The University of Arizona

Predicting buffelgrass survival across a geographical and environmental gradient.

F.A. Ibarra-F, J.R. Cox, M.H. Martin-R, T.A. Crowl, C.A. Call

Abstract


This research was designed to identify relationships between T4464 buffelgrass (Cenchrus ciliaris L.) survival and climatic and soil characteristics. At 167 buffelgrass seeding sites in North America we collected climatic and soils data where the grass: 1) persisted over time and increased in area covered (spreads), 2) persisted over time but does not increase in area covered (persists), and 3) declined over time and all plants eventually died (dies). At 30 sites in Kenya we collected climatic and soils data in the area where T4464 seed was originally collected. Only total soil nitrogen and organic carbon differed among survival regimes. Total soil nitrogen and organic carbon concentrations were least where buffelgrass spreads, intermediate where the grass persists and greatest where the grass dies. To predict buffelgrass survival among the 3 survival regimes, and between areas where the grass spreads or dies, we used discriminant function analyses. A model including organic carbon, total soil nitrogen, sand, clay, potassium and cation exchange capacity correctly classified 78% (r2=0.8) of the seeding sites in the 3 survival regimes. A model including sand, total soil nitrogen, calcium, mean minimum temperature in the coldest month, annual precipitation and winter precipitation correctly classified 88% (r2 = 0.8) of the seedling sites between spreads and dies. Survival regime selection prior to brush control, seedbed preparation and sowing will reduce planting failure probabilities, soil erosion and economic losses, and enhance long-term beef production.

Keywords


edaphic factors;plant introduction;night temperature;prediction;Mexico;mortality;equations;rain;Kenya;environmental factors;calcium;Cenchrus ciliaris;Texas;establishment;climatic factors;soil texture

Full Text:

PDF