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Abstract 

A conceptual approach is commonly needed to provide guid- 
ance for developing new strategies concerning the use and man- 
agement of renewable resources such as rangelands. The theoret- 
ical model constructed in this paper captures the essential 
aspects of dynamic and stochastic issues associated with the man- 
agement of rangelands. We discuss the connections between the 
model and range policy. Specifically, we point out scenarios in 
which there is a limited role for policy. This is compared to sce- 
narios when policy has a significant role to play in ensuring the 
sustainable use of rangelands. Finally, we suggest 2 ways in 
which our approach might be extended and used in a practical 
application. 

Resumen 

Comunmente se necesita una propuesta conceptual como guia 
para desarrollar nuevas estrategias concernientes con el use y 
manejo de los recursos naturales tales como los pastizales. El 
modelo teorico construido en este articulo captura los aspectos 
esenciales de problemas dinamicos y estocasticos asociados con el 
manejo de pastizales. Discutimos las conexiones entre el modelo 
y la politica de los pastizales, especificamente puntualizamos 
escenarios en los cuales hay un papel limitado de esta politica y 
esto es comparado con escenarios en los que la politica tiene un 
papel significativo para asegurar el use sustentable de los pasti- 
zales. Finalmente sugerimos dos formas en las cuales nuestra 
propuesta pudiera se extendida y utilizada en una aplicacion 
practica. 
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Rangelands are an important renewable resource. In addition to 
performing a number of salient ecological functions, rangelands 
provide humans with consumable products such as red meat, 
fiber and water, and non-consumptive services such as recreation 
and wildlife viewing. As such, it is no surprise that range man- 
agers have systematically attempted to manipulate "range compo- 
nents to obtain the optimum combination of goods and services 
for society on a sustained basis" (Holechek et al. 2001, p. 5). The 
management of rangelands is not easy because range managers 
rarely have complete information about the impact of actions that 
may be taken. This state of affairs is in part due to a lacuna in the 
range management literature. Although previous studies (Lambert 
and Harris 1990, Passmore and Brown 1991, McCluskey and 
Rausser 1999, Batabyal 2000, Batabyal et al. 2001) have studied 
aspects of range management in the presence of uncertainty, there 
are very few studies that have explicitly modeled the connections 
between uncertainty, the ecology, and the management of range- 
lands over time. 

Given this state of affairs, a conceptual approach is needed to 
provide guidance for developing new strategies concerning poli- 
cies that affect the use of rangelands. The model outlined below 
has 3 desirable features. First, the approach is consistent with an 
important ecological model of range behavior, namely, the state- 
and-transition model of Westoby et al. (1989). Second, the 
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approach expressly accounts for the role that uncertainty plays in 
the temporal evolution of managed rangelands. Finally, by 
exploring the connections between policy and range behavior, our 
approach defines the role that policy can play, and, on occasion, 
not play in ensuring the sustainable use of rangelands. The formal 
state-and-transition model outlined in the following section pro- 
vides the basis for a discussion of the policy implications associ- 
ated with the dynamic and the stochastic structure of rangelands. 
This discussion is followed by an extension of the model in 2 
ways that are likely to be important and that are not captured in 
the basic model. The final section of the paper outlines areas for 
future research. 

A "State-and-Transition" Model of a 
Rangeland 

Preliminaries 
As discussed but not formalized in Westoby et al. (1989), range- 

land dynamics can be usefully described in terms of a discrete 
number of states and a set of transitions between these states. 
Range managers often use the term "condition class" to refer to 
these states. Moreover, as noted in Holechek et al. (2001), it is 
common to think of rangelands as existing in 1 of 4 possible con- 
dition classes such as excellent, good, fair, and poor. 
Consequently, we assume that rangelands can exist in 4 possible 
states, but the number of states could easily be extended, without 
any loss of generality, to any countable number of states. 
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Environmental factors such as fire 
and/or actions such as the alteration of the 
stocking rate result in rangeland transi- 
tions from 1 condition class to the other. 
To formalize this notion, suppose that our 
rangeland makes state transitions in accor- 
dance with a discrete-time Markov chain 
(Ross 1997, Perrings 1998). In other 
words, when in state i, i = 1......4, the 
rangeland will make a transition to state j, 
j = 1,..., 4, with probability Pij. From a 
management perspective, not all condition 
classes are equally desirable. In particular, 
it seems reasonable to think of excellent 
(state 1) and good (state 2) as constituting 
the desirable set of states, and fair (state 3) 
and poor (state 4) constituting the undesir- 
able set of states of the rangeland. 
Formally, we have D = {Excellent (state 
1), Good (state 2)}, and U = {Fair (state 
3), Poor (state 4)}. 

