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Abstract 

Appropriate application of significance tests in statistical ana- 
lyses requires an explicit statement of hypothesis, a clear definition 
of the population(s) about which inferences are to be made; and a 
model, a sampling strategy, an analysis, and an interpretation that 
are consistent with these considerations. In particular, experhnen- 
tai design and analyses must recognize appropriate replication and 
random selection of experimental units from target population(s). 
This paper discusses some aspects of these issues in range science 
research. Textbook examples and examples from range science 
applications are discussed in parallel in an attempt to clarify issues 
of randomization and replication in statistical applications. 
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Hurlbert’s (1984) monograph on pseudoreplication in ecological 
studies has encouraged scientists in many disciplines to examine 
field research problems from the critical perspective of experimen- 
tal design as related to replication. Notwithstanding the impor- 
tance and timeliness of Hurlbert’s paper, it has also generated 
considerable confusion for many. Numerous studies that can be 
appropriately analyzed statistically have been accused of pseu- 
doreplication because of an unclear understanding of the popula- 
tion(s) about which inferences are intended, what constitutes an 
experimental unit of the target population(s), and how these con- 
siderations apply to randomization and replication. 

My purpose is to briefly discuss some aspects of the “problem of 
pseudoreplication”as it is commonly encountered in range science 
research. I begin with a brief discussion of some concepts related to 
analysis of variance, analysis of regression, replication, and ran- 
domization. Textbook examples and examples from range science 
applications are then discussed in parallel in an attempt to clarify 
issues of randomization and replication in statistical applications. 
My intention is not to be critical of any given author or research 
project; therefore, the range-related studies described below are 
real but fictitious names are used. 

Discussion 

It is helpful to begin by distinguishing between “data analysis 
and interpretation”and “statistics”. These terms are not synonym- 
ous labels for identical endeavors. Tukey and Wilk (1966, p. 695) 
stated that: 

“The basic general tenet of data analysis is simply stated: to seek 

through a body of data for interesting relationships and information 

and to exhibit the results in such a way as to make them recognizable 

to the data analyst and recordable for posterity. 

Statistics, on the other hand, is based on 

‘formal theories...[that ‘legitimize] variation by confining it by 

assumption to random sampling, often assumed to involve tightly 

specified distributions (in which a bare minimum of adjustable 
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constants deny almost all flexibility) and [restore] the appearance of 

security by emphasizing narrowly optimized techniques and claim- 

ing to make statements with ‘known’ probabilities of error (Tukey 
and Wilk 1966, p. 695). 

These 2 prominent statisticians remarked that ‘While many of the 
influences of statistical theory on data analysis have been helpful, 
some have not”(Tukey and Wiik 1966, p. 695), and suggested that 
“Data analysis can gain much from formal statistics, but only ifthe 
connection is kept adequately loose” (Tukey and Wiik, 1966, p. 
696). 

To be too narrowly focused on the formal theoretical applica- 
tion of mathematical statistics is as undesirable as to be totally 
unconcerned with the proper application of statistics in the 
broader endeavor of experimentation and data analysis (e.g., Box 
1978, p. 265-266, 270-271). A balance can perhaps be best 
achieved by clearly specifying the objectives and hypotheses moti- 
vating a study: by this process, a scientist makes explicit the popu- 
lation(s) and types of inference involved. This first step in research 
lies at the foundation of Eberhardt and Thomas’( 1991) classifica- 
tion and discussion of field experiments. The following discussion 
is restricted to applications of formal experimental design con- 
siderations. 

Once a population is defined, a statistical model is chosen to 
represent the behavior of the dependent variable as a function of 
explanatory variables. Assuming an appropriate model is selected, 
then certain conclusions about hypotheses can be made and 
extended to the population if research methodology properly 
incorporates replication and randomization assumed by the model 
and analysis. The degree to which the research has successfully 
addressed its objectives and hypotheses must be judged in light of 
the definition of, and correspondence between, thepopulation. the 
model, the sampling methodology, the analysis, and the conclu- 
sions that are drawn. 

