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Models used to simulate plant growth and insect development 
on rangeiands often assume that soil temperature is homogeneous 
over the entire area of interest. This simplifying assumption is 
made because few data are available on the magnitude and struc- 
ture of the spatial variability of soil temperature within rangeland 
communities. The intluence of sagebrush on the spatial variability 
and diurnal fluctuations of near-surface soil temperature was 
examined within a sagebrush-grass plant community. Hourly soil 
temperatures were measured at l-, 5-, and NJ-cm depths at 38-cm 
intervals along a 12.3-m north-south transect over a 6-day period 
in March, 1989. Both classical and geostatistical techniques were 
used to quantify and model the magnitude and structure of the 
spatial and temporal variability. Maximum soil temperatures at 
the l-cm depth varied from 7 to 23” C under sagebrush and bare 
interspace, respectively. Periodic spatial patterns in soil tempera- 
ture were found for all measured depths with a wavelength of 
periodicity approximately equal to the separation distance between 
sagebrush plants along the transect. Diurnal variability in near 
surface soil temperature was much greater in interspace areas 
compared to under sagebrush plants. The amplitude of diurnal 
variability in soil temperature at the l-cm depth under sagebrush 
was similar to the amplitude of the diurnal variability at the 18-cm 
depth within the interspaces. 
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Rangeland models are often used to simulate processes over 
large areas assuming related properties are homogeneous over the 
entire area. This assumption can lead to large errors in simulated 
values. For example, calculations of the soil energy balance used 
for prediction of such processes as plant and insect growth and 
evapotranspiration are strongly dependent on the measurement of 
soil temperature. However, soil temperature is a function of many 
soil, vegetation, and atmospheric variables which vary in space. 
Therefore, the accuracy of estimates of these physical processes 
may depend on a prior knowledge of the magnitude and structure 
of the spatial variability of soil temperature within particular plant 
communities. 

Due to the intensive effort required to continuously monitor soil 
environmental variables, data on the variability of soil water and 
temperature on rangelands are practically nonexistent. One excep- 
tion is the work done by Evans et al. (1975). Computer technology 
in the form of data loggers now allows continuous monitoring of 
soil water and temperature at various soil depths. Extensive data 
sets can be collected to describe spatial and temporal variations in 
soil water and temperatue on rangelands. These data sets can also 
be quite useful in soil water-temperature model development and 
validation. 

In recent years, researchers have used geostatistical techniques 
to describe the variability of soil physical properties (Burgess and 
Webster 1980, Gajem et al. 1981, Vauclin et al. 1982, Yates and 
Warrick 1987, Davidoff and Selim 1988), chemical properties 
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(Yost et al. 1982), hydraulic properties (Achouri and Gifford 1984, 
Merzougui and Gifford 1987, Hatfield et al. 1982, Hatfield et al. 
1984, Russo and Bresler 198 1, Sisson and Wierenga 198 1, Vieira et 
al. 1983), nutrient status (Folorunso and Ralston 1984, Webster 
and Nortcliff 1984), and crop production (Williams et al. 1987, 
Nancy et al. 1988). Geostatistics can help quantify the magnitude 
of spatial variability of selected properties, as well as model the 
spatial structure of the variability. This kind of information can be 
used in a modeling framework to increase the accuracy of model 
estimates by dissecting the landscape into distinct units which can 
be modeled separately. Spatial variability information can also be 
used in experimental design to determine plot spacing so that 
classical statistical analyses can be applied without violating basic 
assumptions. Experimental plots must be set far enough apart so 
the variables of interest within each plot are not spatially correlated. 

The objectives of this paper were to: (1) quantify the spatial and 
temporal variability of soil temperature at 3 depths under an 
undisturbed sagebrush-grass plant community; and (2) correlate 
the spatial and temporal patterns in soil temperature with the 
spatial distribution pattern of the litter and vegetation. 

