The Demonstration of the Lymphatic Pathways of the Pacinian Corpuscles in the Mesojejunum of the Cat

G. Fabian
Department of Anatomy, Ruhr-University, Bochum, W.-Germany

Summary
The possibilities of a combination of modified injection techniques are described. This allows the lymphokinetic effect of a drug to produce a definite improvement in the morphological demonstration of the lymphatics.

The investigation of the lymphatic system needs to be considered more or less solely in relation to its dynamics. Up to the present time basic information, not only on the morphology, but also on the physiology and pathology, has been obtained by the use of dyestuffs. There have only been sporadic reports about substances which have a pharmacodynamic action on the lymphatic system. In this connexion, there is nothing reported about any structural changes in the lymphatic pathways. The object of this present paper is to widen the scope of our current knowledge.

Literature
The investigations pursued so far, since the discovery of the powerful intrinsic activity of the lymphatics, allow one to take a new view of the lymphatic system. In 1622 Asellius (1) had already observed a spontaneous rhythmic activity in the lacteals of the dog and this was confirmed by Hewson (24). Likewise Heller (23) described active contractions in the mesenteric lymph vessels of mice. Subsequently similar observations were made in other species of animal. However, statements to the contrary also appeared e. g. Florey (15) and Yoffey and Courtice (35) were not able to report any spontaneous contractions in dogs. In man Todd and Bowman (34) were the first to report slow contractions of the thoracic duct after mechanical stimulation and Kinmonth and Taylor (25) saw spontaneous rhythmic movement in the absence of any external stimulation. Also in later investigations (26) spontaneous contractions with a frequency of 2–5/min. occurred in the large pelvic lymphatics. For success in demonstrating spontaneous contractions of the lymphatics the type of anaesthetic agent used and its mode of administration are of considerable importance (33). Thus, Hauck (21) found no contractility in guinea-pigs anaesthetised with pentobarbitone, while Mislin (33) obtained good vascular activity in animals anaesthetised with ether after isolating the mesenteric lymphatics; however, when evipan-sodium was used the results were variable. Furthermore, changes in temperature and variations in the pressure relationships are often regarded as responsible for the absence of vascular pulsation (33). Málek (29) also stressed the difficulty of analysing the factors which are responsible for the movement of lymph. According to Mislin (33) the mechanisms of this complex lymphatics drainage are manifold and can be divided into three lymphodynamic transport systems:

1. Extravascular lymph drainage (extravascular circulation and lymph formation);
2. Extramural lymph drainage (mechanical effect on the vessels from without);
3. Vasomotor (vascular) lymph drainage (spontaneous rhythm of the lymphatics).

The so-called "compensating lymphatic drainage" (18) depends, according to Mislin (33), on the constant functional interplay of these different mechanisms of lymph drainage.

Material and Methods
For this investigation Pacinian corpuscles were obtained from the mesentery of 10 male and 10 female cats of about 1–3 years old, who had been killed with nembutal (pentobarbitone sodium).
For the demonstration of the lymphatic system the previously described injection techniques (9, 10, 11, 13) followed immediately after the killing of the animal. The previously used techniques for showing the Pacinian corpuscles were also used (14), although in this instance in a modified form and with several solutions. They were injected with a 2.5% solution of patent blue violet1, with Japan ink and also with Venalot2 and a 0.1% solution of fluorescein sodium3. Immediately after opening the abdominal cavity the Pacinian corpuscles in the mesojejunum and also the lymphatics in their vicinity and near the root of the mesentery were injected orthograde and retrograde, under the stereo-microscope and using an extremely fine cannula. An injection of Venalot was then given intravenously, or even directly into the Pacinian corpuscles, in view of the lymphokinetic effect of this preparation (20). Indeed, an increase in lymph transport of 1.7 to 2.6 times can be demonstrated in animal experiments (19).

