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Abstract 

Experimentors have been using cost-efficient systematically 
located transects in the line intercept method for some time with 
little support from mathematical statistics. In this paper, it is 
shown that for rectangular regions the usual line intercept estima- 
tors for cover, density, and other attributes are unbiased for certain 
systematic sampling plans. The estimators are approximately 
unbiased for “large” irregularly shaped study regions. 

Consider line intercept sampling in a situation in which particles 
or items to be sampled are distributed across a study region. In 
general, the particles may be of any shape and size and may possess 
an arbitrary spatial distribution. For instance, the particles may be 
shrubs or patches of vegetation in a field, cells on a slide, or the 
projection of logs on the forest floor. It is often of interest to study 
certain quantitative characteristics of these particles. One might be 
interested in the number of particles per unit area, density, the 
proportion of the study region covered by particles, percentage 
cover, or such attributes as weight, size, yield, biomass, etc. 

Consider a study region of area A and define the following 
parameters (usually unknown and to be estimated): 

N = The total number of distinct particles in the study region. 
D = N/a = Density, the number of particles per unit area. 
ai = The area covered by particle, i, +I,2 ,..., N. 

c= 
+I 

= Percentage cover, the proportion of the study 
A region covered by the particles. 

Xi = Any fixed, measurable attribute associated with the ith 
particle, i=1,2 ,..., N. 

2 Xi 

x = i=’ = The total quantity of the attribute per unit 
A area. 

Sample data available will include: 
K = The number of transects in the sample. 
4 = The length of the jth transect, j=1,2 ,..., k. 

L = 3 Lj= The total length of the transects. 
j=l 

n = The number of distinct particles intersected. 
Yi = The length of the intersection of the i* particle and a 

transect, i=1,2 ,..., n. 
wi = The width of the ith intersected particle relative to the 

transect, i.e., the distance between tangents of the particle 
that are parallel to the transect, i=1,2,...,n. 

Xi = The value of the attribute associated with the ith 
intersected particle, i= I,2 ,..., n. 

For illustration see Figure I. 
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Fig. 1. Study region of Oreo A with N = 17 disrincr portictes, n = 6 inter- 
sected porricles, and k = 3 transects of equal Cngrh. 

Most work to date in this area implies that data should be 
collected from a single randomly located transect or from a simple 
random sample of nonoverlapping transects of equal length. For 
example, Lucas and Seber ( 1977) derived unbiased estimators for 
density, D, and percentage cover, C, for any spatial distribution 
and a randomly located transect. DeVries (1979) derived an 
unbiased estimator for density for long narrow particles and a 
single randomly located transect, and Eberhardt (1978) derived an 
unbiased estimator of density using parallel but randomly located 
transects. McDonald (1980) showed that the Lucas and Seber 
estimators for density and percentage cover are unbiased for a 
simple random sample of unequal (random) length transects. 

It is the purpose of this paper to show that the estimators for 
density, percentage cover, and other attributes, are unbiased for 
certain systematic sampling plans. In the interest of simple 
notation and illustration, a single study region is addressed. 
However, non-homogeneous or large study regions may be 
stratified into smaller strata. Rectangular strata are preferred for 
systematic line intercept sampling. Pooling of estimates for 
inference toward a larger area follow the standard methods e.g., 
Cochran (1977). 

Systematic Sampling Plans and Estimation 
Case I. Rectangular Study Regions. 

First consider an ideal situation in which the study region is 
rectangular of size L by W. Transects may be randomly located 
along the baseline, one side of the study region, and extended 
perpendicularly from the baseline across the entire region. 
Eberhardt (1978) derives the unbiased estimator for density. 

d= 
; wi’ 0) 
L 

where wr is as defined previously and L is the length of a randomly 
located transect constructed perpendicularly to the baseline. 

Instead of randomly locating the transects, systematically locate 
parallel transects. To do so, determine the distance, d. between 
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Fig. 2. Illusrration of rhe systematic location of 6 transecrs in a rectangular 

study region. The first transeci is randomly located. 

transects such that d is large with respect to wi, the width of the ith 
particle. This will insure that no particles are intersected twice. It is 
also convenient to pick d such that w/d = r is an integer. The first 
transect is then randomly located in the interval [O,d]. Because the 
transect is randomly located and every particle is in some interval, 
the probability that the ia’ particle is intersected is 

pi= vvi 
d 

(2) 

Subsequent transects are placed parallel to the first and d units 
apart. For illustration see Figure 2. Because the first transect is 
randomly located in the interval [O,d] each of the other transect’s 
starting points could be anywhere in their respective intervals. 
Thus, for any particular interval the probability of intersection is 
still as in Equation (2) and the estimator 

= 
k kL (3) 

is unbiased for density. For further details of the proof, see the 
Appendix. 

