The University of Arizona

Some effects of a rotational grazing treatment on cattle preference for plant communities.

J.W. Walker, R.K. Heitschmidt, S.L. Dowhower

Abstract


Rotational grazing is commonly assumed to improve livestock distribution compared to continuous grazing, but little evidence supports this contention. Research was conducted on the effects of rotational grazing (RG) compared to continuous grazing (CG) on the preference of cattle for plant communities. Different livestock densities in the RG treatments were created by varying the size of paddocks in a 465-ha, 16-paddock, cell designed RG treatment stocked at a rate of 3.6 ha/cow/yr. Paddock sizes of 30 and 10-ha were used to simulate RG with 14 (RG-14) and 42-paddocks (RG-42), respectively. The CG treatment consisted of a 248-ha pasture stocked at 5.9 ha/cow/yr. Data consisted of hourly daylight observations of cattle location and activity during 8 seasonal trials lasting 6-15 days. These data were expressed as a percent of the time cattle were observed in each of 4 plant communities and the area surrounding permanent water. Relative electivity (RE), a preference index, and a selectivity index (SI) that measures departures from random distribution were calculated from these data. Relative electivity (i.e., preference) for plant communities was not affected by grazing treatment. However, cattle were less selective for plant communities as livestock density decreased from the RG-42 to the CG treatment. In the RG-14 treatment, the cattle were either unaffected or less selective on the last day than on the first day in a paddock. We hypothesize that grazing systems influence cattle preference for plant communities by affecting the availability of forage biomass per unit land area rather than by their effect on grazing pressure.

Keywords


rotational grazing;Texas;grasses;beef cattle;feeding preferences

Full Text:

PDF