The University of Arizona

Absence of a Grass/Fire Cycle in a Semiarid Grassland: Response to Prescribed Fire and Grazing

Christopher J. McDonald, Guy R. McPherson


Many nonnative invasive grasses alter fire regimes to their own benefit and the detriment of native organisms. In southern Arizona the nonnative Lehmann lovegrass (Eragrostis lehmanniana Nees) dominates many semiarid grasslands where native grasses were abundant. Managers are wary of using prescribed fire in this fire-prone community partly due to the perceived effects of a grass/fire cycle. However, examples of the grass/fire cycle originate in ecosystems where native plants are less fire- tolerant than grasses and the invasive plant does not mimic the physiognomy of the native community. We investigate the effects of prescribed fire and livestock grazing on a semiarid grassland community dominated by a nonnative invasive grass. Lehmann lovegrass does not appear to alter the fire regime of semiarid grasslands to the detriment of native plants. Prescribed fire reduced the abundance of Lehmann lovegrass for 1 to 2 yr while increasing abundance of native grasses, herbaceous dicotyledons and fall richness, and diversity. Effects of livestock grazing were less transformative than the effects of fire in this long-grazed area, but grazing negatively affected native plants as did the combination of prescribed fire and livestock grazing. Although Lehmann lovegrass produces more fuel than native plants, fire frequency in semiarid grasslands appears to be limited by the paucity of above-average precipitation, which constrains high fuel loads. In addition, many native grasses tolerate high temperatures produced by Lehmann lovegrass fires. Consistent with previous research, fire does not promote the spread of Lehmann lovegrass, and more importantly human alteration of the fire regime is greater than the nominal effects of Lehmann lovegrass introduction on the fire regime.

Full Text: