P-SELECTIN AND VON WILLEBRAND FACTOR IN BOVINE MESENTERIC LYMPHATICS: AN IMMUNOFLUORESCENT STUDY

A. Di Nucci, C. Marchetti, S. Serafini, F. Piovella

Istituto di Farmacologia Medica (ADN), Istituto di Istologia ed Embriologia Generale (CM), Istituto di Clinica Medica 2° (SS,FP), Università degli Studi di Pavia, I.R.C.C.S. Policlinico S. Matteo, Pavia, Italy

ABSTRACT

P-selectin (PADGEM, GMP-140, CD62) is an integral membrane protein specific to alpha granules of platelets and Weibel-Palade bodies of blood vascular endothelial cells. The presence in lymphatic endothelial cells of numerous Weibel-Palade bodies and their positivity to immunocytochemical reaction for von Willebrand factor have previously been characterized and described. Because von Willebrand factor and P-selectin codistribute in Weibel-Palade bodies of blood vascular endothelial cells we investigated the presence of both P-selectin and von Willebrand factor in lymphatic endothelium. Lymphatic vessels expressed positive reaction to immunocytochemical assay thereby demonstrating the presence of P-selectin in the endothelium. Distribution and intensity of the reaction were similar to those observed in bovine blood vascular endothelium.

Lymphatic vessels are lined by a layer of flat endothelial cells which are morphologically similar to blood vascular endothelial cells. Nevertheless little is known about the metabolic and functional features of lymphatic endothelial cells and about their possible similarities with blood vascular endothelial cell functional properties.

Blood vascular endothelial cell cytoplasm exhibits numerous Weibel Palade bodies which contain the adhesive molecule von Willebrand factor (vWF) (1). These organelles are also the intracellular storage site for the adhesion molecule P-selectin (2,3). Von Willebrand protein and P-selectin are synthesized by endothelial cells and megakaryocytes only and are also stored in platelet alpha granules (4,5). Upon stimulation with physiologic agonists such as histamine or thrombin, or experimental secretagogues such as phorbol ester or calcium ionophore, Weibel-Palade bodies fuse with the plasma membrane. This process induces the rapid and dose-dependent release of high molecular weight forms of von Willebrand factor and also a rapid increase in surface expression of P-selectin (6-8). Von Willebrand factor is secreted into the circulation or incorporated in subendothelial extracellular matrix, and is involved in platelet/vessel wall interactions, supporting thrombocyte adhesion and aggregation at the site of vascular injury. Surface P-selectin expression, on the other hand, helps in recruitment of phagocytic cells (neutrophils and monocytes) and mediates the interaction between leukocytes, platelets and endothelial cells of the blood vessel wall (3,9).

The presence in lymphatic endothelial cells of numerous Weibel-Palade bodies and their positivity to the immunocytochemical reaction for vWF factor have been previously characterized and described (10-12). Because vWF and P-selectin codistribute in Weibel-
Palade bodies of blood vascular endothelial cells, we investigated the possible presence also of P-selectin in lymphatic endothelium.

MATERIAL AND METHODS

Lymphatics and blood vessels from bovine mesenteries were obtained at the local slaughterhouse. The lymphatic vessel network was delineated by injecting a solution of 0.1% Evan's blue dye in phosphate buffered saline (PBS) into mesenteric lymph nodes.

Small pieces of lymphatic vessels and blood vessels were dissected and frozen in liquid nitrogen. Cryostatic sections (15 μm) were fixed for 30 min in a mixture of ethanol and acetic acid (95% and 5% v/v respectively), and washed in PBS.

Some sections were incubated for 30 min with polyclonal rabbit antibody to vWF (Rabbit anti vWF antibody, Dakopatts) diluted 1:50 in PBS, washed, incubated for 30 min with secondary swine antibody to rabbit IgG (Swine anti-rabbit IgG, Dakopatts) conjugated with tetramethyl rhodamine isothiocyanate (TRITC) diluted 1:100 in PBS. Sections were washed in PBS and mounted in glycerol/PBS (9:1) examined under fluorescence microscopy and photographed, as previously described (13).

Other sections were incubated for 30 min with monoclonal mouse antibody to P-selectin.
(Monoclonal antibody to human platelet
GMP 140, Takara Biomedicals) diluted 1:320
in PBS, washed in PBS and incubated for 30
min with secondary TRITC-conjugated rabbit
antibody to mouse IgG (Rabbit antimouse
IgG, Dakopatts) diluted 1:40 in PBS. Sections
were washed in PBS and mounted as
previously mentioned.

Small pieces of the same lymphatic and
blood vessels were dissected and fixed for 60
min in a mixture of 2.5% glutaraldehyde and
2% paraformaldehyde in 0.1 M cacodylate
buffer, pH 7.4, at 4°C, postfixed for 60 min in
1.33% OsO₄ in 0.2 M collidine buffer, pH 7.4 at
4°C, dehydrated and embedded in epoxy resin
for transmission electron microscopy (TEM).

RESULTS

The immunocytochemical reaction to
detect the presence of vWf in the endothelial
cells stained positively both in the blood
vessels and the lymph vessels (Fig. 1).

Moreover, both vessels (lymph and blood)
expressed a positive reaction to the immuno-
cytochemical assay demonstrating the
presence of P-selectin in the endothelium. We
observed a continuous, intense fluorescent
staining which labeled the inner layer of the
vessel wall. No differences in distribution and
intensity of the microgranular pattern of the
reaction were observed between venous or
arterial and lymphatic vessels (Fig. 2).

By ultrastructural examination on thin
sections we were able to observe Weibel-
Palade bodies among the cytoplasmic
organelles of the flat and irregular endothelial
cells of the same blood and lymphatic
mesenteric vessels (Fig. 3).

DISCUSSION

This immunocytochemical technique has
demonstrated the presence of vWf and P-
selectin in bovine mesenteric lymphatic
endothelium. Ultrastructural study on portions of these lymphatic vessels confirm the presence of Weibel-Palade bodies in the cytoplasm of the endothelial cells. Taken together, these observations suggest that Weibel-Palade bodies are the storage cytoplasmic organelles for vWF and P-selectin in lymphatic endothelium as has already been demonstrated for blood vascular endothelium (1,2). The demonstration of the co-distribution of vWF and P-selectin in blood vascular endothelial cells suggests the presence of important co-regulators for hemostasis and inflammation. Localization of vWF and P-selectin in Weibel-Palade bodies of lymphatic endothelial cells also suggest a functional correlation between these adhesive molecules, although the precise role of P-selectin in lymphatic vessels is still unclear. Perhaps P-selectin acts to regulate white blood cell interaction with lymphatic vascular function.

ACKNOWLEDGEMENTS

This work was funded in part by grants from the Italian Ministry for University and Scientific Research (MURST: 40/60% Projects).

REFERENCES

Dr. A. Di Nucci
Istituto di Farmacologia Medica
Piazza Botta 10
27100 Pavia, Italy