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Abstract 

Standing forage biomass (SFB) and the percent of standing 
biomass composed of forbs (PCTF) were modeled across the 
growing season. Samples representing stages of plant maturity 
from early vegetative to dormant were collected from grazed and 
ungrazed native tallgrass paddocks using a 0.5 X 0.5 m quadrat. 
Total biomass was measured during all years of the study 
(1992-1995). Grass and forb biomass were measured separately 
during 1995. Height of canopy closure also was measured during 
1995. Before clipping, plots were scanned with a multispectral 
radiometer. Models were prepared using simple regression, mul- 
tiple regression (MR), or a commercial neural network (NN) 
computer program. Potential inputs to MR and NN models of 
SPB and PCTF included Julian day of harvest (JD), range site, 
canopy closure height (CH), incident radiation, spectral 
reflectance values (RFV) at 8 discreet bandwidths, and the nor- 
malized difference vegetation index (NDVI). The NDVI alone 
accounted for little variability (R’ = 0.13) in SFB during all years 
of the study. The optimal MR model for the same data set (SFB= 
3.5[JD] - 43.7[460 nm RFV] + 10991NDVIl - 992; R2 = 0.62) 
accounted for a greater amount of the variability in SFB. The 
capacity to describe variation in SFB for the 1995 data with MR 
was improved when CH was included as a variable (R* = 0.58 
versus 0.78). A NN model accounted for the most variation in 
SFB across the entire study (R* = 0.76). During 1995, the capabil- 
ity of a NN to account for variation in SFB within the training 
data was similar whether or not CH was included as an input (R* 
= 0.86); however, prediction of SFB from validation data using 
the same NN was improved by using CH as an input variable. 
Little variation in PCTF was accounted for by a MR model (R* = 
0.23); however, a considerably larger proportion of the variation 
in PCTF was accounted for when an NN was used (R* = 0.59). 
Seasonal changes in SFB and PCTF were described with an 
acceptable degree of accuracy by forage reflectance characteris- 
tics that were adjusted for time of season and canopy complexity. 
Moreover, when provided with the same potential inputs, NN 
predicted SFB and PCTF from validation data more accurately 
than MR models. 
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Measurement of standing forage biomass (SIB) is ubiquitous in 
the study of prairie ecosystems. Its estimation by hand-clipping 
techniques is laborious. Moreover, the time and labor required con- 
strain tbe number of samples that can be collected realistically 
(Biondini 1992). Ground-based remote sensing devices that mea- 
sure forage reflectance characteristics have been suggested as alter- 
natives to hand clipping for the estimation of native prairie biomass. 

Spectral reflectance in the red and near-infrared (NIR) portions 
of the spectrum is related directly to above-ground forage bio- 
mass (Pearson et al. 1976). Richardson and Everitt (1992) noted 
that remote sensing procedures often transform red and NIR spec- 
tral waveband measures into vegetation indices. Indices such as 
the NlR:red ratio and the normalized difference vegetation index 
(NDVI) reduce measurement variability due to soil type, sunlight 
intensity, and angle of sunlight incidence. Reflectance in the 
green and blue portions of the spectrum has been used to predict 
agronomic traits of forages such as leaf area index and vigor 
(Hinzman et al. 1986). In some cases, these measures have been 
incorporated into a ‘greenness’ index (Miller et al. 1984); howev- 
er, few models of aboveground biomass have been proposed that 
integrate multiple, biophysically meaningful wavebands. 

Development of accurate, generalizable models to predict for- 
age biomass from reflectance data is challenging. Ideally, valida- 
tion data should encompass a wide variety of biomass levels, for- 
age maturities, and growing conditions and should involve sever- 
al growing seasons. Simple models composed of few variables 
are often inadequate to describe such variation (Jackson et al. 
1983, Anderson and Hanson 1992). Complex models have been 
proposed to describe forage biomass across multiple stages of 
forage maturity (Jensen et al. 1990, Mitchell et al. 1990) but 
robust models can be difficult to derive from highly variable time 
series data. This is particularly true when the relationship 
between the dependent variable and the independent variables 
deviates from linearity or the underlying reasons for the relation- 
ship are not understood completely (Kobzadi et al. 1995). 

