. This property is independent of further
demagnetization and/or acquisition and, thus, must be
considered  when  deciphering the  extraterrestrial
magnetization signature.

The ultrasoft magnetic decay at 77 K is about 70% of
room temperature decay. However, the NRM increased more
than twice from 5 E-05 A m?/kg at 300K to 13 E-05 A m%/kg
at 77 K. Contrary to intuition, the samples with low coercivity
do not contain the ultrasoft component and have relatively
high NRM. The SIRM/Js (Js = saturation magnetization) ratio
(Table 2) of low coercivity samples suggests that
magnetization carriers are multi-domain grains. This is also
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Fig. 2. Magnetic component gained and relaxed after exposing to and shielding from the geomagnetic field, respectively. This ultrasoft
component modifies magnetization measurements (NRM ~5 E-05 A m?/kg) during the examination and is always parallel to the external
(geomagnetic) field. The inset picture shows the size of the actual fragment of the Murchison meteorite (Smithsonian Institution).

Table 2. Hysteresis parameters for representative samples at 300 K (suffix R) and 77 K (suffix N). Js (A m%/kg) is
saturation magnetization, SIRM (A m%/kg) is saturation remanence, Hc (mT) is coercivity, and Fr (%) is remanence left

after 5 minutes in magnetic vacuum.

Sample Mass (g) JsR HcR SIRMR/JsR  JsN HeN SIRMN/JsN  FrR(%)
1 0.0056 3.870 8.97 0.033 3.860 10.95 0.039 99
2 0.0097 2.210 13.72 0.070 2.110 30.76 0.134 93
3 0.0030 1.110 16.10 0.132 1.700 42.47 0.116 68
4 0.0059 0.768 19.30 0.114 0.931 52.80 0.175 86
5 0.0038 0.792 20.30 0.100 0.838 48.80 0.129 59
6 0.0346 0.857 21.50 0.105 0.938 42.06 0.157 60
7 0.0073 0.471 24.30 0.140 0.506 45.10 0.223 61
8 0.0509 0.532 25.80 0.140 0.668 51.30 0.181 70

consistent with high value of Js indicating a high
concentration of iron (Table 2). The samples with the ultrasoft
component have high coercivity and low remanence and point
to a mixture of SD and super-paramagnetic grains finely
dispersed throughout the sample. This is important because
magnetic remanence carried by SD fraction of these grains is
stable against artificial remanence acquisition and, thus, may
preserve a record of pre-terrestrial magnetic events.
Magnetic results from Murchison fragments (Fig. 3)
allow division of Murchison material into two distinct groups.
Group A contains six fragments with REM just under 1 E-02.
Five of these samples come from the part of the specimen
(Czech Republic) that contained the fusion crust. Therefore,

some part of each specimen was severely heated during the
meteorite landing and acquired a terrestrial TRM component.
One specimen within Group A clearly has a large level of
magnetization (NRM/SIRM ~0.01 in Fig. 3) but is part of the
Murchison interior with no evidence of fusion crust. This
specimen also has the lowest Hc, indicating the magnetically
softest material (See Table 2, Specimen 1 with mass 0.0056
g). Closer examination revealed a multi-domain metallic
piece within this sample. Soft MD magnetic properties allow
geomagnetic field contamination, characterized by a higher
value of the measured natural magnetization. Soft
magnetization in this sample also has low stability against the
NRM demagnetization by alternating magnetic field (>90%
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Fig. 3. Natural remanent magnetization versus saturation remanence for parts of Murchison is shown in comparison with terrestrial samples

exposed to the lightning discharge (fulgurites and lodestones).

NRM loss in 20 mT). Group B contains only fragments from
the Murchison’s interior, and none of these fragments has a
magnetization level over 0.001 (Fig 3). AF demagnetization
of these samples revealed fairly stable NRM (<60% NRM
loss in 60 mT).

In summary, Group A has samples with strong terrestrial
magnetic components and Group B has a record of fairly
weak, stable, and possibly extraterrestrial paleofield.
Therefore, only Group B can be considered for paleofield
estimation.