Materials and Methods 

Study Area 
The study area was located at the Quonset site on the Reynolds 

Creek Experimental Watershed in southwest Idaho. The watershed 
is representative of much of the rangeland found throughout the 
Northwest. Soils are the Larimer series (fine loamy over sandy or 
sandy skeletal, mixed, mesic, Xeroilic Hapiargids), and the vegeta- 
tion is primarily big sagebrush (Artemisiu tridentuta tridentata) 
with an understory of sandberg bluegrass (Poa sandbergii) and 
cheatgrass (Bromus tectorum) (Stephenson 1977). 

Data Collection 
Soil temperature was measured with thermocouple sensors (24 

gauge chrome1 and constantan wire) connected to Campbell Scien- 
tific CR-10 dataloggers (no endorsement implied herein). Small 
holes (4 cm in diameter) were drilled at 30-cm increments along a 
12.3-m north-south transect using a standard drill and wood auger. 
Sensors were placed in 42 locations at each of l-, 5-, and IO-cm 
depths for a total of 126 soil temperature sensors. Temperature 
readings were made at IO-min intervals and average hourly values 
were recorded for each location. Daily maximum and minimum 
values for each location were also determined using the IO-min 
readings. Soil temperatures were measured for a 6day period from 
day 81 (March 22) through day 86 (March 27), 1989. 

Care was taken to minimize disturbance of the soil surface and to 
replace all litter and vegetation after installing the sensors. Depth 
of litter on the surface was measured at each location to the nearest 
0.5 cm and each location was classified as being shaded or 
unshaded by sagebrush plants. 

Statistical Analysis 
Statistical analysis of the data included computation of the 

sample mean, variance and coefficient of variation for maximum 
and minimum soil temperatures measured at each depth. The 
Wilk-Shapiro test for normality (Shapiro and Francis 1972) was 
also run for maximum and minimum temperatures at each depth. 

A one-way analysis of variance and a protected LSD test were 
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used to test for significant differences in maximum and minimum 
soil temperatures between shaded and unshaded areas. Linear 
regression analysis was used to identify significant correlations 
between maximum and minimum soil temperatures and shaded or 
unshaded areas. 

Geostatistical Analysis 
Geostatistics are based on the theory of regionalized variables 

and were developed to determine the location of high-grade min- 
eral ores in mining (Joumel and Huijbregts 1978). Recently, geo- 
statistics has been used in other fields such as soil science and 
hydrology to quantify the spatial varibility of numerous proper- 
ties. Webster (1985) and Vieira et al. (1983) provide very good 
summaries of geostatistical theory as it applies to various aspects of 
soil science. They provide examples of geostatistical methods and 
programs for computer analysis. In addition, Isaaks and Srivas- 
tava (1989) have written a very understandable text book on the 
applications of basic geostatistics. The following is a summary of 
geostatistical theory needed for analysis of data presented in this 
paper. 

Regionalized variable theory takes the differences between pairs 
of values of a property separated by a known quantity, usually 
distance, and expresses this as a variance. Therefore, geostatistics 
takes into account both separation distance and direction between 
values. Consider 2 values z(x) and z(x+h) at locations x and x+h, 
respectively. Locations of these points can be designated in 1,2, or 
3 dimensions where h is a vector with both distance and direction 
known as the “lag” between measured values. The variance per site 
is then represented by 

s* = [z(x) - m(z)]* + [z(x+h) - m(z)]*, [ll 
where m(z) is the mean of the 2 values. The common mean in 
equation [ l] can be factored out to show that sz is half the square of 
the difference between z(x) and z(x+h): 

s* = [z(x) - z(x+h)]*. PI 
Now, suppose n pairs of observations are separated by the same 
lag, h; then the average variance is defined as 

9 = k ii [Z(Xi) - Z(Xi + h)p, 

where s* is known as the semivariance of all measured values 
separated by the same lag h. 