The goals of resource managers are to 
use the policies at their disposal (i.e., 
changing the stocking rate, burning, intro- 
ducing plant populations) to keep the 
rangeland in the desirable set D for as long 
as possible. However, because resource 
managers cannot be certain about the 
appropriateness of a particular policy (say, 
all the positive and negative implications 
of a burn) and because state transitions 
occur not only because of managerial 
actions but also because of environmental 
factors, it is possible that despite the 
resource manager's best intentions, the 
rangeland will end up in a state in the 
undesirable set U. As such, resource man- 
agers would like to know 2 things. First, 
what is the expected amount of time (U) 
that the rangeland spends in set U, given 
that it is currently in a state in U. Second, 
what is the expected amount of time (D) 
the rangeland spends in set D, given that it 
is presently in a state in D. Let us now 
compute these 2 expectations. 

Two Expectations 
Let k , k =1,..., 4, denote the stationary 

probabilities (see Ross 1997, pp. 172-182) 
of the rangeland. Now, for state i e D and 
state j E U, the rate at which the rangeland 
enters state j from state i is . From 
this it follows that the rate at which our 
rangeland enters state j from a state in the 

2 
desirable set D is With these 2 

i=1 
pieces of information, we conclude that 
the rate at which our rangeland moves 
from the desirable to the undesirable set of 42 
states is yiPi j. Similarly, but now in 

j=3 i=1 

terms of the 2 expectations D and U, the 
rate at which the rangeland moves from 
the desirable to the undesirable set of 
states is l/(D + U) Equating these last 2 
expressions, we get 

4 2 
1 

j=3 i=1 D + U 
(1) 

To compute D and U explicitly, we 
need a second equation linking these 2 
expectations. This equation can be 
obtained by noting 2 facts. First, the per- 
centage of time that the rangeland is in 

2 
the desirable set of states is .rci. 

i=1 
Second, the proportion of time the range- 
land spends in the desirable set of states is 
Dl(D + U). Combining these 2 facts, we 
get 

2 D 
_1r.=_ 

D+U 
(2) 

Now using equations (1) and (2), it is 
straightforward to verify that 

2 i 
D = i-' 

4 j 
j=3 

4 2 '" 4 2 

;zi Pj 
j=3 i-1 ,j=3 i=1 

(3) 

Inspecting equation (3) and recalling the 
properties of the stationary probabilities of 
a Markov chain (Ross 1997), it is clear 
that although managerial actions can influ- 
ence the expected amount of time that the 
rangeland spends in the desirable and the 
undesirable set of states, ultimately, it is 
the transition probabilities, i.e., the 
that should be the target of range policy. 
To see this clearly, consider the connec- 
tions between alternate policies and the 
transition probability matrix, P, of our 4- 
state rangeland (Markov chain). P can be 
written as 

'1'2'3'4 1 

pz 123'24 
1P3234 

I'4 1'az 1'a31'aa 

(4) 

In this matrix, the first row and column 
denote the excellent state (state 1), the sec- 
ond row and column denote the good state 

(state 2), and so on. Thus, the probability 
of making a transition to the excellent 
state (state 1), given that the rangeland is 
currently in the poor state (state 4), is 
denoted by P41. The other elements of the 
matrix P have similar interpretations. 
Now, although resource managers may 
have disparate policy goals, one reason- 
able goal is to ensure that the rangeland 
stays in the desirable set of states D, for as 
long as possible. This can be done by 
influencing the transition probabilities in 
the P matrix. 

