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Abstract 

Confusion exists over the proper statistical methodology to use 
in analyzing the effect of treatments on changes in botanical com- 
position over time. A rationale for using multivariate statistics is 
presented. Basic considerations involved in the use and interpreta- 
tion of multivariate statistics specifically appropriate to the botani- 
cal composition problem are given. An example of how such an 
analysis can be performed using a common statistical computing 
package (SAS) is demonstrated. 

Change in botanical composition over time is one way of meas- 
uring the effect of applied treatments on vegetation. The point 
method was developed by Levy and Madden (1933) and has been 
commonly used to determine botanical composition based on the 
proportion of the ground or area occupied by plant bases or 
covered by foliar portions of the vegetation (Brown 1954, Cain and 
de Castro 1959, Greig-Smith 1964, Kershaw 1975, Tothill 1978). 
These point data, along with cover data collected by other tech- 
niques, have been analyzed by various methods, and some confu- 
sion generally exists as to the proper method of evaluation of the 
effect of “v” different treatments (v 2 2) on changes in botanical 
composition over time. The researcher needs to know how such an 
experiment should be designed and analyzed so that this evalua- 
tion can be made. Analysis of data collected from an experiment of 
this type is complicated by the fact that the response variables of 
interest (i.e. counts or percentages of the various species) are highly 
correlated. 

The objectives of this paper are: (I) to suggest an experimental 
design which will provide data addressing the above research 
question without ambiguity, (2) to make the range scientist aware 
of the statistical problems inherent in analyzing sets of correlated 
response variables, and (3) to suggest procedures which should be 
utilized to correctly yet clearly analyze these data. These proce- 
dures require use of statistical computing packages. While several 
good packages exist, examples will be given for implementation 
using the Statistical Analysis System (SAS) (Barr et al. 1979) 
probably the most widely available statistical package at agricultu- 
ral experiment stations. 

Statistical Problems Inherent in Analyzing Botanical Com- 
position Data 

Suppose an experiment is conducted in which v treatments (v 2 
2) are applied to plots within each of r blocks (r2 2). At each oft 
times (t 1 2) the percent composition for each of s plant species is 
observed for each plot. The objective is to decide whether the 
changes in species composition are affected by the treatments. 
How shall a question be addressed? 

To answer this question, it is necessary to recognize the experi- 
mental design implied by the procedure described above. This 
experiment can be viewed as a split-block, with treatment as the 
whole-plot effect and time as the split-block effect. The basic 
appioach to the analysis of this type of experiment, the method 
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presented in most introductory classes in experimental design, is 
univariate analysis of variance (ANOVA). This analysis is approp- 
riate if the objective is to evaluate only one response variable or a 
set of uncorrelated response variables one at a time. For example, 
suppose the change in only one species is of interest: all other 
species are simply ignored. Granted, this is unrealistic but it is 
important to understand the basics before elaborating the 
problem. 

In the one variable case, the split-block experiment described 
above gives rise to the following ANOVA. 

Source of Variation df 
Block r-l 
Treatment V-l 

error a 
Time 

if;; (v-l) 

error b (r-l) (t-1) 
Time X Treatment (v-l)(t-I) 
error c (v-l)(t-I)(r-I) 

The research question posed by the experimenter can be phrased in 
terms of the statistical hypothesis H,: no time X treatment 
interaction exists versus HA: a time X treatment interaction does 
exist. That is, H, corresponds to stating that the changes over time 
in the percent of the species are identical for all treatments; HA 
corresponds to stating that these changes over time are different for 
at least one of the treatments. The mechanics of this analysis can be 
found in Steel and Torrie (1980). 

A more complex situation arises, however, when the 
experimenter is interested in the total relative species composition 
of the plot. Let yijkl denote the proportion of the lth species at the 

kth time period for the jth treatment in the ith block. Then d yijkl 
‘I=1 

= 1; that is, for a given plot at a given time, the sum of the 
proportions for each species must be one. From a statistical analy- 
sis point of view, this is a critical point: within a given plot at a 
particular time the observations on the various species are nega- 
tively correlated. That is, an increase in the YAM for one of the “s” 
species must necessarily be accompanied by a decrease in the yijkl 
for one or more of the other species being studied. Therefore, the 
collection of proportions of each species must be analyzed taking 
this negative correlation structure into account. The proper way to 
do this statistically is to utilize multivariate statistical methods, 
specificially, multivariate analysis of variance (MANOVA). 