To proceed further, 2 assumptions concerning stationarity must 
be made. First, the expected value of z at any location x must be 
equal to the population mean cc: 

9e41= cc. [41 
In other words, the sample mean must equal the population mean 
and must not change with location. Secondly, for any lag, h, the 
difference [z(x) - z(z + h)] has a finite variance which also does not 
change with location. Therefore, the value of semivariance depends 
only on separation distance (lag) and direction, not location within 
the study area. These assumptions define what is known as the 
intrinsic hypothesis of regionalized variable theory (Webster 
1985). If h is limited to a maximum distance within which the 
intrinsic hypothesis is not violated, then any 2 Observations h apart 
will exhibit the same degree of difference. 

Assuming the intrinsic hypothesis, Eq. [3] can now be general- 
ized to define the semivariance as a function of h, the lag. This 
function is known as the semivariogram: 

n(h) 
y(h) = 2 2 [Z(G) - Z(Xi + h)]*, 

where y(h) is the standard notation for semivariance as a function 

of h. The semivariogram simply describes how the variance of 
observations changes with separation distance in a given direction 
or it may be averaged over all directions. 

The most common use of the semivariogram is in examining 
how properties vary in space; however, a lag can be defined with 
respect to any separation quantity. For example, geostatistical 
techniques can be applied over time to examine the temporal 
change in a selected property. The techniques could also be applied 
to examine how variability in animal grazing time changes with 
forage availability where forage availability is the separation 
quantity. 

Once a semivariogram has been calculated using Eq. [5], a 
semivariogram model can be fit to the estimated semivariance 
values to help quantify the magnitude and range of spatial auto- 
correlation. Figure 1 shows the major features of a simple semivar- 
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Fig. 1. Diagram of a spherical semivariogram model illustrating the inter- 
pretation of the terms “nugget,” “sill” and “range.” 

iogram model. Most often, semivariance values increase with h 
until they reach a maximum approximately equal to the sample 
variance of the measured variable known as the “sill.” The lag at 
which the sill is reached is known as the “range” of the semivario- 
gram. Beyond the range, values of the measured variable are no 
longer spatially correlated. If the semivariogram asymptotically 
approaches its maximum, then the range is arbitrarily chosen when 
-y(h) is sufficiently close to the sill. Some semivariograms do not 
express a sill and appear to have an infinite variance. This can 
occur when the maximum sample separation distance is much 
smaller than the range of the semivariogram for that variable or 
when measured data is nonstationary. Semivariograms can also 
exhibit what is called “nested structure” when the semivariogram 
expresses more than 1 sill or range. Nested structure is observed 
when the spatial variation of a property is being influenced by 2 or 
more factors which are operating at different spatial scales. 

By definition, at a lag of zero the semivariance is also zero. 
However, smooth curves fit to semivariograms often do not go 
through the origin. The variance associated with zero lag is called a 
“nugget variance,” and the phenomenon is known as the “nugget 
effect.” A nugget variance is the combination of variances asso- 
ciated with random variation, experimental error, and variation 
due to spatial autocorrelation with a range smaller than the min- 
imum sampling interval. 

Several simple functions are commonly used to model semivari- 
ograms. The functions used must be proven to be positive definite 
if estimation techniques, such as kriging, are to be used to insure 
that estimation variances are always positive or zero. Any combi- 
nation of positive definite models can also be used to model nested 
structure within semivariograms. Oliver and Webster (1986) pro- 
vide an excellent summary of valid models and their interpretations. 
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The following functions from Oliver and Webster (1986) have 
been used alone or in combination to model semivariograms in this 
paper: 

and 

v(h) = Co, 

y(h) = mh, 
y(h) q  CWW - W a))]/ 2 for o<h< 

WI 
171 

PI 

and 
y(h) q  Cl for 0a, 

y(h) = ucos (2rrh/ w) + vsin(2rrh/ w). [91 
Equation [6] represents a pure nugget model with a nugget var- 
iance of CO. Under this condition, classical statistics can be applied 
at all spatial intervals without fear of violating basic assumptions. 
Equation [7] is a linear model with slope m. Equation [8] is the 
expression for a spherical model with sill Ci and range a. Equation 
[9] is the expression for a periodic model with cosine amplitude u, 
sine amplitude v, and wavelength w (this model is only positive 
definite in 1 dimension). The amplitude of the periodic model can 
be calculated using the following expression: 