Analysis of Variance and Analysis of Regression Models 
Although “analysis of variance’* and “analysis of regression”are 

often regarded as different analyses, they are actually different 
aspects of the same basic analysis of a linear model. The fundamen- 
tal difference between analysis of variance and regression lies in the 
nature of the explanatory portion of the model (the independent 
variables, or the “expectation function”), and hence, appropriate 
application of these techniques depends upon the objectives of the 
research, the nature of the data collected, and the hypotheses to be 
tested. In “analysis of regression,” the independent variables are 
generally continuous variables, and each experimental unit may 
have a different value for the independent variable. The analysis is 
usually couched in terms of fitting a line (or plane) through a 
scatter of points. Hypotheses commonly relate to the slope of the 
line (or plane). Prediction of the dependent variable for specified 
values of the explanatory variable(s) is also an important application. 

In “analysis of variance,” the independent variables are “dummy” 
or “class” variables whose designation and meaning depend upon 
the underlying group structure of the data. Observations on the 
dependent variable that share the same values of the independent 



variable(s) are assumed to be random samples from the group 
designated by the class variables. Hypotheses generally relate to 
population means for groups under study. Equality of population 
means is the most commonly tested hypothesis. 

Replication and Randomization 
Examples discussed in this paper are relatively simple in that 

they involve only 1 treatment factor (or in the regression example, 
1 independent variable). With these examples it is easier to focus on 
4 components of experimental design which, when clearly defined, 
not only characterize the design but also guard against pseudorep- 
lication. These components are the: (1) population(s) to which 
inference is extended, (2) treatment(s) under study, (3) experimen- 
tal units that are treated, and (4) randomization rule used in the 
assignment of treatments to experimental units. Concepts of ran- 
domization and replication apply to single factor completely ran- 
domized designs as well as to more complex designs involving 
restriction in randomization (e.g., randomized block designs and 
latin square designs), factorial and split plot treatment arrange- 
ments, and repeated measures analyses. 

Randomization and replication are both necessary for the 
appropriate application of significance testing in experimental 
designs. As Eberhardt and Thomas (1991, p. 55) stated, “Confir- 
mation that two experimental outcomes are indeed different 
depends on randomization and replication to provide a measure of 
variability in units treated alike.” Replication provides an estimate 
of experimental error: treatment differences are judged in light of 
the inherent variability among experimental units treated alike. 
Randomization plays a different but complementary role (Cox 
1980, p. 313): 

-randomization provides the physical basis for the view that the 
experimental outcome of a given study is simply one of a set of many 
possible outcomes. The uniqueness of the outcome, its significance, 
is judged against a reference set of all possible outcomes under an 
assumption about treatment effects, such as such effects are negligi- 
ble. For the logic of this view to prevail, all outcomes must be 
equally likely, and this is achieved only by randomization.’ 

If statistical concepts related to, for example, alpha level and the 
power of a test to detect real differences are to be interpreted 
explicitly, then these interpretations will be valid only insofar as 
the assumptions underlying the concepts are satisfied. Thus, if a 
scientist wishes to claim that “treatment differences are significant 
at the 5% level,” then that scientist should also be willing to “pay 
the freight” for that statement: The scientist should design and 
conduct the study in accordance with principles upon which the 
inferences are based. 

These concepts are illustrated in the following 4 “case studies.‘* 
Study 1 involves analysis of regression for prediction purposes. 
Discussion is restricted to linear models for the sake of simplicity 
and familiarity. It should be noted that assumptions associated 
with significance tests in nonlinear models are usually identical to 
those associated with significance tests in linear models (Bates and 
Watts 1988). Study 2 illustrates analysis of variance for treatment 
mean comparison. A situation suitable for contingency table anal- 
ysis is described in Study 3. The discussion of each of these studies 
is presented in 2 parts: part (a) is a “classical” description of the 
analysis from a widely used text, and part (b) is an analagous 
application from a range science setting. Study 4 discusses an 
analysis similar to Study 2 but with correlated errors. 

