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Abstract

Tiller recruitment is an essential process for ensuring the
perenniality of grasses. The timing and extent of tiller recruit-
ment and the role of biennial tillers must be documented for key
range species. Prairie sandreed [Calamovilfa longifolia ( H o o k )
Scribn.] is an important grass in the Nebraska Sandhills for both
ecological functioning and as a forage. The objective of this study
was to document tiller recruitment patterns and the occurrence
and contribution of current year and biennial tillers to biomass
production in prairie sandreed at 2 locations in Nebraska. Tiller
recruitment was monitored at 2-week periods throughout the
growing season during a 2-year period. Newly emerged tillers
were classified as intravaginal, extravaginal, or rhizomatous
tillers and marked with colored wire. Prairie sandreed has an
unimodal pattern of tiller recruitment and over 50% of the cur-
rent year tillers emerged by mid-May and 80% by mid-June.
Rate of tiller emergence and absolute number of emerged tillers
were poorly correlated with short- and long-term precipitation
totals (r < 0.3 P > 0.20). The year after new tillers were marked,
biennial tillers and tillers initiated during the current-year were
counted and clipped in September for biomass determination.
Biennial tillers made up only 6 and 20% of the total tiller emer-
gence at these locations and were generally only 30% as large as
the new tillers. Extravaginal tillers composed over 78% of the
biennial tiller population as a result of both their dominance in
emerging populations and the higher percentage of tillers that
survived the winter. Current year tillers contributed the most to
prairie sandreed forage production and their emergence was
largely completed by mid-June. The lack of a relationship
between tiller recruitment and precipitation patterns, combined
with previous studies of prairie sandreed, indicates that tiller
recruitment involves a process that begins the previous growing
season.

Key Words: Warm-season grass, tiller demography, Calamovilfa
l o n g i f o l i a (Hook.) Scribn., grassland ecology, population ecolo-
gy/biology

Prairie sandreed [Calamovilfa longifolia (Hook) Scribn.] is a
widespread rhizomatous perennial grass on sandy soils in the
Northern Great Plains of the United States. It is one of the most

Resumen

El renuevo de las macollas (número de macollas que brotan
durante todo el periodo de crecimiento) es un proceso esencial
para asegurar la perennidad de los pastos. La regulación del
tiempo, la cantidad de renovación de las macollas, y el papel de
las macollas bienales deben ser documentados para las especies
claves de las praderas. Prairie sandreed [Calamovilfa longifolia
(Hook) Scribn.] es un pasto importante en las lomas arenosas
(sandhills) al oeste de Nebraska, no solo por su contribución
ecológica sino también como forraje. Los objetivos de este estu-
dio han sido el de documentar el patrón de renuevo de las macol-
las, la ocurrencia y la contribución de las macollas durante el
presente año y las macollas bienales del año anterior en la pro-
ducción de la biomasa del pasto prairie sandreed en dos locali-
dades de Nebraska. El renuevo de las macollas fué determinado
cada dos semanas durante la época de crecimiento del pasto y
por un período de dos años. A medida que las macollas iban
brotando fueron clasificadas en intravaginadas (crecimiento
desde adentro de la vaina de la hoja) y extravaginadas (pene-
tración de la vaina de la hoja) o rizomas e identificadas con
alambres de colores. El pasto prairie sandreed posee un patrón
unimodal en su renovación de las macollas; durante el presente
año mas del 50% de sus macollas, brotaron a mediados de Mayo
y el 80% a mediados de Junio. La proporción de la brotación de
las macollas y el número absoluto de las macollas que brotaron
estuvo pobremente correlacionado (r < 0.3 P > 0.20) con la pre-
cipitación total a corto y a largo plazo. En el segundo año, las
macollas bienales y las macollas que brotaron durante el pre-
sente año fueron contadas y cortadas para determinar la bio-
masa. Las macollas bienales representaron de un 6 al 20% del
total de las macollas en las dos localidades , y fueron por lo  gen-
eral 30% tan grandes como las macollas nuevas. Las macollas
extravaginadas formaron mas del 78% de la población de macol-
las bienales, debido a su caracter dominante  para brotar y tam-
bién a su alto porcentaje de sobrevivencia durante el invierno.
Las macollas del presente año fueron las que mas contribuyeron
a la producción del pasto forrajero sandreed, completando la
mayor parte de su brotación a mediados de Junio. La carencia
de relación entre el renuevo de las macollas y los patrones de la
precipitación, combinado con resultados obtenidos en años ante-
riores, indican que el renuevo de las macollas está involucrado
en un proceso el cual se inicia en el anterior período de crec-
imiento del pasto.
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common grasses of the Nebraska Sandhills
(Tolstead 1942) and together with sand
bluestem [Andropogon gerardii var. pau -
c i p i l u s (Nash) Fern.] and little bluestem
[Schizachyrium scoparium (Michx.) Nash]
provides 50–60% of the available forage
in most years (Northup 1993). Tolstead
(1942) and Hendrickson et al. (1998)
described the developmental morphology
of prairie sandreed.