Recent availability of commercial neural network (NN) soft- 
ware has provided new opportunity for the development of robust 
predictive models. Neural networks are highly parallel, dynamic 
learning systems that simulate the human inductive reasoning 
process (Stanley and Bak 1988). They learn by example, making 
predictions based on experience. As a NN’s experience increases, 
its predictive power also increases. Conventional modeling tools 
rely on a rigid set of programmed rules to make predictions. As 
such, they lack the ability to recognize subtle relationships among 
data and have low tolerance for error. Neural networks have a 
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high tolerance for error because of their inductive nature 
(Kohzadi et al. 1995). Moreover, they have been shown to out- 
perform statistical methods when predicting nonlinear responses 
(Thai and Shewfelt 1991, Bochereau et al. 1992). 

Our primary objective was to develop robust predictive models 
of seasonal change in tallgrass prairie standing forage biomass 
(SFB) and the percent of standing biomass attributable to forbs 
(PCTF) from radiometric reflectance data. Secondarily, we 
wished to compare the efficacy of neural networks (NN) with that 
of regression procedures for modeling SFB and PCTF from simi- 
lar input variables. 

Materials and Methods 

Study Area. Research was conducted at the Kansas State 
University Range Research Unit located near Manhattan, Kans. 
The study area included 4 paddocks. Three of the paddocks (aver- 
age size = 34 ha) were grazed by domestic cattle as part of a 
long-term grazing systems study (Olson et al. 1995). Livestock 
were excluded from the remaining paddock (18 ha). 

Vegetation and soils on the site were described by Anderson 
and Fly (1955). Major grass species were big bluestem 
(Andropogon gerardii Vitman), indiangrass (Sorghastrum nutans 
Nash), switchgrass (Panicum virgatum L.), and little bluestem 
(Schizachyrium scoparium (Michx.) Nash). Principal overstory 
forbs included leadplant (Amorpha canescens (Nutt.) Pursh), 
Baldwin’s ironweed (Vernonia baldwini Torr.), slimflower scurf- 
pea (Psoralea tenuiflora Pursh), and blue wildindigo (Baptisia 
minor Lehm.). Woody plant species such as smooth sumac (Thus 
glabra L.) and buckbrush (Symphoricarpus orbiculatus Moench) 
also occurred on the site but were encountered infrequently. Site 
soils were transitional from Ustolls to Udolls (Owensby et al. 
1988). Loamy upland, clay upland, and limestone breaks were the 
primary range sites (Anderson and Fly 1955). 

Data Collection. Standing forage biomass was measured from 
1992 to 1995 in each of the major range site types within each 
paddock. Standing forage biomass was measured only once in 
1992 and 1993 but was measured 5 and 7 times during 1994 and 
1995, respectively (Table 1). During 1994 and 1995, dominant 
warm-season grasses were phenologically immature at the outset 
of measurements and dormant at the time when the final samples 
were collected. Approximately equal numbers of samples were 
collected from each range site. 

Measurements were conducted along temporary transects (75 
m) identified on each collection day. Individual plots were spaced 
at regular intervals along transects. Plots (1 m in diameter) were 
scanned with an aerial-view multispectral radiometer from 2 m 
above ground between 1100 and 1600 hours. Other pertinent 
information collected at the time of the scan included: Julian date, 
incident radiation (W m-‘), and range site type. The radiometer 
used in this study (Model 87, Cropscan @, Inc.‘~‘) was fitted with 
filters for measuring spectral reflectance at 8 specific wavebands 
(32 nm; approximate center wavelength = 460, 510, 560, 610, 
660, 710, 760, and 810 nm). A data acquisition device (DLC 
Model 92, Cropscan@, Inc.‘) equipped with sunangle cosine cor- 
rection capability was used to record reflectance data. 