The similarities and distinctions between the appropriate linear 
models and hypotheses tested for the usual univariate ANOVA 
and MANOVA in the context of the botanical composition experi- 
ment are reviewed. In addition, the range scientist will be 
aquainted with the assumptions underlying thedata which must be 
satisfied to validly apply MANOVA to such data. Finally, the 
method for programming such analyses using the Statistical Anal- 
ysis System (SAS) will be demonstrated. No attempt will be made 
to present a detailed account of MANOVA theory. Readers inter- 
ested in pursuing this topic are encouraged to read further in such 
multivariate textbooks as Morrison (1976). 
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Hypotheses Tested and Assumptions Involved in MAN- 
OVA for Botanical Composition Problem 

To understand the hypotheses tested and the assumptions 
underlying MANOVA for the species composition problem, hypo- 
theses and assumptions involved for the univariate ANOVA case 
must be understood. Consider, as an example, data from an experi- 
ment conducted as described above with the number of species 
observed s = 1. Let yijk denote the count or percent for that species 
for the ith block, jth treatment, and kth time period. The linear 
model for this experiment can be represented by the following 
equation: 

yik = /J -t bl -t Vj ‘t (bvh -t tk t (bt)ik ‘t (vt)jk -t (bVt)ijk (1) 

where p = the overall mean 
bi = the effect of the ith block, i=1,2 ,..., r 
Y = the effect of the jth treatment, j=1,2...,v 
(bv)ii = random error associated with the ijth block treatment 

combination (error a) 
= the effect of the kth period, k= ,2 ,..., t 

;&k = random error associated with the ikth block-time 
combination (error b) 

(vt)jk = interaction effect for the jkth time-treatment combi- 
nation 

(bVt)ijk = random error for the ijkth block-treatment-time com- 
bination (error c). 

The null hypothesis of no interaction between treatments and time 
periods can be stated in terms of (1) as H: (vt)jk = 0 for all 
j=1,2 ,..., v, k=1,2 ,...,t. This hypothesis can be validly tested using 
ANOVA provided each of the error c terms (bvt)ijk has a normal 
distribution with constant variance, ~3, for each block-treatment- 
time combination. Note that species counts for this example would 
actually follow a binomial distribution, but ifthe number of points 
per plot is large the counts will approximate a normal distribution. 
It is important that this consideration be kept in mind when 
designing and conducting the experiment. The equality of the 
variance of the error c terms is a more severe requirement and 
should be check using an appropriate procedure such as Bartlett’s 

* test (Steel and Torrie 1980). If this requirement is not satisfied, 
ANOVA on the percents should not be performed (see below). 

Now consider an experiment using the same design as above but 
for which s > 1 species are observed. Let yd~. denote the count or 
percentage on the ijk-tk block-treatment-time combination for the 
lth species. Analogousto the univariate model (l), the multivariate 
linear model can be expressed as: 

yijkl = /.&I .fbil -t Vii -t (bvki ‘f tkl -t (btku t (Vt)jkl -t (bVt)iiki (2) 

where the terms on the right-hand side of the equation correspond 
to the effects for model (1) for the lth species, 1=1,2,...,s. Then the 
hypothesis of no interaction for model (2) can be expressed as 

H,: (vt)jkl = 0 for every treatment combination, i.e. (3) 

the changes over time for each species are identical for every 
treatment. 

The hypothesis given in (3) can be validly tested using MAN- 
OVA if the following assumptions hold for the destribution of the 
(bvt)ijM or error c, terms. 

