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Abstract

This study was designed to determine the utility of a 1-m-resolution hyperspectral sensor to estimate total and live biomass along
with the individual biomass of litter, grasses, forbs, sedges, sagebrush, and willow from grassland and riparian communities in
Yellowstone National Park, Wyoming. A large number of simple ratio-type vegetation indices (SRTVI) and normalized difference-
type vegetation indices (NDTVI) were developed from the hyperspectral data and regressed against ground-collected biomass.
Results showed the following: 1) Strong relationships were found between SRTVI or NDTVI and total (R2 ¼ 0.87), live
(R2 ¼ 0.84), sedge (R2 ¼ 0.77), and willow (R2 ¼ 0.66) biomass. 2) Weak relationships were found between SRTVI or NDTVI
and grass (R2 ¼ 0.39), forb (R2 ¼ 0.16), and litter (R2 ¼ 0.51) biomass, possibly caused by the mixture of spectral signatures
with grasses, sedges, and willows along with the variable effect of the litter spectral signature. 3) A weak relationship was found
between sagebrush biomass and SRTVI or NDTSI (R2 ¼ 0.3) that was related to interference from sagebrush photosynthetic or
nonphotosynthetic branch and twig material, and from the indeterminate spectral signature of sagebrush. This study has shown
that hyperspectral imagery at 1-m resolution can result in high correlations and low error estimates for a variety of biomass
components in rangelands. This methodology can thus become a very useful tool to estimate rangeland biomass over large areas.

Resumen

Este estudio fue diseñado para determinar la utilidad de los sensores remotos de tipo hiperespectral de 1 m2 de resolución para
estimar la biomasa total y viva, junto con la biomasa individual del mantillo, zacates, hierbas, juncos, ‘‘Sagebrush’’ y ‘‘Willow’’
de un pastizal y comunidades ribereñas del Parque Nacional de Yellowstone, WY. A partir de los datos de los sensores
hiperespectrales se desarrolló un gran número de ı́ndices del tipo de relación simple (SRTVI) e ı́ndices del tipo de Diferencia
Normalizada de Vegetación (NDTVI) y se calcularon regresiones de estos ı́ndices con los datos de biomasa colectados en el
terreno. Los resultados mostraron que: 1) Se encontraron relaciones fuertes entre SRTVI o NDTVI y la biomasa total
(R2 ¼ 0.87), biomasa viva (R2 ¼ 0.84), biomasa de juncos (R2 ¼ 0.77) y biomasa de ‘‘Willow’’ (R2 ¼ 0.66). 2) Se detectaron
relaciones débiles entre SRTVI o NDTVI y la biomasa de zacates (R2 ¼ 0.39), hierbas (R2 ¼ 0.16) y mantillo (R2 ¼ 0.51),
posiblemente como consecuencia de la mezcla de señales espectrales provenientes de las gramı́neas, juncos y ‘‘Willows’’, ası́
como de los efectos variables de las señales generadas por el mantillo, 3) Encontramos también una relación débil (R2 ¼ 0.3)
entre SRTVI o NDTVI y la biomasa del ‘‘Sagebrush’’, que fue relacionada con la interferencia del material de las ramas y
ramillas fotosintéticas y no fotosintéticas, ası́ como con la señal indeterminada generada por el ‘‘Sagebrush’’. Los resultados de
este estudio han mostrado que las imágenes hiperespectrales con una resolución de 1 m2 pueden proveer correlaciones altas y
estimaciones de bajo error para una variedad de componentes de biomasa de los pastizales. Por lo tanto, esta metodologı́a,
puede llegar a ser una herramienta muy útil para estimar la biomasa de grandes áreas de pastizal.

Key Words: vegetation indices, grassland, riparian, standing crop

INTRODUCTION

Biomass or standing crop estimations on rangelands are some
of the main parameters used in range management. One
technique that has been shown to be useful for estimating
biomass over large areas is remote sensing (Tueller 2001; Wylie

et al. 2002). Previous remote sensing studies using broadband
multispectral systems with ground resolutions of 30 m to 1 km
resulted in a broad range of reliability, accuracy, and precision.
Hyperspectral systems measure the electromagnetic spectrum in
continuous narrow spectral channels in the 400–2 500 nm
portion of the electromagnetic spectrum. The hyperspectral
approach has been found to have advantages over multispectral
systems for estimating vegetation in a variety of settings
(Gamon et al. 1993; Roberts et al. 1993, 1997; Gamon and
Qui 1999; Thenkabail et al. 2000; Kumar et al. 2001). It is
anticipated that the development of hyperspectral devices with
resolutions of 1 to 5 m should substantially advance our ability
to measure vegetation (Kumar et al. 2001). Tueller (2001), in a
review of hyperspectral systems, concluded that they represent
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a very promising technology for estimating rangeland biomass,
but that empirical studies are still needed to demonstrate their
utility for range management.