RM (Remanent magnetization) values of Group B
samples are still subject to the ultrasoft component discussed
earlier. According to Fig. 2, the Murchison meteorite is
capable of acquiring almost 4 E-05 A m?/kg in several days.
To double this value, the sample would have to be exposed to
the geomagnetic field for more than 2000 years, due to the
logarithmic nature of remanence acquisition. Because the
sample landed on Earth 32 years ago, the maximum extent of
the ultrasoft component can not exceed 7 E-05 A m%kg
according to the linear dependence in Fig. 2. During the course
of measurement (1-5 minutes per sample), samples acquire an
ultrasoft component of more than 1.5 E-05 A m?kg. This
component can significantly contribute to the Murchison
meteorite samples whose NRM range is 3—160 E-05 A m?/kg.
Ultrasoft acquisition will cause a slight overestimate of

magnetization levels in Fig. 3. After subtracting this ultrasoft
component (1.5 E-5 A m?/kg) from each sample’s NRMs, the
range of magnetization levels from the Murchison interior is
between 1 E-04 and 8 E-04. To use this range in the acquisition
diagram (Fig. 1), we need to acknowledge the absence of
mineral acquisition data for low field values. Assuming that
the acquisition trend extends linearly into low fields, we
obtain a paleofield of at least 200 and at most 2000 nT. This
field was recorded by high coercivity fraction of magnetic
carriers and, therefore, it is likely that the Murchison meteorite
was exposed to this field during its formation.

MURCHISON METEORITE AND AMINOACIDS

The Murchison meteorite is well known for its content of
amino acids (Engel and Macko 1997; Epstein et al. 1987;
Kvenvolden, Lawless, and Ponnamperuna 1971; Ord 1990).
The formation of organic compounds and their accumulation
is considered a prerequisite to the appearance of life on
primordial Earth (Oparin 1957). Various sources of energy,
such as heat from volcanoes, heat and ultraviolet light from
the sun, ionizing radiation from radionuclides, and electric
discharges may be responsible for massive organo-synthesis
from prebiotic compounds. Electric discharge events (Miller
1957) probably operated during the first stages of the solar
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nebula development (Desch and Cuzzi 2000). This
mechanism can be responsible for the major synthesis of
amino acids in carbonaceous meteorites. This is supported by
a similarity between the products and relative abundance of
the amino acids produced by electric discharge and the amino
acids present in the Murchison meteorite (Cronin and Moore
1971; Wolman, Haverland, and Miller 1972).

Models of early solar nebula evolution predict the
presence of lightning discharges due to turbulent flows
carrying dust particles rich in metal and silica (Desch and
Cuzzi 2000). These authors speculate that discharge formed
this way is comparable and/or several times more intense than
terrestrial lightning and occupies larger volumes and
distances during the stroke. The presence of lightning strokes
in dust during the early solar nebula development may have
been associated with magnetic field pulses stronger than
magnetic fields generated by terrestrial lightnings. The
magnetization acquired by primitive matter should closely
approach saturation magnetization according to the principles
reported for terrestrial lodestones and/or fulgurites
(Wasilewski and Kletetschka 1999). Terrestrial rocks that
experienced a lightning discharge are magnetized close to
their saturation level (>10%) and are magnetically distinct
from rocks which acquire remanence (1-2%) in the
geomagnetic field on Earth’s surface (Wasilewski and
Kletetschka 1999). There is one exception, however: rocks
with coarse-grained hematite as discussed above. In
meteorites, however, the oxidized form of iron, hematite, is
only rarely seen and is absent from the Murchison meteorite
(Fuchs, Olsen, and Jensen 1973).

CONCLUSIONS

We offer a rough, non-distructive method for
paleointensity estimation based on normalized magnetic
mineral acquisition experimental data. We apply this method
to various terrestrial rocks and obtain geomagnetic field
intensities. When the Murchison meteorite is used, we
estimate that Murchison was exposed to a paleofield of at
least 200 nT before it entered the geomagnetic field
environment.

It becomes clear, however, that the measured specimen
from the parent body of the Murchison meteorite may not
have been subject to lightning discharges during its residence
in the interplanetary space. When the values for rocks
affected by lightning are compared with those of the
Murchison samples (Fig. 3), we see that the Murchison
meteorite would require a past presence of magnetic fields
exceeding 700,000 nT to allow amino acid formation by
lightning discharges. If the amino acids in Murchison were, in
fact, formed by the electric discharge, this would have to
occur before the formation of the parent body of Murchison.
Dust particles associated with amino acids formed by an
electric discharge would acquire magnetization close to

G. Kletetschka, T. Kohout, and P. J. Wasilewski

saturation. However, subsequent formation of the Murchison
parent body would essentially randomize the strong magnetic
moments, lowering the level of overall magnetization. This
scenario is consistent with new isotopic and experimental
evidence that suggest that the synthesis of amino acids (or
their precursors) may have preceded the formation of the
Murchison parent body (Caro et al. 2002).
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