1) The error c terms must be normally distributed. As in the 
univariate case, satisfying this condition requires a large 
number of points per plot. Additionally, species with very 
small counts occurring for a large number of block-treatment- 
time combinations should either be left out of the analysis or 
grouped together into classes of related species. NOTE: To 
insure that the statistics used to test the hypothesis given in (3) 
can be calculated, the number of species or species classes 
should be less than the number of treatments. 
2) Let ozju denote the variance of the error c term for the 
jkl-th combination, and let Ujkl’l denote the covariance of the 
error c term for two species 1 and l’, where 1 # 1’. The error 
structure among the error c terms for the s species for the jkth 

treatment-time combination can be represented by the follow- 
ing matrix: 

I 

Ujk12 UjklZ- - - - - Uj,kls 

l. 
. . 

Ujkb-1)s 

. Ujks2 

The requirement for the error structure for valid application of 
MANOVA is that the matrices cjk must be eqUd for each 
treatment-time combination. This assumption corresponds to the 
requirements of equal variances in univariate ANOVA. If the data 
show gross deviation from this assumption alternative methods of 
analysis should be considered such as the alternative presented 
below in the section “Some Suggestions for Analyzing Botanical 
Composition Experiments when the Assumptions of MANOVA 
are Violated.” 

In univariate ANOVA, the hypothesis of no interaction istested 
by calculating the Sum of Squares for Treatment X Time and the 
Sum of Squares for error c and then ‘calculating the ratio 

F= SS(treatment X time)/@-l)(t-1) 
SS(error c)/(r-l)(v-l)(t-I) 

and comparing F to a table value of the F-distribution with (v-l)(t- 
1) and (r-l)(v-l)(t-1) degrees of freedom at an o-level correspond- 
ing the experimenter’s willingness to risk committing a type I error. 

The situation becomes more complex when testing the multivar- 
iate hypothesis of no interaction given by (3). Rather than using a 
single sum of squares to measure variability attributable to time- 
by-treatment interaction for a single response variable, the multi- 
variate procedure utilizes a matrix consisting of sum of squares 
terms measuring treatment-by-time effects for each of the corre- 
lated response variables and sum of products terms to account for 
the covariance among treatment-by-time effects of the various 
species. In place of a single sum of squares for error, a matrix is 
used which is similar to the above matrix except time-by-treatment 
terms are replaced by error terms. These matrices are known in the 
literature as the hypothesis, or H, matrix, and the error, or E, 
matrix respectively. The mechanics of calculating these matrices is 
beyond the scope of this paper; readers interested in pursuing the 
subject are referred to Morrison (1976). 

The matrices H and E cannot be divided to produce a single test 
statistic as in the case of a univariate F-test. However, there are 
methods for comparing H and E, that is, testing the multivariate 
hypothesis of no interaction, which are commonly accepted mul- 
tivariate procedures. Four which are computed by SAS are (1) the 
Hotelling-Lawley trace, (2) Pillai’s trace, (3) Wilk’s Lamda, and (4) 
Roy’s Maximum Root Criteria. There is no general agreement 
among statisticians which of these statistics is “best.” 

For the purposes of the range scientist it is sufficient to now that 
the H and E matrices and their associated test statistics will be 
calculated by SAS. Any of the test statistics would be considered 
acceptable for publication. The levels of significance associated 
with the comparison of H and E corresponds to the level of 
significance for the test of the hypothesis of no interaction. Addi- 
tionally, an important practical consideration is that at most s-l 
species or species group counts should be included in a single 
MANOVA run. For matrix algebra considerations beyond the 

8 
scope of this paper, the fact that c yuki = 1, i.e. y ijks is determined 

I=1 
by yjkl,...,yijL, @-I, makes it algebraically impossible fo’r any of the test 
statistics to be calculated. However, if a time-by-treatment interac- 
tion is detected for s-l species, it follows that it must apply as well 
to the sth species, because of this dependency. If the hypothesis of 
no interaction is rejected, the biological interpretation is that 
changes in the counts over time are affected by the treatments for at 
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least one species or species group. Specific hypotheses concerning 
which species are involved in the interaction and the components 
of that interaction can be pursued using multivariate contrasts. 
The mechanics of these contrasts involve considerable,matrix alge- 
bra manipulation and are beyond the scope of this paper. How- 
ever, a simple method for the range scientist to visualize the nature 
of the interaction is to obtain a three-dimensional plot of the 
relationship between time and treatment for each species, (See 
appendix). / 

Suggestions for Analyzing Botanical Composition Experi- 
ments When Assumptions of MANOVA Are Violated 

It is important to emphasize that the test of the hypothesis of no 
interaction using MANOVA is valid only if the assumptions given 
in section IV are satisfied, i.e., that the counts are approximately 
normally distributed and, more importantly, that the & matrices 
are approximately equal for each treatment-time combination. 

