Admittance Plethysmographic Evaluation of Undulatory Massage for the Edematous Limb

Z. Yamazaki, Y. Fujimori, T. Wada, T. Togawa*, K. Yamakoshi*, H. Shimazu*

2nd Surgical Department, Tokyo University Hospital, * Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, Tokyo, Japan

Summary
A new apparatus, called *Hadomer* has been developed for the treatment of peripheral lymphedema and venous disorder. It has cuffs with 5 rooms, through which the air pressure moves from periphery to proximal point, just like surging waves. The peripheral stagnant lymph and venous blood are displaced toward the heart by this pneumatic massage.

Hadomer has been applied to more than 400 patients with the edematous limbs, with satisfactory results, such as decrease of swelling, pain and induration. These clinical results have been also confirmed by electrical admittance plethysmography which is useful to measure noninvasively the edematous volume and the blood flow.

The admittance of the edematous limbs is high and after massaging with *Hadomer* it approaches normal range. The blood flow in the diseased limbs is less than the healthy one and it is observed better after pneumatically massaging.

A new apparatus, called "*Hadomer*" has been devised for the treatment of peripheral lymphedema and venous disorder. This device has been accomplished through our studies (1) on the lymphatic circulation for the last five years. *Hadomer* has cuffs with five rooms, through which the air pressure moves from periphery to proximal point, just like surging waves (Fig. 1). The peripheral stagnant lymph and venous blood are displaced toward the heart by this pneumatic massage.

The edematous volume and blood flow have been measured by electrical admittance plethysmography in order to evaluate the undulatory massage for the edematous limb.

Material and Method

Hadomer has been applied to more than 360 patients with postomastectomy edema of the arms and 80 patients with edema of the lower limbs. The clinical results such as decrease of swelling, pain and induration have been satisfactory. Thirty two of these patients have been at random selected for this investigation.

In Fig. 2 the principle of electrical admittance plethysmography is illustrated. The admittance is a unit representing the conductivity of alternating electric current, therefore the admittance figure is proportional to the retention of the fluid in the tissue. The admittance change is measured by the tetrapolar technique (2) and specific electrical conductivity (3) is calculated by assuming the limb as an uniform

Permission granted for single print for individual use. Reproduction not permitted without permission of Journal LYMPHOLOGY.
Admittance Plethysmographic Evaluation of Undulatory Massage for the Edematous Limb

Fig. 2 Principle of electrical admittance plethysmography

\[
\text{LIMB BLOOD FLOW (IFL)} = \frac{\rho_b L^2}{\Delta Y} \frac{\Delta Y}{\Delta T}
\]

Fig. 3 Conductivity of healthy and edematous arm (left side)
Conductivity of post-mastectomy edema of the arm before and after massage with Hadomer (right side)

Results
The conductivity of the edematous arm is high and after massage by Hadomer, it approaches to the normal range (Fig. 3).

cylindrical volume conductor. The arterial inflow to the segment of the arm can be calculated from the initial slope of the corresponding volume variation with time. The blood volume change following venous occlusion (\(\Delta V ; \text{ml}\)) is calculated from the admittance change (\(\Delta Y ; \text{mho}\)) by the following equation (3):

\[
\Delta V = \rho_b L^2 \frac{\Delta Y}{\Delta T} \quad (1)
\]

where \(\rho_b\) is the blood resistivity (\(\Omega \text{ cm}\)) and \(L\) is the length of the segment (cm). The blood flow can be obtained from the initial slope ([dY/dt]_t=0; mho/s) of the admittance change (3).
The blood flow in the diseased arm is less than the healthy arm and it is observed better after undulatory massage (Fig. 4).

Conclusion

The undulatory massage has been proved to be effective in decreasing the stagnant lymph and also in improving the blood flow in the edematous arm using electrical admittance plethysmography.

References

Z. Yamazaki, 2nd Surgical Department, Tokyo University Hospital, Tokyo, Japan