ENHANCED PROSTAGLANDIN I₂-FORMATION OF HUMAN LYMPHATICS DURING PULSATILE PERFUSION

H. Sinzinger, J. Kaliman, E. Mannheimer

Atherosclerosis and Thrombosis Research Group of the Austrian Academy of Sciences, and Department of Cardiology, University of Vienna, Austria

ABSTRACT

Previous studies demonstrate that prostacyclin (prostaglandin I_2 , PGI_2) is the main arachidonic acid product in human lymph vessels. Pulsatile perfusion increases and prolongs PGI_2 -formation as do leukotrienes (LT) such as LTC_4 . Thus, physical activity besides local mechanical and biochemical influences on lymph pressure and flow also stimulates local lymphatic PGI_2 synthesis, a prime counterbalancing factor in lymphatic constriction induced by other eicosanoids.

Human lymphatics like arteries (1) and veins (2) produce notable amounts of prostaglandin (PGI₂) (3). The in vitro PGI₂-synthesis (4), however, as well as the conversion rate (5) in the presence of exogenously added ¹⁴C-arachidonic acid (AA) does not reflect the actual amount of biologically active PGI₂ at the site of its action. Thus, leukotrienes (LT) C4 and D4 are both capable of enhancing the PGI₂generation on a dose-dependent basis (6). This phenomenon, for example, may play an important role during inflammation where white blood cells provide LT's (7) in excess at the inflamed site. Enhanced eicosanoid formation induced by cellular damage (8), hypoxia (9) and mechanical irritation (10) are other factors promoting release of contractile stimulants, such as thromboxane A_2 (11), and LT's (12) eicosanoids that offset the vasorelaxant effect of PGI₂ (13). Increased intraluminal pressure as with exercise has also been suggested to stimulate PGI₂-formation in blood vessels (14).

Because the intraluminal pressure of in vivo lymphatics varies widely during physical activity we examined whether graded increments in lymphatic pressure altered formation of prostaglandin I_2 in vitro.

MATERIALS AND METHODS

We examined four human peripheral lymphatics from three females and one male (age 15-42 years). Lymphatics were stored in liquid nitrogen (-70°C) until testing. A control segment of the lymph vessel was incubated in the perfusion system (Fig. 1) but without perfusion. The incubation buffer (tris-HCl, pH 7.4) was removed every ten minutes for 120 minutes and determined promptly for the presence of prostaglandin I₂ using the platelet aggregation bioassay (16). Briefly, 100 μ l of the supernatant was added to an aggregometer one minute prior to induction of aggregation by 1 μ M (100 μ l) ADP. The aggregation inhibition was quantified using a synthetic PGI₂-standard. The characteristics of the platelet aggregation inhibitory compound were classified as being PGI₂ as described earlier (7). The amount of PGI₂ is given in pg PGI₂ per cm²/per minute.

Fig. 1: The lymph vessel is fixed in a buffer bath and perfused under various pressure conditions provided by the pump to the left and regulator to the right. The effluent is collected on ice for RIA- and bioassay-determination.

Perfusion experiments

Lymph vessels were perfused under pulsatile flow at graded pressures of 30/20, 60/40 and 120/80 mmHg with 60 pulsations per minute. 0.15 ml/min solution was perfused and the effluent was collected in an ice-bath as shown in Fig.~1. As with control lymphatics, incubated fluid was collected serially for 120 minutes and the amount of prostacyclin in the effluent tested using the bioassay technique, and the half-life of PGI_2 -formation was computed.

Statistics

The values are given in $\overline{X} \pm SD$; comparison has been done using Student's t-test for assessing statistical significance.

RESULTS

Perfusion with pulsatile pressure *in vitro* significantly increased and prolonged prostaglandin I_2 -formation. The increase in prostacyclin formation was dose-dependent (*Table 1*); however, the half-life of PG I_2 -generation was unchanged (22 ± 4, 24 ± 3 and 21 ± 4 min., respectively). The addition of leukotriene C_4 (50 ng/ml) induced a further increase in PG I_2 -formation, but again the half-life of PG I_2 was unchanged (25 ± 4 min.).