A = ucos[tan-‘(v/u) + vsir#tan-‘(v/u)] WI 

(Mulla 1988). 
In this paper, many semivariograms exhibited nested spatial 

structure consisting of spherical and periodic components or linear 
and periodic components. These semivariograms were modeled 
using linear combinations of equations [6], [8], and [9] or equa- 
tions [6], [7j, and [9], respectively. Values for the parameters in 
Eqs. [6], [7j, [8], [9], and [lo] were estimated using nonlinear least 
squares regression analysis with n> 125 for all calculated values of 
semivariance. 

Results and Discussion 

Classical Statistical Analysis 
Summary statistics for maximum and minimum soil tempera- 

tures measured at each depth along the 12.3-m transect on day 8 1 
are given in Table 1. The Wilk-Shapiro statistic for each variable 

Table 1. Descriptive statistics for maxhnum and minimum soil tempera- 
tures at l-, S-, and IO-cm deptbs on day 81,1989. The values for the 
Wilh-Shapiro statistic of normality (N) are also given for each variable 
and depth. 

Statistic 

Mean (” C) 
VAR (” CP 
cv 
MIN (O C) 
MAX (” C) 
N 

Maximum temperature Minimum temperature 
I-cm 5-cm IO-cm l-cm km IO-cm 

14.3a 11.7b 8.9~ I.2d 2.ofZ 2.9f 
17.47 9.67 3.69 1.30 0.67 0.42 
29.2 26.6 21.6 95.0 41.0 22.4 
1.0 6.2 5.4 -0.8 0.9 1.3 

22.8 17.3 11.8 3.2 3.5 4.0 
0.97 0.94 0.94 0.96 0.93 0.98 

Mean values followed by different letters are significantly different at the KO.01 level 
of probability. 

showed that all measured values conformed to a normal distribu- 
tion. The highest mean maximum and lowest mean minimum soil 
temperatures were found at the l-cm depth compared to the S-and 
lo-cm depths. The largest ranges in both minimum (-0.8 to 3.2“ C) 
and maximum (7.0 to 22.8’ C) temperatures were also found at the 
I-cm depth. These results indicate the presence of a large amount 
of spatial and temporal variability in soil temperature, particularly 
at the l-cm depth. Because many organisms develop at a rate 
governed by the amount of heat they absorb (Sharpe and DeMi- 

chele 1977, Wagner et al. 1984, Kemp and Sanchez 1987), soil 
temperature variations of this magnitude could significantly influ- 
ence the site specific growth and development of a variety of 
biological organisms. An organism in a location with a maximum 
temperature of 23O C would likely develop and grow at a faster rate 
than an organism in a location with a maximum temperature of 7’ 
C. Large variations in soil temperature could also be important in 
the survival of emerging plants and insects. 

Coefficients of variation (CV) were higher for minimum soil 
temperature than for maximum soil temperature at each measured 
soil depth (Table 1). CV values also showed a decrease in the 
variability of both minimum and maximum soil temperature with 
increasing depth. Values ranged from approximately 22% for max- 
imum and minimum soil temperature at the IO-cm depth to 95% 
for minimum soil temperature at the I-cm depth. The greater 
variability near the soil surface could have been caused by differen- 
ces in micro-relief, shading from sagebrush and grass plants or 
from rocks exposed at the soil surface. The influence of these 
factors was then dampened in the lower soil depths. Davidoff et al. 
(1986) found that CV values for near surface soil temperatures 
along a bare soil transect varied from 6.8 to 4.4%. They also found 
that the CV values decreased with an increase in depth. 