The assumption of approximate normality can best be dealt with 
by keeping the central limit theorem firmly in mind while designing 
the experiment. Specifically, the experimenter should plan to read 
a relatively large number of points per plot per occasion and plan 
on grouping together related species in situations where counts for 
the individual species are small or zero. While no absolute rule 
exists for exactly how many points should be read, with a lo-point 
frame, the authors have had good success using several hundred 
points per plot in short and midgrass vegetation types and feel that 
less than this number would present the experimenter with prob- 
lems in determining significant treatment differences. 

The assumption of equal Ct matrices is not as easily handled. To 
understand this, consider the following argument. Strictly speak- 
ing, the counts of the various species for a given plot on a given 
occasion are distributed according to a multinomial distribution. 
That is, let pijkl = the probability of sampling the Ith species in the 
ijth plot on the kth occasion, let N be the number of points per plot 
per occasion, and, as before, you be the count for the Ith species. 
Note that * * 

cpijlrl= 1 and ,$tr=N 
I=1 

Then probability of a particular configuration of counts Yijkl, yij- 
tiv..Yijkss is given by 

N 
yijkl!j'iikS!...&jb! 

Moreover, the variance of a particular count, denoted U’ijkt, is 

U*iju = Npijkl(I-fikI) 
and the covariance, denoted by a~u I, is 

(4) 

Oijkl I = -NPtiu ~II (5) 

As mentioned earlier, if the bjkl are not too close to 0 and if N is 
large, the multinomial is approximated by a multivariate normal 
distribution. But, if the pijkl change dramatically for the various 
treatments or times, then o’ikl and Oiikfl will be altered and hence 
the Ct matrices will not be equal. This fact follows directly from 
formulae (4) and (5) and thus cannot be addressed by the experi- 
mental design. 

One approach to this problem involves a variance-covariance 
stabilizing transformation appropriate for multinomial data. A 
particularly useful transformation is 

&iu = arcsin (dx 

Let C’,* be the variance-covariance matrix of the Xijkr, which will 
have the same form as C,,t except the transformed variables are 
used in the calculation. If the C’- are shown to be approximately 
equal then, MANOVA can be calculated using the x+t. 

Unfortunately, variance stabilizing transformations are not 
always successful. A common situation in this type of experiment 
arises when differences in the C, are due primarily to difference in 
the yrju over time. If the data suggest that the Ct are different, an 

appropriate way of looking at the data is to use the following 
model: 

yiikl = ,&I -t hiU t tjkl -t %jkl 

where /lkl = overall mean for time k, species 1. 
b&l = ith block effect for time k, species 1. 
tjkl = jth treatment.effect for time k, species 1. 
eijkl = random error for time k, species 1. 

In essence, one is looking at the species by time counts as a set of 
correlated responses for each plot. The statistical theory and 
methods for analyzing problems similiar to the species composi- 
tion problem are described in full by Grizzle and Allen (1969). 
Specific SAS programming considerations are given by Courtright 
(1978). An elaboration of this technique specific to botanical com- 
position problems is given by Stroup (1982). 

A final alternative approach to the problem is to look at the 
counts as categorical data. That is, the response variable in this 
experiment for each hit within a plot is actually a category, i.e. a 
species. Grizzle et al. (1969) presented a method of analyzing 
categorical data from a linear models point of view. The program- 
ming for this approach can also be accomplished in SAS, using the 
procedure entitled FUNCAT. A drawback to this approach is that 
if any of the )‘ijkl= 0, a small positive number must be substituted in 
its place. The authors warn that the effects of this on the validity of 
levels of significance for the hypotheses tested, specifically in this 
case, the hypothesis of no time X treatment interaction, are not 
known. Therefore, if this approach is used, it is important that 
species be grouped so that no zero counts occur in the data. Recall, 
however, that rare counts also present theoretical problems in 
MANOVA. The advantages and disadvantages of FUNCAT ver- 
sus MANOVA for this type of data are not well understood by 
statisticians at this time and require further study. 