Radiometer calibration was conducted daily with an opal glass 
diffuser using the two-point minimum/maximum irradiation 
method (Cropscan 1994). In addition, 1 of the radiometer’s filters 

Table 1. Summary of Collection Dates 

Julian 
Date 

150 
166 
173 
175 
180 
211 
223 
229 
236 
241 
252 
259 
271 
294 

Yea 

94 
95 
95 
94 
95 
92 
95 
95 
95 
94 
94 
94 
95 
93 

# Mean Minimum Maximum Standard 
Plots Biomass Biomass Biomass Deviation 

__--___ -___ (gm-“) _______ ____ 

30 178.6 124.9 244.6 29.8 
30 200.6 53.3 443.4 109.3 
30 279.7 89.1 491.3 139.4 
30 353.6 200.5 516.5 83.4 
27 279.6 84.7 526.0 134.7 
60 194.1 53.7 442.7 102.7 
30 356.4 154.1 648.1 121.3 
30 408.7 133.4 691.6 199.0 
30 437.1 165.4 651.2 136.2 
30 368.7 254.2 580.3 84.0 
30 491.6 343.8 696.8 79.1 
30 455.3 175.1 767.6 116.6 
30 306.6 83.2 554.2 155.7 

134 228.5 22.7 762.0 140.9 

was calibrated to serve as an internal pyranometer usin a LI-COR 
B model LI-200SA pyranometer (Omnidata International , I~c.~). 

Actual standing forage biomass (SFB) was measured immedi- 
ately after the radiometer scan. Vegetation was clipped at ground 
level within a frame (0.5 X 0.5 m) placed in the center of the plot. 
Clipped forage was placed into paper bags and dried for 96 hours 
at 50°C to determine dry SFB. During the 1995 growing season, 
clipped forage was separated into grass and forb components. 
Grasses and forbs were dried and weighed separately to deter- 
mine their relative contributions to SFB. 

A Robe1 pole measurement was made at each plot (n = 207) dur- 
ing 1995 concurrent with the radiometer scan (Robe1 et al. 1970). 
The height of canopy closure (m) was estimated from 4 equidistant 
points around the Robe1 pole from a distance of 4 m and at a height 
of 1 m. The 4 estimates were averaged for each plot. 

Modeling Procedures. For each individual plot (n = 551) the 
following data were available: Julian day of harvest (JD), range 
site type, incident radiation, reflectance values (RFV) for each 
waveband, and the normalized difference vegetation index 
(NDVI; (810 nm - 610 nm) / (810 nm + 610 nm); Biondini 1992). 
In addition, canopy closure height (CH) and the percentage of 
biomass attributable to forbs (PCTF) were collected from plots 
measured in 1995 (n = 207). 

Approximately 10% of the plots (i.e. validation data) from each 
harvest date/range site subgroup were removed randomly from 
the data set for use in evaluating predictive accuracy of models. 
The remaining data points (i.e., training data) were used to con- 
struct neural network (NN) and regression models. Additionally, 
plots measured during 1995 were modeled as a discreet subgroup 
of the main data set. 

Multiple regression (MR) models of SFB and PCTF were pre- 
pared from training data using the stepwise regression procedure 
of SAS (SAS Institute 1985). The level of significance specified 
for entry and retention of variables in the model was P c 0.10. 
Linear models were constructed using 1 to 12 variables for the 

’ Cropscan, Inc., 125 26th St. NW, Rochester. Minn. 55901. 
’ Trade and company names are included for the benefit of the reader and imply no 
endorsement by Kansas State University. 
Omrddata International. Inc., P.O. Box 448, Logan, Ut. 84321. 
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main data set and 1 to 13 variables for the 1995 subset. The MR 
model was considered to be optimal when: 1) further increases in 
the coefficient of determination were minor (e.g., 1 or 2 hun- 
dredths of a unit) and 2) significant decreases in the error mean 
square were no longer apparent. Each MR model was validated 
by using it to predict SFB or PCTF from the validation data set. 
Measured values from the validation data were compared with 
predicted values to evaluate accuracy. 