Inspection of equation (4) shows that 
from the standpoint of range policy, the 
matrix P can be usefully partitioned into 4 
zones. These 4 zones correspond to the 
following 4 sub-matrices 

_ P>> P2 

LP2,12 

P3 PA 
, P2 = , P3 = 

LP23 P24 

PP32 
P = 

Poi Pz 

P33 P4 

P43 PA4 

(5) 

If the rangeland is in P1, then it is in the 
desirable set of states (1 or 2). As such, 
this is a zone in which no major policy ini- 
tiatives are required to ensure the well- 
being of this rangeland. In contrast, when 
the rangeland is in P4, it is in the undesir- 
able set of states (3 or 4) and the probabili- 
ty of bringing it to the desirable set is 0. 
This means that in this zone, there is no 
role for policy. One such "no role" 
involves taking no action to improve the 
rangeland. Put differently, the rangeland is 
so degraded that it is either impractical or 
actually impossible to restore it to one of 
the desirable states. The 2 intermediate 
zones corresponding to P2 and P3 are of 
particular interest. This is where there is 
the greatest scope for policy. In other 
words, in these 2 zones, resource man- 
agers can, inter alia, change the stocking 
rate, remove noxious plants, keep live- 
stock away from streamside areas, and 
introduce plant populations, in order to 
ameliorate the rangeland. Inspecting P2, 
we see that the probabilities here involve 
moving from the desirable to the undesir- 
able set of states. As such, it is clear that 
when in this zone, the objective of policy 
should be to take those actions that will 
minimize the probabilities in this sub- 
matrix and improve the rangeland 
resource. In contrast, inspection of P3 tells 
us that the probabilities here involve mov- 
ing from the undesirable to the desirable 
set of states. This means that when in this 
zone, policy should confine itself to those 
actions that maximize the probabilities in 
this sub-matrix and thereby improve the 
range. This way of looking at the task of 
range management provides a clear indica- 
tion as to when there is a substantial role 
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and when there is a very limited role for 
managerial actions in ensuring the sustain- 
able use of our rangeland. This conceptual 
approach is now demonstrated with a 
numerical example. 

persistence refers to "how long a 
[resource] lasts before it is changed to a 
new value" (Pimm 1991, p. 14). In the 
context of this note, the expectations D 
and U can be interpreted as the persistence 
of, respectively, the desirable and the 
undesirable set of states. This means that 
when range use policy is directed to the 
maximization (minimization) of D (U), 
society benefits in an economic and in an 
ecological sense. 

known as weak ergodicity. 
We now address the "unit time in a state 

before transition" feature. Ideally, we 
would like rangeland management policy 
to be conducted in a way that the range- 
land resource under study is in the desir- 
able (undesirable) set of states for relative- 
ly long (short) periods of time. One way to 
model this is as follows. We let the transi- 
tion probabilities be stationary. However, 
instead of having all transition times be 1 

unit long, we now let the amount of time 
spent in state i before making a transition 
to state j be a random variable with a gen- 
eral distribution function F11('). With this 
change, we have converteour discrete- 
time Markov chain into a semi-Markov 
process. We can now investigate the limit- 
ing behavior of this semi-Markov process 
as time approaches infinity by analyzing 
its embedded Markov chain. Specifically, 
for a 3-condition class rangeland, if we 
denote the stationary probabilities of the 
semi-Markov process by Pi, i = 1,2,3, it 
can be shown, using the methods outlined 
by Ross (1997), that these stationary prob- 

abilities satisfy Pi = ipil J'tjjj i =1, 
J 

2,3, where i is the embedded Markov 
chain's stationary probability of being in 
state i and p i is the mean time the semi- 
Markov process (rangeland) spends in 
state i. 

An Example 
Suppose that the transition probability 

matrix in equation (4) is 

P= 

1/21/2 0 0 

1/4 1/4 1/4 1/4 

1/5 1/5 2/5 1/5 

0 0 1/4 3/4 

(6) 