Results and discussion

Although the Pacinian corpuscles are the main subject of the investigation, we must also take into account the lymph capillaries in their vicinity, the lymphatics within the mesentery, and the removal of their contents. Thus, after the injection of patent blue violet or Japan ink, it is transported away from the Pacinian corpuscles in the lymph capillaries or lymphatics which run from here to the periphery and ultimately into the jejunal lymph nodes. As shown by observation, the lymph capillaries do not form a closed network, although as everybody knows their beginning was generally described as closed (33). Földi (16) saw cup-shaped open lymph capillaries arising in an oedematous lung, and in the small intestines the lymphatics begin at the tip of the villi and then pass vertically through into the deeper layers (12).

In general today it is predominantly electron microscopic findings which are referred to, in statements about the structure of the lymph capillaries, among which the papers of Casley-Smith (2, 3, 4, 5, 6, 7) and Casley-Smith and Florey (8) should be particularly noted. Nevertheless it should not go unnoticed here that as long ago as 1939, Held (22) had already read a paper "Regarding the basal lymphatic portals (Lymphpforten)". On the basis of paraffin sections stained with molybdenum haematoxylin he wrote that "the lymph capillaries are provided with openings into the tissue clefts and are thus able to take up the (tissue) fluid directly. The lymph vessels pass through the tunica propria of the basement membrane of the mucous membrane and expand in the epithelium as intercellular spaces. My preparations leave no room for doubt about this. The endothelial cells of the lymphatics which have richly branching processes on their outer surfaces and anastomose with the connective tissue cells are connected with the protoplasm of the lowermost epithelial cells. Their transition I propose to call the basal lymphatic portals ("Lymphpforten") and from these very intercellular spaces there then aries fine channels, some rising vertically and some flat, bending and branching. An important part of this arrangement is that the intercellular spaces of the epithelium are closely related to the deep lymphatics, via the basal lymphatic portals". This summary should be retained however, with the comment, that such findings already existed nearly forty years ago. As has already been shown (14), without injection the lymph capillaries leaving the Pacinian corpuscles completely escape detection. Only after injection with patent blue violet and Japan ink. (Fig. 1) are they easily identified. A characteristic property of the lymph capillaries is their great capacity to dilate, which in certain organs enables them to form extensive storage spaces for the lymph (13), although here this function is not normally particularly prominent. However, it should be noted here, that the lymphokinetic effect can be demonstrated after an intravenous injection of Venalot, in

1 Makers: Byk-Gulden, Constance
2 Makers: Schaper and Brümmer, Salzgitter-Ringelheim. "Venalot" is a Coumarin, (5, 6-Benzo-a-pyron)-rutin derivative
3 Makers: E. Merck, Darmstadt
Demonstration of the Lymphatic Pathways of the Pacinian Corpuscles

Fig. 1 Pacinian corpuscles injected with patent blue violet and subsequent retrograde injection of Japan ink into a peripherally lying lymphatic which has been outlined by the blue. Here also the beaded appearance of the lymph capillaries can be seen (arrow).

that there is a dilatation of the lymph capillaries or lymphatics, due to the increased lymph flow (Fig. 2). In order to produce a clearer effect for photographic reproduction, small amounts of fluorescein sodium are added to the dyestuff. Also a more intense filling of the Pacinian corpuscles is seen, so that here also it is natural to speak of an 'organ with short “prelymphatic pathways”', in contrast to organs lying outside the parenchyma with long "prelymphatic pathways", in contrast to organs lying outside the parenchyma with long "prelymphatic pathways."

It seems appropriate here to attempt an actual definition: By lymphatics, we understand endothelial-lined vessels in which lymph flows and which discharge into the venous system. Preformed connective tissue pathways, which conduct the interstitial fluid in the direction of the lymph capillaries, belong to the prelymphatic system (17).

Because of the raised pressure of the injection of patent blue violet into the Pacinian corpuscles, in association with Venalot, there evidently follows very quickly an opening up of the lymph capillaries and escape of dye into the tissue clefts which however, is no longer apparent after ten minutes. A similar injection of Japan ink cannot be seen in the surrounding connective tissue. It is known that the lymph capillaries are only permeable in one direction for colloidal substances, but in two directions for fluid and diffusible substances. It is by this that the lymph in the capillaries becomes concentrated.