Rangeland components such as forbs, grasses, shrubs, litter,
and bare ground are critical in the estimation of rangeland
biomass. These components tend to occur as heterogeneous
mixtures at the resolution level of most sensors, but even at 1-m
resolution several different components can be found within
a single pixel (Gamon and Qui 1999; Asner et al. 2000), thus the
best pixel size for biomass estimations has always been an issue
of significant discussion (Rahman et al. 2003). It is nevertheless
assumed that investigations of vegetation biomass at the meter
scale will improve estimation and provide necessary informa-
tion on the spatial variability of vegetative biomass.

Pixel size is also a problem when it comes to matching
ground information to sensor measurements. With large pixel
sizes (. 5 m), matching ground information to sensor measure-
ments requires subsampling since there are few ground methods
capable of measuring vegetation at resolutions of 5 m or more.
Unfortunately, subsampling introduces measurement errors
(Curran and Williamson 1986; Dungan 1998). Remote sensing
methods that match ground to sensor information on a pixel-
by-pixel basis are thus preferred.

The objective of this study was to determine the utility of
a 1-m-resolution hyperspectral sensor to estimate total and live
biomass along with the individual biomass of litter, grasses,
forbs, sedges, sagebrush, and willow from the grassland and
riparian communities in Yellowstone National Park, Wyoming.

METHODS AND MATERIALS

Study Site
The location and description of the study site can be found
in a companion article on forage nutritional values by Mirik
et al. (2005).

Ground Data Collection
A total of 56 ground data plots, each measuring 1 3 1 m, were
used to collect biomass. The plot size matched the spatial
resolution of the hyperspectral remote sensing system used in
this study. The plot locations were selected to represent the
range of biomass values for the different biomass components.
Plots were not randomly selected because the objective of the
study was to develop equations to relate ground to hyper-
spectral data over the whole range of biomass values expected at
the site. To randomly sample the study area and still have the
same range of biomass values would have required many more
plots than the logistics of the study could accommodate (plots
have to be clipped in a narrow window of days after the flight of
the hyperspectral instrument). Because of the match between the
ground plot size (1 m2) and the remote sensing pixel resolution
(1 m2) there was no need to subsample within the ground plots.

The method for coregistering the ground data plots with the
image pixels was described in a companion article on forage
nutritional values by Mirik et al. (2005).

The ground data were collected in the period from 7 August
1999 to 12 August 1999, which was 5 to 10 days after the
hyperspectral image was taken. Ground data plots were
scattered over the various plant communities with samples in

xeric grassland, mesic grassland, willow, sagebrush, and sedge
communities. Grasses, sedges, and forbs were identified and
clipped to the ground level. Litter was collected by clipping all
standing dead material and pulling from within the ground data
plot any dead plant material that was laying on top of the
ground surface. Sagebrush and willow leaves (nonwoody
portions) were stripped by hand. Vegetation samples were
weighed after oven drying at 608C for at least 48 hours. Total
biomass is the sum of all the different component biomass in
the plots. Live biomass included all components within a plot
except standing dead material and litter.

Spectral Data Collection
The hyperspectral data were collected on 2 August 1999 using
the PROBE-1 hyperspectral imagery system, which was de-
scribed in a companion article on nutritional forage values by
Mirik et al. (2005).

Statistical Analyses
A large number of simple ratio-type vegetation indices (SRTVI)
and normalized difference-type vegetation indices (NDTVI)
were calculated using the hyperspectral measurement digital
number from the majority of the bands as follows: SRTVI ¼
Band 1/ Band 2; NDTVI ¼ (Band 1 � Band 2)/(Band 1 þ Band
2) where Band 1 and Band 2 are the digital numbers from
the selected bands in the imagery. For Band 1 all the available
bands between 707.5 and 2 506.7 nm of the electromagnetic
spectrum were used, for a total of 107 separate bands. For Band
2 all available bands between 437.9 and 2 506.7 nm were used,
for a total of 127 separate bands. The wavelength values
reported represent the midpoint of each band. Indices have
previously been used in hyperspectral approaches (Thenkabail
et al. 2000). By using a large number of indices, the various
regions along the electromagnetic spectrum that correlate well
with biomass measurements can be adequately identified
because of the narrow width of the hyperspectral bands.