Comparison of “Classical” and “Range-Related” 
Examples 

Study 1, A 
The relationship between serum cholestrol (the dependent vari- 

able Y) and age (the independent variable X) in women is studied 
(Snedecor and Cochran 1980, p. 385-388). Random samples of 56 

women from Iowa and 130 women from Nebraska are selected. 
Linear regression is used to describe the relationship between Y 
and X for women in each state. The experimental unit is the 
individual woman. It is assumed the women selected in each state 
are representative of the populations to which inferences are 
directed. The model Yi =& + PlXi + ei is assumed for women in each 
state. The portion of the model on the right hand side of this 
equation that does not include the errors, ei, is referred to as the 
“expectation function” (Bates and Watts 1988). The formal statis- 
tical hypothesis, H,: p1 q  0, addresses whether a linear relationship 
exists between Y and X. 

The fundamental statistical assumptions for significance testing 
in this model generally offered by texts are that the errors, ei, are 
independently, identically, and normally distributed with homo- 
geneousvariances(e.g., Graybill 1976, Theorem6.3.1, p. 189-191). 
If errors have heterogeneous variances, variance-stabilizing trans- 
formations may be helpful. Although most theoretical studies of 
this model have assumed normality of errors, the F test is relatively 
robust to violations of this assumption (Pearson 1931, Lunney 
1970). Probably the most important assumption is independence 
of errors. Random and mutually exclusive sampling often allows 
one to analyze data as though the assumption of independence is 
satisfied (Ostle 1963, p. 249-250). Correlated error structures (see 
Study 4) may be analyzed by modifying the calculation of the F 
statistic (Graybill 1976, p. 207-212, Smith and Lewis 1980, Pavur 
and Lewis 1983, Scariano et al. 1984, Scariano and Davenport 
1984); failure to apply such modifications may have a large impact 
on type I error rates (Smith and Lewis 1980, Scariano et al. 1984). 
Three other assumptions of this model are: (1) the expectation 
function is correct, (2) the dependent variable is in fact equal to the 
expectation function plus the error, and (3) the errors are inde- 
pendent of the expectation function. Bates and Watts (1988) pro- 
vide an excellent discussion of these assumptions [also see Stein- 
berg and Hunter 1984)]. Application of simple linear regression 
analysis is appropriate when X is subject to measurement error if 
the primary objective of the research is prediction of Y(Soka1 and 
Rohlf 1981, p. 549). This analysis is also appropriate when Xand Y 
have a bivariate normal distribution (Steel and Torrie 1980, p. 
246). 

In addition to within-state analyses in Snedecor and Cochran’s 
example, further hypotheses may address a comparison of the 
relationship between Y and X between the 2 states. For example, 
are the models for the 2 states identical? If not, then is the slope of 
the regression line the same for the 2 states? Is the Y-intercept the 
same for the 2 states? These questions may be appropriately 
addressed through statistical analyses such as comparisons of sim- 
ple (Graybill 1976, Theorems 8.6.1-8.6.3, p. 288-291) and general 
(Graybill 1976, Theorem 8.6.4, p. 291-293) linear models. These 
tests are presented in the context of analysis of covariance in 
applied texts (e.g., Snedecor and Cochran 1980). 

Several features of this study are noteworthy. First, only one 
value of Y need be observed at a given value of X in each sample of 
women. For example, in the sample from Iowa only 1 woman may 
have X=33. The relationship between Yand X for each sample can 
be estimated with only one observation on Y given X under the 
familiar assumption that each realized Yvalue is a random sample 
from a normally distributed population of Y’s (at a corresponding 
value of X), and that each population of Y’s has the same variance. 
It is important to note that statistical literature describes this 
situation as an application of linear regression that lacks replica- 
tion (e.g., Scariano et al. 1984). When several independent obser- 
vations on Y given X are available, then it is possible not only to 
explicitly test these assumptions, but also to examine the “lack of 
fit” of the model to the data (e.g., Montgomery and Peck 1982, p. 
75-79). 