Conclusion 

When analyzing data from a botanical composition experiment, 
correlation among the various species counts is inevitable. Univar- 
iate analysis one species at a time does not account for correlation 
among species whereas a multivariate approach does. For this 
reason, the multivariate procedure is recommended. The principal 
advantage to the experimenter is that by exploiting the informa- 
tion about correlations, the power of the test for interaction, that 
is, the likelihood of detecting an interaction if it exists, is increased. 

Several multivariate approaches exist. MANOVA is generally 
applicable, its statistical properties are well understood, and it is 
relatively easy to program using SAS. Among the newer 
approaches, a linear model approach to the analysis of categorical 
data, which can be programmed in SAS using the FUNCAT 
procedure, appears to be very promising. However, the statistical 
properties of this procedure need to be better understood before it 
can be generally recommended as an analytic tool. 
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Appendix 
Example of Use of SAS-MANOVA 

Consider an experiment in which the effects of five herbicides on 
rangeland containing an undesirable shrub are compared. Four 
blocks containing five plots each are used. To each block, the five 
herbicides are assigned at random for application, one herbicide to a 
plot. Basal cover data are collected using the point method during 
the first growing season after application. These data are subse- 
quently converted to botanical composition. Let the data for this 
season correspond to time 1. This procedure is repeated during the 
next growing season (time 2) using the same assignment of herbi- 
cides to plots and again during times 3 and 4. Basal cover data are 
grouped into these categories: species group 1, species group 2, . . . . 
species group 4. The four species groups are then analyzed using 
MANOVA. 

Using SAS, MANOVA is programmed by the following state- 
ments: 
DATA A, 
INPUT BLK TRT TIME SP_l SP-2 . . . SP-4 
CARDS: 

data-one card per block-treatment-year combination. 
NOTE: each card will consist, in order, of an identification 
number for the block, followed by a space, followed by treat- 
ment identification number, space, time (year) identification, 

space, frequencies or percentages for each species, each separ- 
ated by a space. After all data cards are placed in the program, 

then the cards for MANOVA are specified: 
PROC GLM; CLASSES BLK TRT TIME; 

MODEL SP-I - SP-4 = BLK TRT BLK*TRT 
TIME BLK*TIME TRI*TIME/NOUNI; 
MANOVA H = TRT*TIME/PRINTE; 

The NOUN1 option suppresses univariate analyses of variance 
which would otherwise be printed for each species. The PRINTE 
option causes correlations among the species groups to be printed. 
While the table of correlations is self-explanatory, the MANOVA 
output requires some explanation. The output is given in Table 1. 

The important result is the PROB > F value under Wilk’s 
Criterion. The value .0050 indicates that the hypothesis of no time 
X treatment interaction is to be rejected forany alpha levelexceed- 
ing .0050. In other words, for at least one species, there is a 
difference among the treatments in botanical composition over 
time, aside from a 0.5% chance of type I error. 

To visualize this interaction, PROC CHART (a univariate 
approach) is used to examine changes in botanical composition 
over time for each treatment. One such chart is printed for each 
species. The SAS program for obtaining these charts is as follows. 
The statements assume the charts will be programmed immediately 
after MANOVA in the same run as MANOVA. 