All the imagery analyses were conducted using the Environ-
ment for Visualizing Images (ENVI 2000) software package
(Research System, Inc., Boulder, CO). Indices and ground data
plots were matched and analyzed in SAS (1999) (SAS Institute,
Inc., Cary, NC) using PROC REG regression procedure set to
the MAXR model-selection method. The MAXR model-selec-
tion method identifies the best 1-variable model, with the
highest R2 (SAS, 1999), relating the various ground biomass
measurements to SRTVI or NDTVI. The SRTVI or NDTVI were
set as the independent variable and the ground biomass
measurements set as the dependent variable.

RESULTS

Strong to weak linear relationships (high or low R2) were
found between a selected subset of SRTVI and NDTVI derived
from the 1-m-resolution hyperspectral measurements and the
various biomass components (Figs. 1 and 2). The number of
samples used for each analysis varied, with grass, forbs, and
litter being present in most plots but sedge, willow, and
sagebrush being present in only those plots from their re-
spective communities (Table 1). Samples displayed a large
range in values for each component and were representative
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of the range of values found within the study site and surround-
ing area.

The linear relationship between both total and live biomass
and their selected SRTVIs displayed very strong relationships
and low errors (Fig. 1). All 56 plots were used to develop the
relationships so they include information from the various other
components as well as all the plant communities: xeric, mesic,
sagebrush, sedge, and willow. The sedge and willow component
biomass had high R2 values, but not as high as those for total
and live biomass (Fig. 1). The R2 for the litter biomass
relationship (Fig. 2) was lower than those for sedge and willow
but higher than the weak relationships for sagebrush, grass,
and forb component biomass (Fig. 2).

Because of the inherent differences in moisture between the
samples, the biomass samples of the litter, grass, and forb
components were further stratified into drier types (plots from
the xeric, mesic, and sagebrush communities) and moist types

(plots from the sedge and willow communities) to see if
stronger relationships would emerge. No statistically significant
differences were found between the xeric and mesic regression
of either forbs or litter and their nonstratified counterparts.
Likewise the mesic regression of grasses was not different than
the nonstratified ones. The regression from the xeric grass
component did result in a higher R2 (Fig. 3) when compared to
the nonstratified dataset (Fig. 2).

To better understand the influence that sagebrush biomass
has on plot level reflectance, we conducted regressions in the
sagebrush plots with and without the sagebrush biomass
component. The relationship between total plot biomass and
hyperspectral measurements was much stronger without the
sagebrush component (grass, forbs, and litter biomass) (Fig. 4,
R2 ¼ 0.9) than with it (R2 ¼ 0.73).

The SRTVI or NDTVI with the best relationships for the
various biomass components used the near-infrared part of

Figure 1. Regressions between various biomass components and selected simple ratio-type vegetation index (SRTVI). SEP indicates standard error
of prediction; CV, coefficient of variation; and N, number of observations.
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the spectrum for Band 1 (900–1 360 nm) and the visible as well
as near-infrared part of the spectrum for Band 2. SRTVI
and NDTVI that used the short-wavelength infrared part
of the spectrum for Band 1 had significant (P , 0.05) rela-
tionships with the various biomass components but had lower
R2 than did the ones shown in the various figures.

DISCUSSION

The strong relationships we found between total and live
biomass and the 1-m-resolution hyperspectral measurements

agree with the results from other remote sensing studies in
rangeland settings (Gamon et al. 1993; Wylie et al. 1996; Todd
et al. 1998; Tueller 2001; Kumar et al. 2001). Because all 56
plots were used in the relationships representing a gradient
from mesic/riparian/wetland vegetation types through xeric/
upland vegetation types, estimates can be applied to the full
range of plant communities and biomass amounts found on the
site. The influence of different component amounts, such as
litter, and the broad range of biomass amounts did not affect
the relationships. Other studies that used . 1-m resolution
imagery found that litter, bare ground, land use, and species
differences all had varying influence on biomass relationships

Figure 2. Regressions between various biomass compenents and selected simple ratio-type vegetation index (SRTVI) or normalized difference-type
vegetation index (NDTVI). SEP indicates standard error of prediction; CV, coefficient of variation; and N, number of observations.
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(Wessman et al. 1997; Todd et al. 1998; Asner and Lobell 2000;
Asner et al. 2000). In addition, the higher biomass values did
not result in lower correlations or higher errors as has been
found in other rangeland settings (Wylie et al. 2002). These
relationships represent a one-time estimate of peak vegetative
biomass because the samples and image were taken in early
August, which corresponds to peak biomass for much of the
Yellowstone area.