Second, there is only 1 sample of (randomly selected) women 
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from each state. It is obvious that these data are adequate and 
appropriate to estimate regression equations within each state. 
However, it is also possible with these data to compare the rela- 
tionship (between Y and X) between states with respect to slope, 
intercept, or linear combinations of slope and intercept (Graybill 
1976, Theorem 8.6.3, p. 289-291). As Graybill (1976, p. 283) states: 
“For instance, an investigator is studying 3 different experimental 
situations and assumes a linear model for each. He wants to 
determine if these 3 linear models are dentical, or he may want to 
determine if some of the parameters of the models are the same 
from model to model.” Graybill (1976) develops the theory to test 
such hypotheses. That is, 1 regression line has been estimated for 
each experimental situation, and it is possible to compare these 
lines. These tests and their interpretations are well defined. It is not 
unreasonable to suggest that the research may be “stronger” from a 
biological perspective if several samples of women from each state 
were used because a larger sample would be available to estimate 
population parameters. Nevertheless, only 1 sample of women 
from each state is required from a strict statistical viewpoint, and it 
is assumed that the collection of experimental units comprising 
each sample is both representative of its target population and 
large enough to obtain reasonable estimates of population parame- 
ters. Insuring representativeness calls into play appropriate sam- 
pling techniques and research methodology. Whether the sample is 
large enough depends on the precision in estimation desired by the 
researcher. An important factor is the ratio of the sample size(n) to 
the number of parameters being estimated (p); common recom- 
mendations suggest that the ratio n:p be from 30: 1 to 400: 1 (e.g., 
Kerlinger and Pedhazur 1973). 

grazed area were studied, it is not possible to compare the regres- 
sion lines estimated for each site. Second, it is sometimes suggested 
that the comparison of the relationship between juniper canopy 
cover and herbaceous production between “grazing treatments” is 
completely confounded with the 2 sites studied. These criticisms 
are readily answered with the reminder that these 2 sites are the 
populations of interest: the comparison between these 2 sites is not 
intended to apply to grazed and relict sites in general. It is clear 
from Graybill (1976, p. 283-302) that such a comparison is statisti- 
cally valid: 2 (or more) independent regressions can be compared. 

These criticisms concern the definition of population and the 
representativeness of the samples of their respective populations. 
The populations in question in Study 1 are the 2 states (Iowa and 
Nebraska), or the 2 areas (relict and grazed). The experimental unit 
is the woman (in Snedecor and Cochran) or the stand (in White). If 
the collection of experimental units (as a random sample from a 
well-defined population) is representative of its population, then 
the study is amenable to appropriate statistical analyses. If, on the 
other hand, it is not reasonable to assume that the collection of 
experimental units is representative of its target population, then 
the research is flawed to the extent that inferences from the sample 
to the population are unwarranted because the former is not repre- 
sentative of the latter. 

Study 1, B 
Scientist White studied the relationship between redberry juniper 

(Juniperus pinchotii Sudw.) canopy cover (X) and herbaceous 
production (Y) on 2 upland sites characterized by redberry juniper- 
mixed grass vegetation in western Texas. Two populations, or 
experimental situations (sensu Graybill 1976, p. 283), were of 
interest: an ungrazed (relict) area and a heavily grazed area. Study 
locations were an isolated butte that was inaccessible to domestic 
livestock and a nearby grazed area. These 2 study sites were within 
10 km of each other and had similar landscape position, underlying 
substrate, and soils. The primary objective was to describe the 
relationship between juniper canopy cover and herbaceous pro- 
duction on each site. Inference was intended to apply to these 2 
sites. Other study areas may have different relationships between 
canopy cover and herbaceous production for a variety of reasons 
(e.g., edaphic conditions, past management history, etc.). 