The rectangular study region naturally extends to the situation 
in which the region is not one large rectangle, but may be divided 
into r smaller rectangles. Each rectangle may be sampled with one 
random transect or a systematic sample of two or more transects. 
Density is estimated in each sub-rectangle and density for the entire 
study region may be estimated by the unbiased estimator. 

the weighted average of the individual estimates, where the weight 
4, is the area of the jth rectangle. 

In a similar manner, the estimators for percentage cover, 

i Yi 
(J = _ i=l 

-7 
k 

and the total of an attribute per unit area, X, 

can be shown to be unbiased for a systematic sample of parallel 
transects in rectangular study regions. 

Case II. Irregular Shaped Study Regions. 
Devries (1979) derived the probability that a randomly tossed 

needle (a well-defined longest chord of a particle) intersects a 
straight line in a plane using a solution to a modified version of the 
Buffon needle problem. Using this probability, he derived the 
unbiased estimator for density, 

where L is the length of the transect, and er is the length of a well- 
defined longest chord of the intersected particles, i= 1,2,...,n. The 
original Buffon needle problem consists of randomly dropping 
needles on a grid of equidistant parallel lines in a plane. Solomon 
(1978) showed that the probability, p, of the ith randomly placed 
needle intersecting a line is 

p,2ci -9 (8) 
ml 

where d is the distance between lines. In order to avoid a needle 
intersecting two lines and to avoid problems with the boundary it is 
necessary that Gil d, the center of the needle is in the plane, and the 
lines are long relative to&. The derivation of pi is based on the fact 
that the distribution of Oi, the acute angle between the closest line 
and the needle, is uniform on the interval [0, R/ 21, the distribution 
of m,, the perpendicular distance from the center of the needle to 
the closest line, is uniform on the interval [O,d/ 21, and mi and & are 
stochastically independent, see Figure 3. 

In many situations, the particles are not randomly distributed, 
i.e., reality is not equivalent to randomly dropping needles on a 
grid of equidistant lines. However, suppose that the particles are 
fixed, as they are, and that the grid is randomly dropped on the 
particles. The distribution of Bi is still uniform on the interval [0, 
rr/ 21, the distribution of mi is uniform on the interval [O,d/ 21, and 
mi and & are still stochastically independent. Thus, the probability 
of a line intersecting the longest chord of a particle is as in Equation 
(8). A systematic sample constructed as follows will be equivalent 
to randomly dropping a grid on the study region. 

(5) \ 
Fig. 3. 7?re longest chord (needle) of a particle intersecring a transect. 7he 

value mi is theperpendicular distancefrom the center of the chordro the 
closest transect. Zhe angle @i is the acute angle berween the chordand the 
closest transect. 
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Fig. 4. A systematic sample taken by randomly locating apoint, p and then 
randomly determining a direction, 8, for the first transect. Subsequent 
transects are located parallel to ihe first and equidistant apart. 

A systematic sample requires that the first transect be randomly 
located and that subsequent transects be located parallelto the first 
and equidistant apart. Random location of the first transect may 
be accomplished by one of two procedures. In the first procedure, 
the first transect is located by randomly locating a point in the 
study region, randomly determining a direction at the point, and 
passing the transect through the point in the direction specified. In 
the second, determine a random point along a randomly located 
baseline and then extend the first transect perpendicularly to the 
baseline at that point. The transects may originate on one border 
and terminate on the opposite border of the study region. (See 
Figures 4 and 5.) 

When a systematic sample is taken, the estimator for density 

I 

Fig. 5. A systematic sample taken by randomly locating a baseline, ran- 
domly locating thefirst transect along the baseline atpoint p, andplacing 
subsequent transects parallel to the first and equidistant apart. 

systematic sample may be constructed in one of the ways pre- 
viously described. Assume the particles are “small” relative to the 
length of the traysects and the distance between transects. (To 
guarantee that the probability of partial intersections or intersec- 
tion of a particle by more than one transect is negligible.) As in the 
previous situation, the estimators of Equations (10) and (I I) are 
potentially biased due to the curvature of the study region. Again, 
if the curvature is slight, the lines are long relative to the size ofthe 
particles, the particles are inside the study region, and the distance 
between transects is small relative to the study region, then the bias 
may be considered negligible for the systematic plans. 