From the so-called capillary network (33) arise the very thinwalled efferent lymph vessels, from which any retrograde flow of lymph is prevented by infundibular or semilunar (bicuspid) valves. The lymphatic channel is divided into numerous intervalvular segments. These valves appear as endothelial folds at regular intervals, so that on account of this segmentation the vessels has rather the appearance of a rosary. Each intervalvular section (valve segment) was called by Mislin a lymphangion (30, 31, 33). He deduced from this that there were two types of lymph vessels, firstly vessels in which the
extramural forces played the mainpart in lymph transport, which are only conducting vessels, and those which show rhythmic spontaneous contractions and represent specialised transport vessels. In spite of contrary opinions, this assumption has been confirmed by more recent investigations (33).

In order, at the same time to provide experimental proof of the inherent automatic action of the lymph vessels draining the Pacinian corpuscles, in my own series of experiments isolated flat preparations of mesentery were taken and, in addition, completely isolated lymphatics connected to their Pacinian corpuscles were examined at room temperature (22°C). The chain of segments consisted of about ten lymphangions of which each single lymphangion contains a cuff of muscle, which is markedly reduced in the vicinity of the valves. The actual region of the valves is completely free of muscle. The musculature of the lymph segments is extremely richly innervated, with as a rule, one single nerve fibre going to each muscle fibre (32). Kubik and Szabó (28) found sensory end organs of the Pacinian type adjacent to and surrounding the lymph vessels.

Having removed a very tightly filled Pacinian corpuscle together with its related lymph vessels, a very fine cannula was put into its centre, it was emptied of its contents and thus made to collapse. Simultaneously with this withdrawal of fluid it was slowly replaced with patent blue violet.

With increasing pressure within the particular lymphangion as a whole, an irregular pulsating lymph vessel was observed, and if the pressure was kept constant a frequency of pulsation between 20–25/min. was achieved. Even Kubik (27) was unable to find such uniform rhythmic flow in the entire lymphatic system. Injection with Japan ink produced lower values of 15–20/min. After this Venalot was injected. This showed the most rapid pulsation with a frequency of 30/min. with a dilatation of the lymphatics and a conse-
quent increase in the flow of lymph. This finding, also recorded in the previous series of experiments, shows that by the administration of Venalot there is a shortening of the transit time of the flow of dyestuff, by about a half. Accordingly, this preparation has a threefold myotropic effect on the lymphatics. Thus, the pulse rate, the amplitude and the tone of the lymphatics were considerably increased (32).

Even with isolated specimens which were kept for up to five days in the refrigerator at 4°C, after injection of the dye into the Pacinian corpuscles an active pulsation of the individual lymphangions appeared after 4–5 hours at room temperature. By moistening the specimen with Venalot before the injection of the dye, active pulsation could be seen after only three hours, with removal of the dye.

References
6 Casley-Smith, J.R.: The fine structure, properties fine and permeabilities of the lymphatic endothelium. Experientia (Basel), Suppl. 14 (1967) 19
7 Casley-Smith, J. R.: The structure of normal large lymphatics: How this determines their permeabilities and their ability to transport lymph. Lymphology, 1 (1969) 15
13 Fabian, G.: The Lymphatic Vessels of the Uterus during the Sexual Cycles of the Mice. Lymphology, 9 (1976) 78
14 Fabian, G.: Pacinian Corpuscles and their Relationship to the Lymphatic System. Lymphology, 10 (1977) 27
23 Heller, A.: Über selbständige rhythmische Contractionen der Lymphgefäße bei Säugethieren. Z. med. Wiss., 7 (1869) 545

Permission granted for single print for individual use.
Reproduction not permitted without permission of Journal LYMPHOLOGY.

Priv.-Doz. Dr. Gerda Fabian, Department of Anatomy, Ruhr-University, D-4630 Bochum, Germany

Priv.-Doz. Dr. Gerda Fabian, Department of Anatomy, Ruhr-University, D-4630 Bochum, Germany