If the 2 regressions are shown to differ, for example with respect 
to slope, then the attribution of this difference to a grazing effect is 
an interpretational issue that is best dealt with from an ecological 
perspective. The F test may be used to show a difference between 
regressions, each representing an “experimental situation” in 
Graybill’s (1976, p. 283) sense. The ecological interpretation of this 
difference involves information related to, for example, elevation, 
precipitation, and edaphic characteristics as well as differences in 
grazing history. It may be that the difference between regressions is 
due to some factor other than grazing. If this is so, then attributing 
the difference to a grazing effect is faulty because of confounding 
from an ecological viewpoint. To explicitly and exclusively incor- 
porate grazing history as the “treatment”factor responsible for any 
differences that may be detected changes both the scope of the 
research and the experimental design requirements necessary to 
address the hypotheses in question. In particular, this new objec- 
tive can be satisfied by conducting the research on more than 1 
relict site (each representing a random sample from the population 
of relict sites) and more than 1 grazed site (each representing a 
sample from the population of grazed sites). 

Study 2,A 

An individual juniper stand (“stand” was defined by the 
researcher) was considered an experimental unit. Fifty juniper 
stands were randomly selected on each site; in each stand, juniper 
canopy cover and herbaceous production were estimated with belt 
transects and clipped quadrats, respectively. Because grazing his- 
tory of each site was well known, experimental units were treated 
similarly within each site. The analogy to Study 1, A is clear: 
whereas Snedecor and Cochran described a relationship between 
serum cholestrol and age in randomly selected women from Iowa 
and Nebraska, White studied the relationship between herbaceous 
production and juniper canopy cover in randomly selected stands 
on a relict site and a grazed site. Under usual statistical assump- 
tions, both studies are amenable to statistical analyses. In particu- 
lar, regression lines can be estimated within states (or sites) as well 
as compared between states (or sites). 

A common misunderstanding of White’s research relates to what 
has been incorrectly referred to as pseudoreplication. In particular, 
2 specific criticisms are frequently directed at White’s research. 
First, it has been claimed that because only 1 relict area and 1 

Gomez and Gomez (1984: 13-17) describe a study of the effect of 
chemical control of brown planthoppers and stemborers on rice 
yield. Treatments (6 chemical and a control) are randomly assigned 
to 4 replications (plots) each; that is, the experimental unit is the 
individual plot. Gomez and Gomez (1984:2-4) provide straight- 
forward discussion of the need both for replication and randomiza- 
tion, and state unambiguously that “to obtain a measure of exper- 
imental error [the difference among experimental units treated 
alike] replication is needed.” The issue of subsampling was dis- 
cussed in a later chapter (Gomez and Gomez 1984, p. 241-255); for 
our purpose, subsampling may be incorporated into the present 
example by assuming that 5 randomly located quadrats in each 
plot are harvested to estimate rice yield. Therefore, an appropriate 
statistical model for this design is Yijk = p + Ti + e(i)j + r(Gp. In this 
model, ri represents the i’th treatment effect, e(iy is the experimental 
error associated with the j’th replication of the i’th treatment, and 
e(~)k is the sampling error associated with the k’th sample in the j’th 
replication of the i’th treatment. The variance of e(i)j is denoted 9,” 
and the variance of C(ij)k is denoted oa2. 

Based on this model that includes not only treatment effects, but 

JOURNAL OF RANGE MANAGEMENT 45(3), May 1992 287 



Table 1. Analysis of variance table for Studies 2,A and 2,B. 

Degrees of freedom 
Study Study 

Source of variation 2,A 2,B Expected mean square 

Treatment (t- 1) 6 2 

Experimental error t(r - 1) 21 
Sampling error tr(s - i) 112 12 6; U 
Total trs - 1 139 14 

also distinguishes between experimental error (variation between 
experimental units treated alike) and sampling error (variation 
within experimental units), these data may be summarized in an 
analysis of variance table (Table 1). Experimental error can be 
estimated when r > 1. Based on expected mean squares, this 
estimate of experimental error is used to evaluate treatment effects 
(also see Steel and Torrie 1980, p. 155). In particular, the hypothe- 
sisHo:pr=ppz=.. . q  MT can be tested, where pi is the mean rice 
yield in the i’th treatment. Assumptions underlying this F test 
include normality and independence of experimental errors as well 
as homogeneity of variances of experimental errors among treat- 
ments. Variation between experimental units relative to variation 
within experimental units may be evaluated to address issues of 
sampling efficiency (Cochran 1977). Pooling experimental error 
and sampling error is discussed by Paul1 (1950) Storm (1962) and 
Gill (1978). 