Strong relationships were found between the sedge and
willow component biomass and the hyperspectral measure-
ments. These relationships can provide estimates that would be
useful in range management. In contrast, weak relationships
were found for the forb, grass, and litter component biomass. A
reason for the weak relationships may be that other compo-
nents are present at high enough levels to cause the remote
sensing signal for the target components not to be spectrally
distinct (Asner et al. 2000). Forbs tend to be a minor com-
ponent in many of the plots and their reflectance may not be
distinct from other more abundant biomass such as grass,
sedge, or willow. Another reason for the poor relationships is
that litter biomass not only affects the relationships of other
components, but is itself affected by those components (Asner
and Lobell 2000; Asner et al. 2000). The potential differences
in reflectance characteristics of litter found in wet conditions
compared to those in drier conditions may have also contrib-
uted to the weak relationships. This reasoning may point to
why dividing the grass component into dry and wet subsets
based on plant community resulted in a stronger relationship
for the dry subset compared to the wet one.

The weak relationship between sagebrush biomass and
hyperspectral measurements may have been caused by the
presence of a large amount of photosynthetic or nonphotosyn-
thetic branch and twig material interacting directly with in-
coming radiation in comparison to the amount of green leaves
(Wylie et al. 1996; Todd et al. 1998; Asner and Lobell 2000).
Wylie et al. (1996) found that live biomass in shrub-covered
areas yielded significantly different relationships with vegeta-
tion indices when compared with grass-covered areas. Another
reason for the weak relationship for the sagebrush component is
that some arid-adapted shrubs may be spectrally indeterminate
(Okin et al. 2001). If this is true, then the signal from the
sagebrush leaves may not have any correlation with biomass
amounts. Results from the exclusion of the sagebrush compo-

nent biomass from total biomass estimations tend to support
this lack of correlation (Fig. 4). The linear models were found to
be stronger when the sagebrush component biomass was
excluded than when it was kept (Fig. 4), leading us to conclude
that the sagebrush component biomass signal was very weak
in comparison to the signals from the other components.
Excluding certain species from relationships with hyperspectral
measurements has been shown in other studies to improve
relationships between plant characteristics and remote sensing
measurements (Todd et al. 1998; McGwire et al. 2000).

Because of the weak relationships between hyperspectral
measurements and sagebrush biomass, the prediction of total
biomass in sagebrush areas may thus require a combination of
remote sensing methods for herbaceous and litter biomass and
other data collection methods for sagebrush biomass that will
have to be analyzed separately. Further investigation of the
spectral properties of sagebrush and how to overcome its
possible spectral indeterminate properties will require further
work and innovative techniques, but, as cautioned by Okin
et al. (2001), there are limits in the use of the hyperspectral
approach to measure certain plants and their properties.

The stronger relationship for the drier subset of the grass
component biomass compared to the wetter subset and the
nonstratified component (Figs. 2 and 3) is probably due to the
difference in the amount of water in the vegetation, soil surface
background, and the components such as litter that contributed
to spectral distortions (Gamon and Qui 1999). Because of these
varying conditions, even hyperspectral approaches should
incorporate flexibility into sampling designs so that contrasting
environmental conditions can be separated to develop relation-
ships with higher utility.

The fact that many of the relationships developed in this
study used measurements from the electromagnetic spectrum
not normally collected in multispectral systems strongly

Table 1. Sample size, mean, standard deviation (SD) and range for the
different vegetative biomass components collected in the 1-m2 ground
data plots.