DATA B; SET A; 
SPECIES = 1; COUNT = SP-I; OUTPUT; 

SPECIES = 4; COUNT = SP-4; OUTPUT; 
DROP SP-I - SP-4; 
PROC SORT; BY SPECIES; 
PROC CHART; BY SPECIES; 
BLOCK TRT/ DISCRETE TYPE = MEAN SUMVAR 

= COUNT GROUP = TIME; 

Table 1. SlATISllCAL ANAl.vsIs SVSlCI( lb105 IWXSOAV. MAY Zvr 19.2 , 

GENEXAL LINEAl MODELS PAOCEOUAE 

MNOVA TESr CRIvEfIIA FOX TrY HlPOlMESlS OF NO OVERALL vXv*lll#E EFFECI 

M l WCC IV SSCCP NATXIX FOX; lRl*lfllE 
E l EAROX SSLCP UXRIX 
P l WC. VAAIAOLES . 6 
0 l HVPOvnESIS OF - 
NE= OF OF E . :: 
5 - MIllO*Ol . A 
I4 l .slAeslP-o1-1~ - 
N . .ItNE-P-11 = 1::: 

---------------------------~~~~~-------~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~________ 

MOTELLIWG-LAnLEv 1xACE I TIIEW-IWI . 2.3359,959 (SEE PILLAt’S IAOLE 931 

F APPRUxl~AllON = 2~S~~1~9tR~E9~-l*rll~S9S*~2x*S*llI YITH St2M*S+ll AN0 2lS*N*ll DF 

Fl4A112bl = 1. Xb PLOD > F = 0.0032 

----~_~~__~___~___~_____~____~~_~_~_~~_~_____~_______~___~____________~___~_~~~~_~_~____~_____ 

PILLAl’S IMCE v - IXL~INV~~*E~ - 1 .W939bbV #SEE PILLAl’S TAOLE I21 

F APPRUXtIulION = (2N6~1l1l21(6+1~ 9 VItS-VI YITM St2lWS+ll AN0 SIZN*S*lt OF 

Fik3.lIII 0 1.10 PRO0 > F = 0.0095 

______~__~_~~_~_~___~_~____~~~~~~I__~___~___________~____I_______________~~~~~~~~~~______~ 

Yl LXS’ CRI vER10N L = OE~lE)/OEllM~El . 0.1395025. (SEE RAO 1973 P 5551 

W - -~NE-.5IP-O+II~*LN~L~ I 17.3021 
u - te-.5lP-G7*ll I 39.5900 
2 = SOIIll~P*y~P-*~llP*P*Q*P-5l - 3.9521 
9 = (PW-2114 I 11.5090 

F APPIOXI~UION = IU92-2ol/~P*a~*~l-L**l/zl/L**l~2 YIlM P*P AN0 WI-29 OF 

F(49tl29l = 1.30 PROI > F = 0.0050 

____~-_~_~__~_--_~_~~~~~~~_~-_-___~________~__~_______________~__~~~~~~~~__~_~_____~__~ 

101’5 #AXtWM A001 ClllIEAION . l&3*31 7bA lSEE US VOL 31 l b25) 

FIRS1 CANONlCAL VYIAIYE VlELOf AN F UPPER BOUWD 

Fll2,3bl - l .30 (UPPEX UJUNOJ 

_~_________~____-________~______~~~~~~~~~~~~~~~~~~-_-________-__~~I~_____-_______~ 
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As examples of the output, consider the block charts for species 
3 and 4. The output is given in Tables 2 and 3. 

Notice that for species group 3 there are pronounced differences 
in the development of botanical composition based on basal cover 
over time, particularly for treatment 2 and for treatment 5 com- 
pared to the other treatments. By contrast, for species group 4 the 

trends in botanical composition over time are virtually identical for 
each treatment. In this fashion the effect of the treatments among 
species can be described qualitatively. As mentioned in the text of 
this article, this can be further pursued quantitatively using con- 
trast methods discussed in detail in Morrison (1976). 

TIME 

SIAIISTICAL ANALVS.IS 5VSlCM IbIOS IWRSOAV. MAV Zlr. 1992 11 
SPECIES=3 

ROCK CWAT OF COUNT MEANS 

___---_ -- ------_____---__-__ 
I’ i7i iZiS: iTii 

I If I 

I.01 I I*+1 I I**1 I .Li. iTii 
I r:Zi f' 

4 I I**1 I , 

If 
1~1, I**1 I I*11 L./I IzLlf I/ L:z' // I%11 I 

I**1 I I**1 I I / I 
/ 0.24?5 I**I I 0.24 I**1 I 0.125 I 0 0.2b I 
_m- Ll**l 1_,11**1 I 

I 

0.2475 /;si 0.3725 I' 

2 Ii 

// 
. 0.1275 I**1 i 0.235 I 0.25 I 0.127) IGI I 0.49 I 

_-L- 
/ I+*1 I I I**1 I I .__. 