how simple pseudoreplication increases the probability of detect- 
ing spurious treatment effects. Hurlbert (1984, p. 200) states: 

The validity of using unreplicated treatments depends on the exper- 
imental units being identical at the time of manipulation and on 
their remaining identicalafter manipulation, except insofar as there 
is a treatment effect. The lack of significant differences prior to 
manipulation cannot be interpreted as evidence of such identical- 
ness. This lack of significance is, in fact, only a consequence of a 
small number of samples taken from each unit. 

Hurlbert (1984, p. 203) suggests “The question to be asked is not: 
‘Are experimental units sufficiently similar for one to be used per 
treatment?‘Rather it is: ‘Given the observed or expected variability 
among experimental units, how many should be assigned to each 
treatment?“’ 

Case Study 2, B 
Scientist Black studied the effect of prescribed fire in redberry 

juniper-mixed grass vegetation in the Texas Rolling Plains. The 
objective of the research was to develop management recommen- 
dations for the vegetation type. Fire treatments were applied to 
pastures SOO-1,200 ha in size; the study examined a 4-year old 
burn, an S-year old burn, and an unburned control pasture. Each 
treatment (age of bum) was represented by 1 pasture. Habitat was 
evaluated in part by examining vegetation structure and composi- 
tion. Shrub cover was estimated along 5 randomly located 100-m 
line transects in each pasture. Frequency of herbaceous species was 
recorded in 10, 0.5-m* quadrats randomly located along each 
transect line. Hypotheses of interest included whether mean shrub 
canopy cover and frequency of selected forb species differed 
between burning treatments. 

It was stated earlier that Scientist Black’s objective was to 
develop management recommendations for burning redberry 
juniper vegetation. That is, the population comprises the entire 
vegetation type. The pastures used in Black’s study represent that 
population. However, with only 1 pasture per burning treatment, 
there is no measure of variability between experimental units 
treated alike, and thus no information is available to extend infer- 
ences about treatment effects to other pastures (i.e., to the 
population). 

In this study, the experimental unit (the unit of experimental 
material to which a treatment is applied) was an individual pasture. 
Three pastures were randomly assigned to burning treatments. 
Despite the fact that there were 5 sampling units (line transects) per 
pasture (and 50 quadrats per pasture for herbaceous frequency), 
there was only 1 replication (pasture) per treatment. Based on an 
analysis of variance (Table l), there is no information to estimate 
experimental error because experimental error degrees of freedom 
are 0. The only estimate of error available is sampling error, and in 
view of the expected mean squares in Table 1, use of sampling error 
to evaluate treatment effects leads to a biased F test when ae2 > 0 
(also see Steel and Torrie, p. 155). 

It is possible in Black’s study to compare mean canopy cover 
among his particular pastures with a redefinition of the popula- 
tions to which inference is to be extended (and hence a redefinition 
of the model applied to the data as well as the hypothesis to be 
tested). One may regard each pasture as a population and each 
transect as a sample from that population. Variation from transect 
to transect then estimates variation inherent in the population. An 
F test may be used to compare mean canopy cover among these 3 
pastures. This approach is being used more and more commonly in 
applied ecological research (e.g., Belsky 1986, Guthery 1987, 
Schulz and Guthery 1987, Thurow et al. 1988, Baker and Guthery 
1990, Dormaar et al. 1990). 