Plots of maximum and minimum soil temperature at each depth 
along the 12.3-m transect on day 81 are shown in Figure 2. This 
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Fig. 2. Vahtes of maximum (A) and mhdmum (B) soil temperatures for 
l-(O), 5- (A) and lo-cm (w) depths at 30-cm intervals along a 12.3-m 
north-south transect on day 81,1989. the location of sagebrush plants 
and surface litter are also illustrated. 

figure also displays the locations of sagebrush plants and soil litter 
along the transect (soil litter is defined as living or dead organic 
material from 0.5 to 5.0 cm in depth). These figures show the 
profound influence the sagebrush plants have on near surface soil 
temperatures. The plants produce periodic spatial patterns in both 
maximum and minimum soil temperature which are visible to a 
depth of 10 cm. The sagebrush plants insulate the soil surface from 
incoming solar radiation during the day and from sensible heat loss 
during the night. Thus, the surface soils directly below sagebrush 
plants have significantly lower maximum and higher minimum 
temperatures compared to soils in the uninsulated interspace areas 
between sagebrush plants (Table 2). 

Maximum and minimum soil temperatures at each depth were 
also negatively and positively correlated, respectively, with litter 
depth along the transect. However, the correlations were largely 
due to the fact that much of the surface litter in sagebrush-grass 
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Table 2. Comparison of mean vah~es for maximum and minimum soil 
temperatures (“ C) at l-, S-, and l@-cm depths within sagebrush and 
interspace areas on day 81,1989. 

Maximum temperature Minimum temperature 
Location I-cm 5-cm IO-cm l-cm 5-cm IO-cm 

Sagebrush 10.3a 8.4a 6.9a 2.4a 2.9a 3.5a 
Interspce 17.0b 13.9b 10.3b 0.5b 1.4b 2.5b 

Mean values in the same column followed by different letters are significantly different 
at the P<O.OI level of probability. 

Table 3. Vab~e-s for the nugget (CO), sill (Cl), range (a), cosine amplitude 
(II), wavelength (w) and sine amplitude (v) parameters found in he 
semivariogram models of Eqs. [al, [El, and [9] for maximum and min- 
imum soil temperature at l-, S-, and IO-cm depths along the 12.3-m n-s 
transect on days 81-86,1989 (shown in Fig. 3). V&ES for the amplitude 
of the periodic semivariognm component model (A) are also given for 
each variable and depth. 

plant communities is found directly beneath sagebrush plants. 
Therefore, the influence of surface litter on soil temperature was 
examined separately within sagebrush and interspace areas. 

Co Cl a u w v A 

(” C)* (” C)2 (m) (” C) (m) (” C)* (” C)z 

Maximum 
Temperature 

An analysis of variance showed that litter (mostly small grass 
crowns and moss clumps) in the interspace areas had little influ- 
ence on near surface soil temperatures. This may have been due to 
the small size (approximately 3 to 6 cm in diameter) of the grass 
crowns and moss clumps on the site. Heat could easily move in 
from or be lost to the surrounding uninsulated soil, thus, control- 
ling the soil temperature beneath the insulated areas. 

1 cm 3.98 14.04 1.14 -1.440 3.32 -3.42 3.78 
5 cm 0.0 8.22 1.58 0.370 2.84 -0.64 0.74 

10 cm 0.0 3.62 2.08 0.068 2.62 -0.20 0.21 

Minimum 
Temperature 

1 cm 0.22 0.79 0.97 -0.140 3.28 -0.10 0.17 
5cm 0.059 0.49 1.45 -0.032 2.76 -0.064 0.072 

10 cm 0.0 0.34 1.56 -0.059 3.05 0.041 0.072 

The influence of litter (mostly sagebrush litter and moss) depth 
on soil temperature under sagebrush plants was examined using 
linear regression analysis. Significant linear correlations (p = 0.05) 
were found between maximum soil temperatures at the l-, 5-, and 
IO-cm depths and litter depth and under the sagebrush plants with 
r-values of 0.75,0.58 and 0.49, respectively. These results are due to 
the greater litter depth found on the north side of the plants, which 
is an indirect effect of the variable shading of the sagebrush plants. 
Sunlight is able to reach the soil on the south side of the plant, 
which raises the soil temperature and makes the site more aridic 
and less productive than the cooler north side of the plant. Min- 
imum soil temperature was only significantly correlated to litter 
depth (p = 0.05, r = 0.53) at the l-cm depth because of the more 
uniform insulating effect of the sagebrush against longwave radia- 
tion losses during the night. 
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Geostatistical Analysis 
Spatial Patterns 