DISCUSSION

Intralymphatic pressure varies considerably depending on physical activity, (e.g., walking, running, sitting, recumbency). Our findings demonstrate, that in an isolated human lymphatic, PGI₂-formation is definitely pressure dependent. Nonetheless, it should be noted, that this lymph vessel is removed from its normal physiological environment including neurohumoral regulating controls. Because prostaglandin I₂ relaxes precontracted lymphatics and antagonizes vasoconstriction (13), the amount of biologically active PGI2 available at a local site may be important for overall modulation of lymphatic tone. Unfortunately, the active local concentrations of the contractile agents (thromboxane A_2 , prostaglandin G_2 , H_2 , leukotrienes) are difficult if not impossible to assess in vivo. Thus, it is still speculative whether this pressure-dependent response of prostaglandin I₂-generation operates in vivo. It is also noteworthy that clinical conditions with increased lymph flow are associated with increased formation of either thromboxane or leukotrienes (e.g. endotoxemia (20) or local inflammation (6)). Thus, lymph flow with physical movement (21) is not only propelled by mechanical forces, but also by the prostaglandin system. Other environmental

	Table 1.
Prostaglandin	I ₂ -formation (cm ₂ /min.)
With Increasing	Pulsatile Pressure ($\bar{x} \pm SD$)

Min.	Static	30/20 mmHg	60/40 mmHg	120/80 mmHg	60/40 mmHg +50ng LTC ₄
10 20 30 40 50 60 70 80 90 100 110	3.62 ± 1.67 1.86 ± 0.61 1.08 ± 0.37 0.26 ± 0.11 0.09 ± 0.05	6.12 ± 1.56 3.12 ± 1.23 2.27 ± 0.64 1.13 ± 0.71 1.47 ± 0.41 1.33 ± 0.36 1.55 ± 0.30 0.83 ± 0.41 0.74 ± 0.27 0.26 ± 0.09 0.37 ± 0.12	11.26 ± 2.17 8.24 ± 1.63 5.26 ± 1.47 4.55 ± 1.16 2.75 ± 0.56 1.82 ± 0.63 1.85 ± 0.41 1.77 ± 0.21 1.93 ± 0.56 0.84 ± 0.21 0.66 ± 0.33 0.31 ± 0.08	28.41 ± 5.21 21.54 ± 4.17 17.33 ± 3.16 11.62 ± 2.84 8.55 ± 3.06 6.36 ± 1.86 3.71 ± 1.24 4.22 ± 0.86 2.13 ± 0.71 2.34 ± 1.12 1.11 ± 0.26	27.24 ± 7.63 16.32 ± 6.56 10.54 ± 5.21 8.75 ± 3.63 8.54 ± 2.86 8.64 ± 2.73 4.13 ± 1.56 5.34 ± 1.85 4.13 ± 1.21 2.65 ± 0.86 2.24 ± 0.57
120	_	0.22 ± 0.08	0.21 ± 0.08	0.63 ± 0.31	1.23 ± 0.48

factors that regulate the biological half-life of PGI₂, such as protein concentration and pH, also contribute to the complexity of local lymph propulsion. On the other hand, observations that upstream obstruction of lymphatics (22) promotes a decrease in frequency of spontaneous contraction while downstream obstruction increases lymphatic contractility are still not readily explained. Although the in vitro findings favor a pressure-dependent increase in prostacyclin generation, the role of pulsatile flow and PGI₂-synthesis is still controversial (15,19). Nonetheless, greater lymphatic tone probably increases lymphatic pulsatility and therefore accelerates forward lymph flow and in this setting local PGI₂-production may act as a sensitive feedback control mechanism to regulate human lymphatic motility.

REFERENCES

- Mannheimer, E, H Sinzinger, R Oppolzer, et al: Prostacyclin synthesis in human lymphatics. Lymphology 13 (1980), 44.
- 2. Moncada, S, RJ Gryglewski, S Bunting, et al: An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263 (1976), 663.