Study 3, A 

Black’s study is a straightforward example of what Hurlbert 
(1984) called “simple pseudoreplication.” As Hurlbert (1984, p. 
201) noted, “multiple samples per experimental unit do not 
increase the degrees of freedom available for testing a treatment 
effect.” It is often claimed that significant differences between 
unreplicated treatments may be attributable to the treatment effect 
if, prior to treatment, differences between plots were found to be 
statistically nonsignificant. Hurlbert (1984, p. 200-201) dispels any 
misunderstanding on this point with a detailed example showing 

Steel and Torrie (1980, p. 500-501) discuss an example of the 
effect of enrichment of bacterial inoculum with different vitamins 
on mortality of mice. Treatments are inoculum cultured in broth 
with 4 different vitamins. The experimental unit is an individual 
mouse; 9-13 mice are assigned randomly to treatments. The 
response variable is mouse survival or death. Data may be arrange 
in a 2 X 4 contingency table, with “dead” and “alive” as row 
designations and the 4 treatments as column designations. The 
hypothesis that the proportion of live mice does not differ between 
treatments may be tested with a chi-square test or a likelihood ratio 
G test. It is important to emphasize that although these nonpara- 
metric tests are distribution-free tests, they are not assumption-free 
tests. In particular, assumptions underlying these tests are that: (1) 
the observations in each treatment are a random sample from the 
corresponding population, (2) the observations in the treatments 
are mutually independent, and (3) each observation may be classi- 
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Fig. 1. Plot diagrams for Study 3, A. Trees are represented by x’s; circled x’s are treated with picloram; x’s with squares are treated with dicamba; x’s with 
triangles are treated with 2,4-D. (a) Each rectangle represents a O&ha plot. Chemical are assigned to plots, with 1 plot per chemical.(b) Chemicals are 
(nonrandomly) assigned to trees rather than to plots. (c) Simihu to part (a) except there are 2 plots randomly assigned to each chemical.(d) Similar to 
part (b) except that-trees are randomly assigned to chemicals. 

fied into the categories “dead” or alive” (Bishop et al. 1975, Con- 
over 1979). 

Study 3, B 
Scientist Gray studied the effect of 3 herbicide treatments on 

mesquite (Prosopis glundulosu Torr.) mortality. The field design 
was as follows: 3 contiguous O&ha plots were established and 
randomly assigned to a chemical treatment, with 1 plot per treat- 
ment. In each plot 5 trees were randomly selected and hand- 
sprayed with the chemical assigned to the plot. 

The study can be described in 2 ways (Fig. 1). First, suppose the 
experimental unit is the O&ha plot; this is, in fact, the unit to which 
the chemical treatment was assigned (Fig. la). Mortality would be 
expressed as the percentage of plants killed in each plot. Data 
would be summarized in contingency table with 2 rows (dead and 
alive) and 3 columns (corresponding to treatment). If the experi- 
mental unit is defined as the 0.4-ha plot, then this study lacks 
treatment replication: the approach of expressing mortality as 
percentages yields only 1 datum per treatment. If there had been at 
least 2, O&ha plots per treatment (and assignment of chemical 
treatment to plots was random), then mortality among treatments 
could be tested for equality with an F test (after appropriate 
transformation) because each plot (experimental unit) yields an 
estimate of mortality. With only 1 plot per treatment, however, 
treatments are randomly assigned to experimental units (0.4-ha 
plots), but treatments are not replicated. 

A second approach would be to consider the individual tree as 
the experimental unit; there would then be 5 experimental units per 
treatment (Fig. lb). Data would be summarized in a contingency 
table with 2 rows (dead and alive) and 3 columns (corresponding to 
treatment). However, this approach also has problems. If the 
individual tree is considered the experimental unit, then there is 
replication but treatments are not randomly assigned to experi- 
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mental units. Each experimental unit (tree) in the study area did 
not have an equal chance of receiving a treatment: even though 
individual trees were sprayed, treatment (chemical) assignment 
was to the (group of trees in the) 0.4-ha plot; hence treatments were 
not randomly assigned to experimental units. It is possible that 
there may be some systematic variation from plot to plot due to, for 
example, soil conditions, and differences in tree response from plot 
to plot may be attributable largely to one or more of these other 
factors and not to the chemical treatment. Snedecor and Cochran 
(1980, p. 127) provide a firm reminder: “Before claiming that the 
significant difference is caused by the variable under study, it is the 
investigator’s responsibility to produce evidence that disturbing 
factors of this type could not have produced the difference. . .the 
device of randomization. . .makes it easier to ensure against mis- 
leading conclusions from disturbing influences.” 