800 

2=0.13 x xx 
600 

Neural networks were developed with a commercially available 
software package (Braincel* Ver. 2.5, Promised Land 
Technologies, Inc4.) using the same training data and input vari- 
ables as in the MR modeling procedure. All NN’s were devel- 
oped using a back-percolation learning algorithm, a variant of 
back-propagation, with a single layer of hidden nodes (Jurik 
1993). Zhuang and Engel (1990a) provide an excellent overview 
of the mechanics of back-propagation algorithms. The Braincel@ 
best-net-search procedure was used to determine optimal node 
configuration and weight randomization. The Braincel@ leave- 
out procedure was performed on each fully trained NN to deter- 
mine the relative importance of inputs in predicting the variable 
of interest. Prediction error on training and validation data and 
the number of nodes in the hidden layer were recorded. Predictive 
accuracy of NN models was assessed in the same manner used 
for MR models. 

0 0.2 0.4 0.6 0.8 1 

z L 800 
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The NDVI has been used frequently to predict SFB and leaf 
area index in graminoid-dominated plant communities (Anderson 
and Hanson 1992, Aase et al. 1987). Therefore, a simple linear 
regression of NDVI versus biomass was prepared to compare the 
results of the current trial with those of previous studies. 
Validation was conducted in the same manner described for the 
NN and MR models. 

isopleth . . . . . . 

. regression- 

0 200 400 600 800 

Predicted Biomass, g me2 

Results and Discussion 

Fig. 1. Prediction of standing forage biomass from NDVI 
(1991-1995). (a) linear regression of NDVI on biomass, (b) model 
validation, RMSE = square root of the mean square error. 

Simple Regression Models. The NDVI alone accounted for lit- 
tle variation in standing forage biomass (SFB) across the growing 
season (Fig. la). Although the slope and intercept of this model 
were highly significant, the standard error of the estimate was 
extremely large. Subsequent prediction of SFB from data with- 
held from model construction ( i.e. validation data; Fig. lb) was 
poor. Similarities between the regression line and the isopleth (x 
= y) indicated little bias was associated with predicting SFB from 
NDVI in this study; however, the relationship between NDVI and 
SFB remained very weak and was characterized by predicted val- 
ues that fell in a much narrower range than actual SFB values. 

ial. Crop studies have demonstrated that NDVI may not be relat- 
ed linearly to biomass when it is measured over time. Indeed, the 
NDVI has been shown to decrease as the proportion of photosyn- 
thetically active tissue in a plant decreases (Hinzman et al. 1986, 
Nageswara-Rao et al. 1992). 

Multiple Regression Models. Richardson and Everitt (1992) 
indicated that temporal and spatial adjustments to the NDVI may 
be needed to apply it across multiple stages of plant growth. As a 
result, we included Julian day (JD), range site type, NDVI, and 
all reflectance data as possible inputs in the development of mul- 
tiple regression (MR) models to predict SFB. 

Aase et al. (1987) reported a strong season-long relationship 
between NDVI and dry biomass on native pastures in the 
Northern Great Plains but their data were generated from perma- 
nent plots that were measured repeatedly during the growing sea- 
son. In contrast, Anderson and Hanson (1992) demonstrated a 
poor association between NDVI and biomass of semiarid grass- 
lands when randomly selected plots were sampled. They suggest- 
ed that the large amount of standing dead plant material and litter 
in experimental plots contributed to the weak relationship. Litter 
and standing dead material were minimized in our study by annu- 
al burning; however, the SFB was characterized by significant 
changes over time in the amount of green versus senescent mater- 

The optimal MR model for predicting SFB developed from 
data encompassing all years of this study was: 

SFB = 3S[JD] - 43.7[460 nm RFV] + 1,099[NDV1] - 992 

Although this model accounted for a modest amount of the varia- 
tion in SFB (R’ = 0.62, SEE = 98), it represented a significant 
improvement in predictive accuracy compared to the linear 
regression of observed SFB on NDVI. Chlorophyll absorption 
bands at 460 nm have been reported to decrease after vegetation 
becomes physiologically mature (Hinzman et al. 1986). In this 
study, reflectance at 460 nm was negatively correlated (r = -0.59) 
with biomass and may have served as an indicator of advancing 
plant maturity. 