Component

Sample

size

Mean

(g �m�2) SD

Biomass

range (g �m�2)

Litter 55 41 33.6 2–115

Grass 55 106.6 63.8 16–293

Forb 46 34 31.7 2–154

Sedge 16 172.3 93 27–324

Willow 15 90.7 82.7 9–254

Sagebrush 13 68.2 54.1 20–183

Total biomass 56 262.3 125.6 30–540

Green biomass 56 222 108.1 30–448

Figure 3. Regression between grass biomass from xeric, mesic, and
sagebrush community plots (drier types) and a selected normalized
difference-type vegetation index (NDTVI). SEP indicates standard error
of prediction; CV, coefficient of variation; and N, number of observations.
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supports the proposition that hyperspectral systems will
increase the ability to measure biomass components impor-
tant to rangeland management. These results have strong
agreement with studies by Thenkabail et al. (2000) and Asner
and Lobell (2000). The former study concluded that the
widely used and well-known red and near-infrared band
combinations, such as Landsat-5 TM-derived NDVI, are not
necessarily the best for 2-band spectral vegetation indices
designed to predict biophysical parameters in agricultural
crop variables. Asner and Lobell (2000) pointed out that
fractional abundances of green vegetation, bare soils, and
standing and surface litter were better estimated using in-
formation from hyperspectral measurements. Our results
support that proposition.

In this study, where both the ground sample size and the pixel
size were identical, problems associated with subsampling the
ground data and the error associated with that methodology
were avoided. Due to our ability to match locations of the
ground and image pixel exactly, errors due to mismatched
ground locations were reduced. These errors still may occur if,
instead of using an air photo approach, the matching is con-
ducted using GPS-located ground samples and georectified
image pixels because there are often substantial errors in both
the GPS locations and the georectifcation process. The experi-
mental errors present in our research were only those that
resulted from the signal:noise ratio of the sensor and sensor
viewing problems. The exact formulation of errors from
predictions made with the regression methods that we applied
in our research has been a recent area of discussion (Cohen et al.
2003). Formulations that take into account errors due to
measurement from the sensor and ground information along
with their spatial arrangement of the samples have been shown
to produce more realistic estimates of the error term. Future
work with the 1-m- to 5-m-resolution hyperspectral approach
should consider these aspects when estimating biomass com-
ponent errors.

In this study we used vegetation indices and simple regres-
sions to develop the relationships between biomass and hyper-
spectral data. This type of analysis does not utilize all the
possible information in the hyperspectral data set. Inclusion of
more indices and combinations of indices in a multiple re-
gression relationship along with nonlinear fitting should be
considered since they may result in higher correlations and
lower errors for certain components. Such an analysis would
require larger datasets and attention to the details of the analysis
to prevent violating assumptions and overfitting. Besides linear
regression, other methods should be investigated, such as
derivative transformations, modified partial least squares, linear
mixture modeling, discriminant analysis, and principle compo-
nent analysis among others.

MANAGEMENT IMPLICATIONS

This study has shown that hyperspectral imagery at 1-m
resolution can result in high correlations and low error
estimates for a variety of biomass components that have
implications for rangeland management as follows:

1) Strong linear relationships were found between total, live,
sedge, and willow biomass and SRTVI or NDTVI. From
these strong relationships maps at a 1-m scale can be
produced over a large area. These maps can provide
detailed spatial information on biomass components
lacking from other sampling techniques and remote
sensing sensors. Such maps could prove useful in range-
land management and research of animal distribution,
grazing effects, ungulate modeling, ecological processes,
and the effects of natural and man-made disturbances.

2) Weak linear relationships were found between litter,
grass, and forb biomass components and SRTVI or
NDTVI. These weak relationships were due to the
mixture of the spectral signatures of grasses, sedges, and

Figure 4. Regressions between sagebrush plot total biomass without the sagebrush component biomass (grass þ forb þ litter biomass) and
a selected normalized difference-type vegetation index (NDTVI), and between sagebrush plot total biomass (sagebrush þ grass þ forb þ litter
biomass) and a selected simple ratio-type vegetation index (SRTVI). SEP indicates standard error of prediction; CV, coefficient of variation; and
N, number of observations.
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willows in mixed vegetation plots, and the variable effect
of the litter’s spectral signature.

3) The weak relationship found between sagebrush biomass
and SRTVI or NDTVI was related to interference from
sagebrush photosynthetic or nonphotosynthetic branch
and twig material, and the indeterminate spectral signa-
ture of sagebrush. To predict total biomass in sagebrush
areas would thus require a combination of remote sensing
methods for herbaceous and litter biomass and other data
collection methods for sagebrush biomass.

4) The promise of high spatial resolution hyperspectral
imagery to provide useful estimates of certain biomass
components was shown in this study, and we suggest that
this technology and methodology should be considered
when fine-scale maps are needed for rangeland manage-
ment and research.
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