I I**1 I I I**1 I 
I**I I ,' &'l I 

I I**1 I I I**1 I I 
1 / IL.1 I I I..1 I , I**1 I 

/ lfzll 
I, 

IMII 
/, 

1**1/ I lfi.1, l~l, ,, 

I, 
, 

0.305 , 1.075 , 0.2b75 /' 0.34 , O.bOS I 

Table 3. 

1 2 3 4 5 

1117 

TINE 

SlA71SlICAL ANALVSIS SVSTEM lb:05 TWASDAV, IlAY 27, 1992 12 
SPECIES=4 

MOCK CIiAR7 OF COUNT MEANS 

iT?i 
iZii rlrii iTii 
I**1 I LZi I**1 I I..1 I 

I**1 I I**1 I I**1 I I**1 I 
_I**1 I ._I.'1 I -- ;::I 1 _-__-l**l I,. .I**1 I _I___ 

I I+*1 I / I**1 I I I*+1 I I I**1 I I I**1 I / 
._L. I*'1 I ._f. I**1 I I I**1 I ._f. I**1 I I 1.01 I I 

4 L./I I..1 I L./I I..1 I 
I I 12*1/ I*+1 i 1221' 

.L_. I**1 I L./I I**1 I 
LQiI lrl/ I**1 I Lfii 

I*.1 I 
I**1 I"11 l2?l/ f' 
I**1 I I**1 I I**1 I I**1 I ,..I 1 ,--. . , 
I**1 I 14.955 I**1 116.2275 I**I 114.9975 l**l I lb.8 I ID.1 I lb.47 /’ 

Ll**l I _a-_ LWI I __/I**I I ._.LI..l I__._.LI**l I______/ 
._I 1.91 I .,I 1.01 1 ._I Ieel I-i-./l l*+I I , .,I I**1 1 , 

L./I I**1 I L./l I**1 I L./I I*+1 I I**1 I I**1 i lisi i i**i i 1~ 
3 I**1 I 1.01 I I**1 1 I**1 I IGI I I.'1 I I**1 I I**1 I I**1 I I**1 I , 

I**1 I Ial/ I**1 I 11111 I+*1 I l*I/ I**1 I Ifi I**1 I ILtl, 
I**1 I I..1 I I**1 I I**1 I I**1 I I, 
I**I 119.8025 I**1 I 20.265 I**1 117.5725 I**I 119.4025 I**I I lb.875 I 

._.fl**l I _-.__. Ll**l I _._.LI**l I -.__. LI**l I__ LI..l I _---/ 
L./I I**1 I L./l I**1 I L./l I**1 I L./I 1.01 I .__1 I.'1 I I 
I**1 I I**1 I I**1 I I**1 I I**1 I I**1 I I*+1 I I**1 I L./l I**1 I I 

2 I**1 I I.01 I IO.1 I I**1 I I**1 I I**1 I I**1 I I**1 I I..I I I..1 I 
I**1 I la!l, I**1 I ls$l/ I**1 I 11111 I+*1 I IlLI/ I**1 I IEI, ,' 
I**1 I I*+1 I I**1 I I**1 I 
I**I I 22.59 I**l I 22.4S5 I**1 l22.iO25 1::; f 23.375 I**1 I23.517S I' 

LI..l 111**1 1,r1*+1 1.L1r.1 I__ LI.'l I 
I I*+1 I I I**1 I I WI I I l..I I I I*.1 I 

-+ 
I I**1 I / I**1 I / I**1 I I I**1 I I I**1 I 

1 
I, 

I**1 I / I.'I I 
ISI/ /' 

I**1 I I 1.01 I , I..I I 
lP.~l, 

I, 
Is!2l/ I 1111, , I*11 , 

, , 
23.675 I 24.495 /' 

I/--_ 
23.9925 , 23.375 Ii 

I , 
22.w25,/, 

1 2 3 4 5 

IIT 
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