This research could have been designed differently in 2 ways to 
render analyses appropriate. If the experimental unit is the 0.4-ha 
plot, then there should be at least 2 plots per treatment, and 
treatment assignment to plots should be random (Fig. lc). Analysis 
of variance is appropriate to test the hypothesis that mortality does 
not differ among treatments; an arcsin transformation may be 
required because data are percentages. Alternatively, if the exper- 
imental unit is the individual tree, then several trees must be treated 
with each chemical, and again treatment assignment to experimen- 
tal units must be random (Fig. Id). A contingency table-based 
analysis with a chi-square or likelihood ratio G test is appropriate 
to test the hypothesis that the proportion of dead trees does not 
differ among treatments. 

Study 4, A 
Range research involving livestock often is subject to limitations 

and difficulties not typically encountered in researching dealing 
with plants. For example, consider a supplementation study using 

289 



steers on native rangeland. The treatment is level of protein sup- 
plementation. Suppose that 4 levels of supplementation are ran- 
domly assigned to animals, with 30 animals in each supplementa- 
tion group. Due to feeding logistics, the 30 animals assigned to 
each treatment are randomly assigned to a fenced pasture. The 4 
pastures used in the study are similar in all reasonable respects 
(e.g., similar management history, soils, forage type and availabil- 
ity, etc.). 

In this study, the experimental unit for the supplementation 
treatment is the individual steer. With 4 treatments randomly 
assigned to 30 animals each, there is appropriate randomization of 
treatments to experimental units as well as appropriate replication. 
The model assumed for this study would be the linear model for a 
l-way analysis of variance without a sampling error (see Study 2). 

However, by keeping the 30 animals in each treatment in separ- 
ate pastures, there is nonrandom handling of treatment groups. 
Two potential consequences of this are: (1) confounding of pasture 
effects with treatment effects, and (2) positively correlated errors 
within treatment groups due to a common environment (Gill 1978, 
p. 20). Whereas the first consequence may be reduced by selecting 
pastures that are as similar as possible, it is clear from Hurlbert’s 
(1984, p. 201) statement regarding multiple samples per experi- 
mental unit that this is not an effective solution to the problem. 

The second consequence (correlated errors) can have very 
serious implications in sigticance tests. One of the assumptions in 
the F test underlying the linear model for a completely randomized 
design is that the errors are uncorrelated. Failure to recognize and 
adjust for correlated errors changes the type I error rate of the F 
test. Smith and Lewis (1980) developed an adjustment for the F 
statistic to account for equicorrelated errors, and Scariano and 
Davenport (1984) extended the adjustment to cases with non- 
equicorrelated errors. Without these adjustments, actual signifi- 
cance levels differ from the nominal significance levels. 

Conclusions 
In many cases it is difficult to replicate or randomize approp- 

riately, perhaps because of logistic constraints or financial limita- 
tions. Although these considerations often exercise profound 
influence on research, they do not excuse the rules of mathematical 
statistics. It may well be difficult or impossible to incorporate 
replication and randomization in the assignment of treatments to 
experimental units; however, this is not justification for interpret- 
ing and presenting results from statistical tests us ifthe study had 
been designed with appropriate replication and randomization. 
Eberhardt and Thomas (1991) present a detailed discussion of data 
analysis and interpretation of field studies which vary in the degree 
of control over which an investigator has in experimental design. 

It is worthwhile to recall Hurlbert (1984, p. 188): “the quality of 
an investigation depends on more than good experimental design, 
so good experimental design is no guarantee of the value of study.” 
The fact that appropriate replication and randomization are not 
incorporated into a study does not mean, in and of itself, that the 
study lacks useful information. The importance of proper experi- 
mental design as a key component in the process of “strong infer- 
ence” (Platt 1964) is in no way diminished by recognizing that 
knowledge can be accumulated through an amalgamation of 
observational data and experimentation. The former information 
is not secondary to the latter, and scientific advancement may be 
more rapid and efficient if observational and experimental endea- 
vors are used in a complementary way (e.g., Schoener 1983, Haw- 
kins 1986). 
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