Geostatistics were used to further quantify the observed periodic 
spatial patterns in soil temperature produced by sagebrush plants. 
Additionally, we were interested in examining the influence of 
sagebrush on the magnitude and pattern of diurnal fluctuations in 
near-surface soil temperature. 
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Semivariograms were calculated for daily maximum and min- 
imum soil temperature from each of l-, 5-, and IO-cm soil depths 
for days 8 1 to 86,1989. Data values from a 6-day period were used 
both to determine if spatial patterns in soil temperature were 
consistent over time and to increase the number of values used in 
calculating each value of semivariance. Values of semivariance and 
the best fitting semivariogram models for maximum and minimum 
soil temperatures at each soil depth are shown in Figure 3. Model 
parameter values for the best fitting semivariogram models are 
given in Table 3. Sill values for the spherical component semivari- 
ogram models for each variable and depth showed that maximum 
soil temperature had a greater magnitude of spatial variability 
compared to minimum soil temperature and that the magnitude of 
variation decreased with depth for each variable. These results 
were similar to sample variance patterns for maximum and min- 
imum soil temperatures on day 81 reported in the classical analysis 
section of this paper. 

1 2 3 4 5 

Lagged Distance (m) 

Fig. 3. Vah~es of semivariance and the best-fitting semivuiogram models 
for maximum (A) and minimum (B) soil temperatures for l-(O), S- (A) 
and lo-cm 0) depths at JO-cm intervals along a 12.3-m north-south 
transect on days 81 to 86,1989. 

Figure 3 illustrates that sinusoidal periodicities in spatial varia- 
bility of soil temperature existed to a depth of 10 cm. The ampli- 
tude of the periodic semivariograms component model (A) was 
much larger for maximum soil temperature than for minimum soil 

temperatures at all measured depths (Table 3). This is complemen- 
tary to the larger spread in maximum soil temperature compared 
to minimum soil temperature found for each depth in the previous 
section. These results indicate that the spatial variability in soil 
temperature was greater for maximum soil temperature than for 
minimum soil temperature. Thus, the amount of shade produced 
by sagebrush may have a greater impact on organism growth and 
development than the degree of thermal insulation sagebrush 
plants provide against sensible heat loss during the night. In addi- 
tion, during much of the year, the amount of shaded area produced 
by shadowing from sagebrush plants far exceeds the percent aerial 
cover that the plants provide. Therefore, the percent ground sur- 
face insulated from incoming solar radiation is greater than the 
percent ground surface insulated against sensible heat loss. 

The precise estimation of the range (a) of the spherical semivari- 
ogram component model is confounded by the periodicity exhi- 
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bited in many of the semivariograms. An approximate value of the 
true range of spatial variability for each variable is the distance 
associated with the first peak in the semivariograms which ranged 
between 1 .O and 2.1 m between variables, The wavelength of the 
periodic semivariogram component (w) for each variable and 
depth range between 2.6 and 3.3 m. These results indicate that the 
periodic spatial distribution patterns in soil temperature at each 
soil depth within this sagebrush-grassland plant community oc- 
curred on average in cycles approximately 3 m in length. The 
average distance between sagebrush plants was also near 3 m as 
shown in Figure 2. This suggests that spatial variability in soil 
temperature within this plant community is related to the spatial 
distribution pattern of sagebrush plants. 