Discussion 
Investigators are often reluctant to use a systematic sampling 

plan since spatial dependencies may be introduced into the data. 
Rather than avoiding systematic sampling or ignoring the depen- 
dencies, one might model the correlation between data points and 
use the correlation in the analysis of the data. This technique is 
beyond the scope of the present paper and is addressed in Butler 
(1981). The interested reader may also refer to Journel and Huij- 
bregts (1978) where applications in mining and engineering are 
considered. Even though exact variance estimators for systematic 
sampling plans are not readily available, the variance estimates 
from the standard estimators of simple randomsampling plansare 
recommended and are usually conservative (i.e. too large). See 
Mendenhall et al. (197 I) and Cochran (1977). The primary prob- 
lem in using systematic sampling arises if unknown cyclic patterns 
exist in the size, orientation, or spatial distibution of particles. The 

(9) 

is no longer unbiased. It has been suggested (Seber 1979) that two 
possible sources of bias are introduced. First, the estimator is 
biased by the curvature of the boundary of the study region. Thus, 
D does not estimate the density for the exact study region. (See 
Figure 6 and the Appendix.) Seber also suggested that the random 
length of the transects introduces a second source of bias and 
discusses a Jack-Knifing technique to reduce the bias. However, 
McDonald (1980) showed that random lengths do not bias the 
estimator and hence the Jack-knifing procedure is not necessary. 

If the curvature is slight, the lines are long relative to the size of 
the particles, the particles are inside the study region and the 
distance between transects is small relative to the size of the study 
region, the bias may be considered negligible for systematic sam- 
pling plans. The bias will be small if the combined area of the series 
of rectangles suggested in Figure 6 is close to the area of the study 
region, see the Appendix. 

Lucas and Seber (1977) prove that for the case of a randomly 
located transect and any size, shape, orientation, or spatial distri- 
bution of particles, the estimators 

= 

\ 

1 
I 

, 

(10) 

and 
” cyi 

are unbiased for density and percentage cover respectively. 
Instead of one randomly located transect or simple random 

sample of transects, assume that a systematic sample of k parallel 
unequal length transects extend from border to border across a 
fixed study region containing N particles of any distribution. The 

---k-- c 

Fig. 6. Six transects systematically located in an elliptical shaped stud.v 
region. If density, percent cover, or another attribute are estimated, the 
estimates are unbiasedfor the area enclosed by the rectangles and biased 
for the elliptical study region. 
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Fig. I. Two townships in rhe L.aramie Peak District of the Medicine Bow 
National Forest. The while land is federally owned, the dotted land is 
privately owned. and the striped land is state owned. Six transects are 
sysremarically located. The firsr is located .5 cm. from the left hand 
border and orhers are locared parallel to the first and 2.6 cm. apart. 

estimators are still unbiased but may have extremely large varian- 
ces. Also the standard variance estimators (assuming simple ran- 
dom sampling) may not be conservative in this case. Hopefully 
such cyclic patterns will be recognized and used to anadvantage in 
stratification of the study region into homogeneous subunits. 

The main advantages of systematic sampling (if care is taken in 
the planning) are that: 

(1) It is often possible to obtain more information per unit 
cost than from simple random sampling, see for instance 
Mendenhall et al. (1971). 
(2) It is guaranteed that the sample will be spread uniformly 
over the study area (or subunit thereof). 
(3) The estimators used in line-intercept sampling are unbi- 
ased for rectangular study regions and nearly so for most 
“large” irregularly shaped study regions. 

Systematic plans in line-intercept sampling have been used with 
little support from mathematical statistics. Experimentors have 
probably known that the resulting estimators are not only very 
cost-efficient but (at least intuitively) are also unbiased. For exam- 
ple, Eberhardt (1978) illustrates the use of Equation (I) with sys- 
tematically located transects even though his derivation makes the 
assumption that a simple random sample is used. Granted that 
unbiasedness is not the only desirable property of estimators, its 
presence helps put the use of systematic line-intercept sampling on 
a firmer mathematical basis. 

Illustration 

Suppose that it is of interest to estimate the proportions of 
federal, state and private lands in the Laramie Peak District of the 
Medicine Bow National Forest. To illustrate the procedure, con- 
sider Figure 7 which consists of two of the many townships in the 
region. The different land owners are denoted as white for federal, 

Table 1. The total length of intersections for each of 6 systematically located 
transects are given for each of the 3 land types. The distance between tran- 
sects is d = 2.6 cm. and the first is located .5 cm. from the IetI hand border. 
The total length of intersection for all transects are given for each land 
type as well as the total number of particles intersected, n. 

Land tvoe 
Transect 4 Private (cm) Federal (cm) State (cm) 

I 7.6 3.5 2.9 1.2 
2 7.6 0.6 5.6 1.4 
3 7.6 3.2 3.1 0.7 
4 7.6 3.9 3.1 0.6 
5 7.6 2.1 3.6 1.3 
6 7.6 2.9 4.1 0.0 
Totals 49.6 16.8 23.6 5.2 

(n= lb) (n=I5) (n=5) 

dotted for private, and striped for state. Six transects are systemati- 
cally located in the following manner. The base of the region is 
divided into six intervals each of width 2.6 cm. The first transect is 
randomly located in the far left interval. Its starting point is ran- 
domly determined to be .5 cm from the left hand border. All 
measurements are made in centimeters and the results are tabu- 
lated in Table I. Percentagecoverforeach land type isestimated by 

Let G, cp’,, c denote the estimates for percentage cover of federal, 
private, and state lands respectively. The following estimates are 
computed. 