%omked Land Technologies, Inc. 900 Chapel St., Suite 300, New Haven, Conn. 
06510. 

Performance of the MR model when used to predict standing 
forage biomass (SFB) from validation data is shown in Fig. 2a. 
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Fig. 2. Prediction of standing forage biomass by MR: validation 
data. (a) 1992-1995, (b) 1995 - canopy height included, (c) 1995 - 
canopy height excluded, RMSE - square root of the mean square 
error. 

Little prediction bias was apparent by comparison of the relative 
positions of the regression line and the isopletb. Distribution of 
the observed values indicated that the model had limited utility 
for predicting SFB above 500 g rnm2, even though this was well 
within the range of SFB values used to construct the model 
(range = 23 to 768 g mm’; mean = 299 g me*). 

The tallgrass prairie region of east-central Kansas can yield 
more than 4,000 kg ha-’ SFB (Launchbaugh and Owensby 1978). 
Observations during this study indicated that upland plant commu- 
nity canopies commonly closed 0.4 to 0.6 m above ground level as 
early in the growing season as June (data not shown). As a result, 
shading of basal structures of the plant had potential to cause 
quantitative underestimates of forage reflectance. A Robe1 pole 
measurement was added to each of the plots measured during the 
1995 growing season (n = 207; Table 1). This was done to deter- 
mine if greater variation in SFB could be accounted for by provid- 
ing an index of the height at which the vegetation canopy closed. 

The optimal MR model developed to predict SFB from data 
collected during the 1995 growing season was: 

SFB = 2.O[JD] + 70S[CH] + 665[NDVI] - 783 
It accounted for approximately 78% of the variation in SFB dur- 
ing 1995 (SEE = 76). Prediction of SFB from validation data was 
similarly accurate using this model (Fig. 2b), reflecting only 
slight bias. When these data were modeled without canopy clo- 
sure height (CH), the optimal predictive equation had a substan- 
tially reduced level of accuracy (SFB = 3.5[JD] + 6.0[810 nm 
RFV] + 980[NDVI] - 1,204; R2 = 0.57; SEE = 105). 

The coefficients of determination (R2) and the RMSE from 
model validation efforts were similar for multiple regression 
(MR) models with and without CH (Figs. 2b and 2c); however, 
when CH was excluded, the model tended to underpredict SFB 
values above 500 g me2 (Fig. 2~). A similar phenomenon was 
noted when the MR equation (without CH) from all years of the 
study was used to predict SFB from validation data (Fig. 2a). 
This information was interpreted to suggest that inclusion of CH 
in MR models derived from ground-level radiometry can improve 
prediction of SFB. In fact, of all variables considered for the 1995 
MR model, CH had the strongest correlation to SFB (r = 0.81). 
The Robe1 pole technique for measuring CH was easily incorpo- 
rated with field radiometry procedures in this study and did not 
require spending a significant amount of extra time at each plot. 

Neural Network Models. The NN model of SFB developed 
from data encompassing all years of the study included the fol- 
lowing inputs: Julian date (JD), range site type, incident radia- 
tion, NDVI, and all reflectance data. General architecture of the 
network involved a single hidden layer of 12 nodes. Initial node 
weights for both the input and hidden layer were in the range of * 
1.50. The fully trained NN model had an average absolute predic- 
tion error of 9.8% and accounted for 76% of the variation in SFB 
across the growing season. Variables of greatest relative impor- 
tance in predicting SFB were reflectance values at 460, 660, and 
760 nm. Of secondary importance were Julian day and 
reflectance at 560 and 610 nm. Inputs of low importance in SFB 
prediction were incident radiation and range site type. Previous 
research indicated that soil differences between range sites can 
have a profound effect on spectral reflectance (Richardson and 
Everitt 1992); however, soil color and texture appeared to vary 
little across range sites in this study. This may explain why range 
site type was not a crucial factor for predicting SFB. 