Results also indicate that during sampling, heat transport down 
through the soil profile during the day was dampened more than 
heat transport up and out the top of the profile during the night 
(Fig. 3 and Table 3). Amplitudes of the periodicities in maximum 
and minimum temperature at the IO-cm depth were 6 and 42% of 
the amplitudes at the l-cm depth, respectively. High levels of 
incoming solar radiation were received for only short time periods 
during the middle of each day, while sensible heat losses were more 
uniform throughout each night. This produced sharp peaks in 
maximum temperature and smooth broad valleys in minimum 
temperature near the soil surface (Fig. 4). Higher temperature 

Fig. 4. Values of hourly soil temperature measured at the l-cm depth on 
30-cm intervals along a 12.3-m north-south transect for days 81 to 86, 
1989. 

gradients for movement of heat downward into the soil existed for 
much shorter time periods compared to the lower temperature 
gradients for movement of heat upward toward the soil surface. 
The net result was that the amount of heat transported downward 
exceeded the amount of heat transported upward due to very high 
surface temperatures during the day; thus, the lower soil layers 
were accumulating heat and warming up (Fig. 4). 

Table 4. Values for the Y-intercept (CO), slope (m), cosine amplitude (u), 
wavelength(w) and sine amplitude(v) parameters found in the semivari- 
ogram models of Eqs. [6], (71, and [9] used to model the temporal 
variability in soil temperature at l-, S-, and IO-cm depths under sage- 
brush and interspace areas for days 81-86,1989 (shown in Fig. 5). Values 
for the amplitude of the periodic semivariogram component model (A) 
are also given for each variable and depth. 

co m U w ” A 

Temporal Patterns 

Geostatistical techniques were also used to examine differences 
in the magnitude and structure of temporal variability in soil 
temperature between sagebrush and bare interspace areas. Figure 4 
is a plot of hourly soil temperature values for the l-cm depth over a 
144-hr period from day 81 through day 86, 1989. It shows the 
magnitude of temporal variation in soil temperature along the 
transect as well as the influence of the sagebrush plants on the 
spatial and temporal variablity of soil temperature over the entire 
6day period. Sagebrush plants were located between 0 to 2,6 to 7, 
8 to 8.5, and 9 to 10 cm along the transect. 

(” C)z ((” C)2/hr) (” C)z (hr) (” C)2 (” CY 
Sagebrush 

1 cm 4.48 0.0067 -3.50 23.89 -0.12 3.50 
5cm 2.23 0.0094 -1.83 23.99 -8.1 I 1.83 

1Ocm 0.72 0.011 -0.68 24.09 -0.0016 0.68 

Interspace 
I cm 19.13 -0.022 -14.12 23.93 0.18 14.12 
5 cm 11.35 -0.008 1 -8.60 23.91 -0.15 8.60 

IOcm 4.23 0.0049 -3.36 23.91 -0.12 3.37 

temperatures at the same depth. In addition, the amplitude of 
temporal variability was also greater than the amplitude of spatial 
variability for minimum and maximum soil temperatures at all 
depths. 

Semivariograms were calculated using hourly soil temperature 
values from each depth under both sagebrush and interspace areas. 

The semivariograms in Figure 5 show distinct sinusoidal diurnal 

The values of semivariance and the best-fitting semivariogram 
patterns over time for each location and depth, with a common 

models for soil temperature at each depth under sagebrush and 
periodic wavelength (w) of approximately 24 hr (Table 4). At each 
depth, the amplitude of the diurnal periodic pattern was much 
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Fig. 5. Values of semivariance and the best fltting semivariogram models 
for hourly soil temperature under bare interspace (A) and sagebrush 9) 
areas on days 81 to 86,1989. Data is given for the l-(O), S-(A) and IO-cm 
0) soil depths under each area. 

and interspace are shown in Figure 5. Nugget values (Co) of the 
linear semivariogram component models given in Table 4 repres- 
ent the Y-intercepts of straight lines fitted through the values of 
semivariance for each variable and depth. Slopes (m) of the lines 
for each variable were quite small; thus, CO values are representa- 
tive of the sample variance for each variable and depth. Like spatial 
variability, temporal variability was also greater for interspace 
areas compared to sagebrush areas, and the variability decreased 
with depth. Comparison of Cl values in Table 3 and Co values in 
Table 4 showed that temporal variability in soil temperature was 
greater than the spatial variability for both maximum or minimum 