- Feigl, W, H Sinzinger, R Santler, et al: In vitro Prostaglandin I₂-Synthese normaler und pathologisch veränderter menschlicher Beinvenen. VASA 15 (1986), 47.
- Weber, G, G Bianciardi, P Toti, et al: Effects of prostacyclin on ultrastructural features of human platelets in vitro. Prostaglandins 22 (1981), 789.
- Sinzinger, H, J Kaliman, E Mannheimer: Arachidonic acid metabolites of human lymphatics. Lymphology 17 (1984), 39.
- Sinzinger, H, J Kaliman, E Mannheimer: Effect of leukotrienes C₄ and D₄ on prostaglandin I₂-liberation from human lymphatics. Lymphology 19, (1986), 79.
- Murphy, RC, S Hammarström, B Samuelsson: Leukotriene C: a slow reacting substance from murine mastocytoma cells. Proc. Nat. Acad. Sci. 76 (1979), 4275.
- 8. Schrör, K: Prostaglandine und verwandte Verbindungen: Bildung, Funktion, und pharmakologische Beeinflussung. George Thieme, Stuttgart-New York, 1984.
- Dorp, DA van, RK Beerthusi, DH Nugteren, et al: The biosynthesis of prostaglandins. Biochim. Biophys. Acta 90 (1964), 204.
- Kunze, H, W Vogt: Significance of phospholipase A for prostaglandin formation. Ann. NY Acad. Sci. 180 (1971), 123.
- Johnston, MG, JL Gordon: Regulation of lymphatic contractility by arachidonic acid metabolites. Nature 293 (1981), 294.

- 12. Johnston, MG, A Kander, JL Gordon: Products of arachidonic acid and its cyclooxygenase and lipoxygenase products on lymphatic vessel contractility *in vitro*. Prostaglandins 25 (1983), 85.
- Sinzinger, H, J Kaliman, E Mannheimer: Regulation of human lymph contractility by prostaglandins and thromboxane. Lymphology 17 (1984), 43.
- Sinzinger, H, J Kaliman, G Joskovic: Vasodilatierender Effekt von Leukotrien C₄ und D₄ durch Stimulation der Prostazyklinsynthese. Wr. klin. Wschr. (in press)
- Busse, K H Pohl, H Forstermann, et al: Effect of pulsatile perfusion on vascular tone and prostacyclin (PGI₂) release: role of endothelial cells. Circulation 70 (1983), 232.
- Bunting, S, RJ Gryglewski, S Moncada, et al: Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin x) which relaxes strips of mesenteric arteries and inhibits platelet aggregation. Prostaglandins 12 (1976), 897.
- Silberbauer, K, H Sinzinger, M Winter: Prostacyclin release in rat kidney is stimulated by angiotensin II. Brit. J. Exp. Pathol. 81 (1979), 41.
- Fruschelli, C, R Gerli, C Alessandrini, et al: le controlle neuro umerale della contrittilita dei vari linfatic. Arch. ital. Anat. Embr. Suppl. et Vol. 88 (1983), 49.

- Frangas, JA, CL Ives, SG Eskin, et al: Effect of pulsatile flow on PGI₂-production by endothelial cells. Circulation 70 (1983), 73.
- Frolich, JC, M Ogltree, BA Peskar, et al: Pulmonary hypertension correlated to pulmonary thromboxane synthesis. Adv. PG and TX. Res. 7 (1970), 745.
- Grunger, DN, RE Parker, EW Anillu, et al: Lymph flow transients. Acta Physiol. Scand. 100 (1978), 61.
- Hargens, AR, BW Zweifach: Contractile stimuli in collecting lymph vessels. Am. J. Physiol. 233 (1977), 57.
- H. Sinzinger, M.D. Atherosclerosis and Thrombosis Research Group
- (ATK) of the Austrian Academy of Sciences
- A-1090 Wien, Schwarzspanierstr. 17, Austria
- E. Mannheimer. M.D. J. Kaliman, M.D. Department of Cardiology, University of Vienna
- A-1090 Wien, Garnisongasse 13, Austria