While the transition probabilities in 
equation (6) are illustrative, subject to data 
availability, they can be estimated using 
econometric techniques (Ethridge et al. 
1985). In a practical setting, these proba- 
bilities are useful because they provide 
rangeland managers with information 
about how the interaction of managerial 
actions and environmental factors affect 
range condition. Let us compute U and D. 
To perform this computation, we shall use 
a 3-step procedure. First, we observe that 
the stationary probabilities satisfy .rrj = 
(1/2) rj+(1/4)c2+(1/5),n3,r2=(ll2) 
Jrl+ (1/4) r2 + (1/5) .7r3, yr3 = (1/4) c2 + (215) 

r3 + (114) v4, and ir4 = j _ .ir (Ross 

1997).These 4 equations can be solved to 
yield irl = 4121, 2= 4121, .3 = 5121, and 
.7t4 = 8121. Second, we use these stationary 
probabilities and the transition probabili- 
ties in equation (6) to determine the rate at 
which our rangeland moves from the 
desirable to the undesirable set of states, 
i.e., the denominator of the 2 expressions 
for D and U in equation (3). This rate 
equals 2121. Finally, we compute D and U 
by using this rate (2121), and the expres- 
sions in equations (3) and (6). We get D = 
4andU=6.5. 

What are the implications of these com- 
putations for range policy? These compu- 
tations tell us that, on average, our range- 
land resource moves from the desirable to 
the undesirable set of states 2121 or 
approximately 10% of the time. The 
rangeland resource stays in the undesirable 
set for 6.5 units of time on average. This is 
followed by a time span, on average 4 
units long, during which the rangeland is 
in the desirable set of states. This kind of 
rangeland behavior is entirely consistent 
with the state-and-transition model of 
Westoby et al. (1989). Further, note that in 
ecology, the stability concept known as 

Two Extensions 
The discrete-time Markov chain model 

described above nicely captures the essen- 
tial elements of dynamic and stochastic 
rangelands. However, the scope of this 
model is restricted by the presence of 2 
features. First, range policy cannot alter 
the transition probabilities (the Pj s) 
because these probabilities are stationary. 
Second, range policy also cannot change 
the amount of time the rangeland spends 
in a particular state because the discrete- 
time Markov chain spends 1 unit of time 
in each state before making a transition. 
How might we account for these 2 features 
in our model? 

First, let us consider the case of non-sta- 
tionary transition probabilities. In this 
case, the probability of making a transition 
from condition class i at time t-1 to condi- 
tion class j at time t depends on t. To for- 
malize this time dependence, we write 

(t-1,t) 
Plg instead of Pig. Similarly, the transi- 
tion probability matrix in equation (4) will 
now have to be replaced by a sequence of 
transition matrices. In other words, instead 
of working with the single matrix P of 
equation (4), we now work with a 
sequence of matrices [Pt] t 1. Once we 
specify an initial vector that gives a proba- 
bility distribution over the states of the 
non-stationary Markov chain, we have 
completely described our rangeland. Then 
we can investigate the limiting behavior of 
the rangeland under study as time 
approaches infinity. This rangeland may 
or may not converge to a limiting vector. 
For instance, consider the 2-condition 
class rangeland with transition matrices 

Pit-i = 

1- 
1 1 

2t-1 2t-1 

Ll-2t' 
l 2t- 1J L12t 

1-2t 
, P = 

1 

1- 
1 

2t 2t ,t=1,2,3,,..(7) 

In this case, it can be shown, using the 
methods outlined by Isaacson and Madsen 
(1976) that this non-stationary Markov 
chain displays a kind of limiting behavior 

Conclusions 

The conceptual approach presented 
above highlights the advantages of linking 
rangeland resource management policy to 
the dynamic and the stochastic structure of 
a rangeland. Specifically, our approach is 
consistent with the state-and-transition 
model of range behavior proposed by 
Westoby et al. (1989). This approach 
explicitly accounts for the fundamental 
role that uncertainty plays in the temporal 
evolution of managed rangeland resources. 
This approach also makes transparent the 
role that management policy can play, 
and, on occasion, not play, in ensuring the 
sustainable use of rangeland resources. 
Finally, the optimization of management 
policy objectives (D and U) arising from 
this approach involves the simultaneous 
maintenance of ecological stability in the 
sense of persistence. 

The state and transition model can be 
extended in a number of ways. Transition 
probabilities are an important component 
of all the Markov models. Consequently, it 
would be useful to follow the lead of 
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Ethridge et al. (1985) and estimate the 
transition probabilities of a Markov model 
of a parcel of rangeland. Knowledge of 
transition probabilities will enable a 
researcher to determine the practical mer- 
its of stationary versus non-stationary 
approaches to the study of dynamic and 
stochastic rangelands. 
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