JOURNAL OF RANGE MANAGEMENT 44(5), September 1991 495 



larger for interspace areas compared to areas covered with sage- 
brush plants. The amplitude of temporal variability in soil temper- 
ature under sagebrush ranged from 15 to 25% of the size of the 
amplitude of temporal variability found for soils in interspace 
areas at each measured depth. Amplitude of the temporal variabil- 
ity in soil temperature at the IO-cm depth in the interspace was 
approximately equal to the amplitude of the temporal variability in 
soil temperature under sagebrush at the l-cm depth. Thus, sage- 
brush and associated surface litter insulate and dampen diurnal 
fluctuations in near surface soil temperature equivalent to the 
dampening effect of 10 cm of soil. Sagebrush also sufficiently 
insulate the soil so only small diurnal fluctuations in soil tempera- 
ture exist at the IO-cm depth. 

Conclusions 
The insulating effect of sagebrush plants produced significant 

periodic spatial patterns in soil temperature across the landscape. 
Bare interspace areas had higher maximum and lower minimum 
soil temperatures at depths up to 10 cm compared to areas under 
sagebrush plants. The presence of small plants such as grass clumps 
and moss seem to have little influence on near surface soil tempera- 
tures compared to the larger sagebrush plants. 

Sagebrush plants also influenced the spatial variability of diur- 
nal oscillations in soil temperature. Diurnal variations in soil 
temperature were found to be greatest in bare interspace areas and 
were greater than measured spatial variations in maximum and 
minimum soil temperature. 

When trying to simulate the soil micro-climate, whether it be for 
predicting range revegetation success or estimating insect popula- 
tions, the spatial and temporal variation of the soil micro-climate 
must be considered. The magnitude of both spatial and temporal 
variations in soil temperature found at this site are large enough to 
strongly influence the establishment and survival of organisms that 
inhabit the near-surface soil environment. In this case, making the 
assumption that the soil micro-climate is consistent over time and 
space would lead to very large simulation errors. The geostatistical 
analysis presented here showed that soil temperature had a range 
of spatial autocorrelation of approximately 1-2 m and that the 
pattern was cyclic in nature with a periodicity of around 3 m in 
length. A model simulation of soil temperature for a single point on 
the landscape would only spatially represent an area of less than 
l-3 m in radius around the modeled point. The actual size of the 
area represented by the model simulation would be determined by 
the amount of simulation error the model would be willing to 
accept. Fortunately, on this site the spatial patterns in soil tempera- 
ture are periodic in structure, which allows the accuracy of simula- 
tion to be significantly improved by dividing the landscape into 2 
distinct areas, sagebrush and interspace, each of which could be 
modeled separately and would represent a certain percentage of the 
landscape. 

Additional descriptive information on the spatial and temporal 
variability of soil and climatic variables needs to be. obtained and 
incorporated into future modeling and range restoration efforts. 
We present results describing the spatial and temoral variability of 
soil micro-climatic conditions within only 1 sagebrush/grass plant 
community. More information on the spatial and temporal varia- 
bility of additional soil and climatic variables within other major 
rangeland plant communities is also needed to determine the mag- 
nitude and structure of the variability that exists and the causative 
factors involved. 

The geostatistical procedures presented in this paper are useful 
tools that can be used in many creative and productive ways to 
improve our ability to manage range resources and make quality 
land management decisions. Geostatistics were used here to help 
quantify spatial and temporal patterns in soil temperature that 

were qualitatively obvious; however, the techniques are even more 
useful for exploring and quantifying patterns of variability in other 
factors which are much less obvious and may go undetected under 
most standard classical statistical analyses. These and other geo- 
statistical techniques are quite applicable and useful in the analysis 
of many types of data in range science and should be considered in 
future studies of rangeland resources. 
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