The neural network (NN) developed with data from all years in 
this study, when tested using the validation data set, yielded rea- 
sonably accurate predictions of SFB (R2 = 0.79; Fig. 3a). This 
represented a substantial improvement in predictive accuracy 
over the corresponding single component or multicomponent lin- 
ear models (Figs. la and 2a, respectively). Zhuang and Engel 
(1990b) reported that NN of a structure similar to those used in 
our study classified multispectral remotely sensed data with 
greater accuracy than did statistical methods. Similarly, Landsat 
Thematic Mapper classification by NN resulted in fewer errors in 
prediction than conventional methods (Benediktsson et al. 1990, 
Hepner et al. 1990). Moreover, Key et al. (1989) showed that 
NNs had greater tolerance for error than statistical classification 
methods for highly complex, remotely sensed images. 

One of the advantages to using NN modeling for intricate and 
highly variable reflectance information is that no assumptions 
about the distribution of the data are needed. Zhuang and Engel 
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Fig. 3. Prediction of standing forage biomass by NN: validation data. 
(a) 1992-1995, (b) 1995 - canopy height included, (c) 1995 - canopy 
height excluded, RMSE = square root of the mean square error. 

(1990a, 199Ob) remarked that properly structured NNs, by nature, 
determine the true distribution of data during their training. The 
key to successful NN modeling, therefore, is collecting training 
data that are representative of the population under study. In addi- 
tion, Kohzadi et al. (1995) noted that the decision to apply a par- 
ticular mathematical function to a set of data characterized by 
nonlinearity can be quite subjective. Zhuang and Engel (1990a) 
suggested that an additional advantage of using NNs in develop- 
ing predictive models is the lack of need to make special adjust- 
ments for nonlinearity. 

The NN model of standing forage biomass (SFB) developed 
from data collected during 1995 (NN95+CH) was architecturally 
similar to the NN model for all years. The sole difference 
between the 2 was the addition of the canopy height variable in 
1995. Standing forage biomass was estimated with an absolute 
error of 8.3% (R* = 0.86) during model construction. Those 
inputs of highest relative importance in the prediction of SFB 
were canopy closure height (CH), NDVI, and reflectance at 560, 

660, and 810 nm. Inputs of lowest relative ranking were range 
site type, incident radiation, and reflectance at 710 and 760 nm. 
The performance of NN95+CH in predicting SFB from 1995 val- 
idation data is shown in Fig. 3b. Standing forage biomass in 1995 
was predicted with a higher degree of accuracy by the NN than 
by the corresponding MR model (Fig. 2b). This is in agreement 
with previous researchers who reported that NN modeling of 
untransformed data was more accurate than traditional regression 
methods (Elizondo et al. 1994, Brethour 1994, Pierce et al. 1994). 

In order to evaluate the influence of CH on the predictive abili- 
ties of the NNs developed in this study, a second NN that exclud- 
ed CH as a variable was constructed to predict SFB from 1995 
data (NN95-CH). Inputs of greatest relative importance to NN95- 
CH in predicting SFB were NDVI and reflectance at 460 and 610 
nm. Inputs of lowest importance were incident radiation and 
reflectance at 660 and 7 10 nm. 

Comparison of NN95-CH to NN95+CH revealed few differ- 
ences in predictive accuracy during model training; both account- 
ed for an equal proportion of variability in SFB (R* = 0.86) and 
had similar levels of absolute prediction error (8.2 vs. 8.3%, 
respectively). Small differences in accuracy appeared when 
NN95-CH was used to predict SIB from validation data (Fig. 
3~). Inclusion of CH in the NN model of 1995 SFB resulted in a 
28% reduction in the RMSE and increased the proportion of vari- 
ability accounted for in the validation data set by approximately 5 
percentage units. 

The effect of adding canopy closure height (CH) to multiple 
regression (MR) and neural network (NN) models of SFB led us 
to conclude that shading of basal plant structures may be a signif- 
icant impediment in developing predictive models of SFB. In 
grassland ecosystems where a substantial amount of biomass 
accumulates yearly, measurement of CH may increase the accura- 
cy of reflectance-derived biomass predictions. The relative 
importance of CH to predictive accuracy seems to be much 
greater for MR than NN models when presented with the inputs 
used in this study. The disadvantage of using a hand-measured 
index like canopy height in conjunction with multispectral 
reflectance is that it defeats the purpose of remote sensing. 

Prediction of Forb Biomass. Previous research has suggested 
that reflectance characteristics of planophile and erectophile plant 
species are different (Jackson and Pinter 1986, Plummer 1988). 
Planophile plant species (e.g., forbs) tend to reflect red electro- 
magnetic radiation in greater proportions than erectophile plant 
species (e.g., graminoids). A second objective undertaken during 
the 1995 growing season was to attempt to develop MR and NN 
models from reflectance data to predict the percentage of biomass 
attributable to forbs (PCTF). Inputs to both models included JD, 
range site type, CH, incident irradiation, NDVI, and all 
reflectance measurements. 

The optimal MR model for prediction of PCTF was: 

PCTF = -0.2[JD] - 3.8[CH] + 65.9 

This model accounted for little variability in PCTF (R* = 0.23, SEE 
= 14.5). Julian date and CH were related strongly and negatively to 
PCTF (r = -0.41 and -0.35, respectively). We speculate that expres- 
sions of both of these inputs in the model stemmed from the same 
phenomenon; as the growing season advanced, fewer forbs were 
visible in the vegetation overstory of the study area. This MR model 
poorly predicted PCTF from validation data (Fig. 4a). 

Only weak correlations existed between PCTF and reflectance 
measurements in the red portion of the spectrum (610 nm, r = 
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Fig. 4. Prediction of forb standing biomass (1995; % of total bio- 
mass): validation data, (a) MR, @) NN, RMSE = square root of 
the mean square error. 

0.003; 660 nm, r = -0.05; 710 nm, r = 0.14). This seemed to indi- 
cate that preferential reflectance of red electromagnetic energy by 
forbs did not occur in this study. Conversely, PCTF in this study 
was related more strongly to reflectance in the green portion of the 
spectrum (460 nm, r = 0.32; 510 nm, r = 0.29; 560 nm, r = 0.29). 

The fully trained NN for predicting PCTF had an average 
absolute prediction error of 13.1% (R* = 0.59). The input variables 
of greatest importance in predicting PCTF were NDVI and 
reflectance values at 460, 560, 610 and 710 nm. Of least impor- 
tance were JD, CH, and reflectance at 810 nm. Accuracy of the 
PCTP prediction was increased substantially by using the NN (Fig. 
4b) compared to the corresponding MR model. The slight upward 
bias of the equation line may have been the result of few observa- 
tions in which forb biomass was greater than 30% of total biomass. 

In contrast to the MR model, the high relative importance of 
red wavebands (610 and 710 mrt) in NN prediction of PCTF sug- 
gested that the NN and MR models differed substantially in their 
determination of the most salient input variables. The improved 
accuracy of prediction for the NN implies that reflectance in the 
red region may be important in discriminating botanical composi- 
tion. Further investigation of the reflectance characteristics of 
mixed canopy grasslands is warranted to resolve this issue. 

Conclusions. Both the neural network (NN) and multiple 
regression (MR) models used in our study predicted seasonal 
changes in standing forage biomass (SFB) with an acceptable 
degree of accuracy; however, NNs described the changes in SFB 
in validation data with greater accuracy and were able to more 
accurately predict the percentage of biomass attributable to forbs 
than MR models. The recent degree of success researchers have 

experienced using NN to model a variety of agronomic and eco- 
logical data indicates that they will play a key role in the develop- 
ment of process-oriented biospheric models of the future. 
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