The University of Arizona

Vegetation and soil response to grazing simulation on riparian meadows.

W.P. Clary

Abstract


Riparian areas have not responded consistently to grazing systems, suggesting that more knowledge is needed to explain how different areas respond to specific stresses. Several studies were conducted to determine herbaceous plant response to simulated grazing on riparian areas. One low-elevation redtop (Agrostis stolonifera L.) site in Oregon and 2 high-elevation sedge (Carex spp. L.) sites in Idaho were studied for 3 years. Several combinations of defoliation, compaction, nutrient return, and season of use were examined. The redtop community responded to spring, fall, or spring-fall defoliations by maintaining or increasing the following year's aboveground biomass production. The sedge communities maintained or decreased the following years's biomass production after spring, mid summer, or late summer defoliations. An increase in forbs occurred in 1 sedge community following spring defoliations to 1- or 5-cm residual stubble heights. The most consistent plant response among areas was reduction in height growth and biomass production following compaction treatments. When both defoliation and compaction are considered, it appears that spring, fall, or spring and fall grazing to a 5-cm stubble height on the redtop site would not decrease riparian herbage production. In contrast, when defoliation, compaction, and nutrient return effects are considered in the mountain meadow sedge-dominated communities, grazing once annually during the growing season to a 5-cm stubble height in the spring, or to a 10-cm stubble height in late summer, or at a utilization rate exceeding 30% of the total annual biomass production can reduce herbage production significantly. Results suggest that many of the land management agency riparian guidelines would maintain biomass productivity in these sedge-dominated communities.

Keywords


biogeochemical cycles;streams;Alopecurus pratensis;Agrostis stolonifera;Carex;riparian buffers;grazing experiments;Idaho;Oregon;growth rate;biomass production;defoliation;soil compaction;altitude

Full Text:

PDF