G= .52 G= .37 I?+!= .II 
Therefore it is estimated that 52% of the two townships is federally 
owned, 37% privately owned, and 11% owned by the state. Thk 
actual proportions for these two townships are 50% federally 
owned, 42% privately owned, and 8% owned by the state. 
Although no variance estimators exist for systematic sampling 
plans. The following variances are computed using the standard 
variance estimators for simple random sampling: 

Sr’= .Ol83 S; = .0233 Si = .00496 
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Appendix 

Eberhardt (1978) argues that the estimator for density, 

W.1) 

is unbiased for a simple random sample of parallel transects con- 
structed perpendicularly to one side of a rectangular study region. 
The estimator in Equation (A. I) is also unbiased if a systematic 
sample of parallel transects is constructed rather than a simple 
random sample. 
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Proof Let 
Because the first transect is randomly located in some interval, 

[O,d], and every particle is in some such interval, the probability 
that the i* particle is intersected is p= wi/d. Where wi is the width 
of the particle and d is the distance between transects. 

Let 

1.0 if the i* particle is intersected with 
probability wild. 

Then 
z= 

I 0.0 if the iti particle is not intersected 
probability I-wi/d. 

Then 

@]=E 

N 

z E[zi] w,-’ 
id 

= 
k 

ZL 
j=l 

= 
$ Wi WC’ 

k 

CLd 
j=l 

= $,I = N CD 

A A 

If a systematic sample is taken over an irregularly shaped study 
region such that the transects run from border to border, the 
estimator for density 

c I 1 

(A.21 

is no longer unbiased. (6r is the length of a well defined longest 
chord of the 
intersected particle.) 

Proof: 
Consider the expected value of D given Lj, j=1,2,...,k. Recall that 

DeVries (1973) showed that the probability that the longest chord 
of the i* particle is intersected is p = 2Cr/ srd. Under the assumption 
of a systematic sample of parallel transects this probability does 
not change. 

1.0 with probability pi= Ci/Td if the 
longest chord of the i* particle is 
intersected. 

a= 
0.0 with probability (I-p) if the longest 

chord of the i” particle is not inter- 
sected. 

E[B\Lj] = E 

j4 

= E 

rr =_ 
2 

= N 
k 

c (area of the J* rectangle, 4 byd) 
j4 

If the curvature is slight, the lines are long relative to the size ofthe 
particles, the particles are inside the study region, and the distance 
between transects is small then clearly E[ab] = (N/A) = D. 

If we may assume that the bias due to curvature is negligible, the 
Lucas and Seber estimators of Equations (1) and (I I), are unbiased 
for a systematic sample of k parallel transects. 

Proof: 

Consider the i* particle and its closest transect. Closest is de- 
fined to be the minimum perpendicular distance between the center 
of the particles and the transect. 
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Figure A.l. The i* particle intersected by the J" transect. l’he distance. 
W(Oi). is the perpendicular distance between IWO tangents to theparticle 
consrructedparallel to the transect. The distance, u, is the perpendicular 
distance between the transect and the upper tangent. The angle, c)i, is the 
acute angle between a well-defined longest chord and the transect. 

Define: 
0i = The acute angle between a well-defined chord, say the 

longest chord, of the ith particle and its closest tran- 
sect, 
+I,2 ,..., n. 

w(@i)‘The 
.IiY 

rpendicular distance between two tangents of 
the I particle which are parallel to the transect, a 
function of the angle 0 and the shape of the particle. 

ui = The perpendicular distance between the transect and 
the “upper” tangent. See Figure A. I. 

Since the first transect in a systematic sample of transects is 
randomly positioned, the angle 0i, for any particle and its closest 
transect, may take on any value in the interval [O,rr]. That is Or is 
uniformly distributed on the interval [O,lr]. And give Oi, the varia- 
ble ui may take on any value in the interval [O,w(@)], because the 
first transect is randomly located. Thus for any particle and its 
closest transect, ur is uniformly distributed on the interval [O,w(Oi)]. 
Now we have the situation for @r and ui as described by Lucas and 
Seber (1977) and the probability of intersection is the same. Thus, if 
the boundary effects are negligible, the estimators for density and 
percent cover, 

W.3) 

and 

i Yi 

t= 
i=l 

b 
(A.41 

z4 
j=l 

are approximately unbiased for systematic sampling. 
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