Knowledge of tiller dynamics con-
tributes to greater ecological understand-
ing and more effective management of
grasslands (Briske and Silvertown 1993,
McKenzie 1997). Understanding tiller
dynamics is critical in developing appro-
priate grazing strategies for rangelands
(Cullan et al. 1999). Most perennial grass-
es have bimodal recruitment patterns with
flushes of new tillers emerging during the
spring and fall (Langer 1956, Briske and
Butler 1989, Briske and Richards 1995).
However, crested wheatgrass [A g r o p y r o n
desertorum (Fisch. Ex Link) Schult.],
bluebunch wheatgrass [P s e u d o r o e g n e r i a
s p i c a t u m (Pursh) A. Löve] (Mueller and
Richards 1986), and big bluestem
[Andropogon gerardii Vitmann var. g e r -
a r d i i] (McKendrick et al. 1 9 7 5 ) , o n l y
produced 1 annual cohort. These estab-
lished patterns of tiller recruitment may be
affected by defoliation which extends the
recruitment period (Butler and Briske
1988), promotes additional tiller cohorts
(Olson and Richards 1988a), and changes
the timing of peak recruitment (Bullock et
al 1994). Tiller recruitment is also a major
method of perennial grass persistence
(Hendrickson and Briske 1997) and annual
tiller replacement is necessary to maintain
tiller density (Olson and Richards 1988b).
Reduction in tiller density reduces both
current and future productivity since tiller
density represents a pool of meristematic
tissue for future growth (Murphy and
Briske 1992). 

Timing of tiller recruitment has a direct
effect on tiller longevity and tiller yield.
Tillers recruited in the fall often overwin-
ter in the vegetative stage and resume
growth the following spring (Briske
1991). These “biennial tillers” have been
reported for certain grasses in the plains
states. In the Kansas Flint Hills, a majority
of indiangrass tillers [Sorghastrum nutans
L. (Nash)] were biennial but big bluestem
tillers only lived for 1 year (McKendrick
et al. 1975). In the Nebraska Sandhills,
biennial tillers were reported in prairie
sandreed but not its co-dominant sand
bluestem (Bredja et al. 1988, Cullan et al.
1999) and prairie sandreed in Montana did
not produce biennial tillers (White 1977).
Biennial tillers are important because they

often have a greater dry weight, leaf num-
ber, and seed yield than tillers recruited
during the growing season because they
have more time for growth and develop-
ment (Langer 1956). 

Tiller type influences plant architecture
(Briske 1991) and plant development
(White 1977). Bunchgrasses are character-
ized by intravaginal tillers or tillers which
arise from within the subtending leaf
while sod forming grasses have more
extravaginal and  rhizomatous tillers
(Briske 1991). Prairie sandreed has
rhizamotous, intra- and extravaginal tillers
similar to switchgrass (Panicum virgatum
L.) (Brejda et al. 1988). Rhizomatous
tillers in prairie sandreed have an
increased probability of producing seed-
heads (White 1977) which has an adverse
affect on nutritive value and palatability
(Reece et al. 1999).

Despite the importance of prairie san-
dreed to the Nebraska Sandhills in particu-
lar and the Northern Great Plains in gener-
al, relatively little is known about its basic
demographic patterns and the role of bien-
nial tillers in biomass determination. The
objective of this study was to evaluate
tiller recruitment patterns in prairie san-
dreed, estimate the contributions of intrav-
aginal, extravaginal, and rhizomatous
tillers to overall tiller recruitment and
determine the importance and contribution
of biennial tillers to forage production.

Materials and Methods

Research was conducted in 1990 and
1991 at 2 University of Nebraska research
locations. The Gudmundsen Sandhills
Laboratory (42° 07'N, 101° 43'W) is cen-
trally located in the Nebraska Sandhills
near Whitman, Nebr. and the Panhandle
Experimental Range (42° 08'N, 103°
43'W) is located near Mitchell in the
Nebraska Panhandle approximately 240
km west of the Gudmundsen Sandhills
Laboratory. There were 3 and 6 study sites
located at the Gudmundsen Sandhills
Laboratory and the Panhandle Experimental
Range respectively. Study sites were located
on Valentine fine sands (mixed, mesic typic
Ustipsamments) at the Gudmundsen
Sandhills Laboratory and Valent fine sands
(mixed, mesic, ustic Torripsamment) at the
Panhandle Experimental Range in areas
dominated or co-dominated by prairie san-
dreed (≥ 50% of the cover). Dominance or
co-dominance by prairie sandreed is typical
of a majority of Sandhills vegetation that is
in mid to high seral stage. 

Average annual precipitation at the
Gudmundsen Sandhills Laboratory is 514
mm and 70% falls during the growing sea-
son (April through September). At the
Panhandle Experimental Range, the aver-
age annual precipitation is 393 mm with
the same distribution pattern. Precipitation
from 1 April to 30 September was 76, 119,
and 90% of the 30-year average for the
Gudmundsen Sandhills Laboratory in
1990, 1991, and 1992 respectively.
Precipitation during the same years, at the
Panhandle Experimental Range, was 98,
138, and 96% of the 30-year average.
Precipitation data were collected electroni-
cally during the growing season from a
weather station at the Gudmundsen
Sandhills Laboratory headquarters and
from a rain gauge located 1.25 km south
of the Panhandle Experimental Range
study site. Thirty-year averages were
taken from the closest U.S. Weather
Service stations located 20 km northeast
of the Gudmundsen Sandhills Laboratory
and 10.5 km southeast of the Panhandle
Experimental Range.

Study sites at the Gudmundsen
Sandhills Laboratory were excluded from
livestock grazing for 5 years previous to
the initiation of the study. At the
Panhandle Experimental Range, study
sites were grazed as part of a deferred
rotation for 15 years previous to the study
at  a  s tocking rate of  1.01 AUM/ha.
However, livestock were excluded from
the sites during the investigation.

Twelve permanent 0.5 m2 quadrats (70.5
cm x 70.5 cm) were randomly located
within the study sites during the first week
of May 1990 at each location. There were
a total of 4 quadrats within each of the 3
study areas at the Gudmundsen Sandhills
Laboratory and 2 quadrats within each of
the 6 study areas at the Panhandle
Experimental Range. Quadrats were moni-
tored for new tiller emergence at 2-week
intervals, from mid-May through mid-
September during the 1990 growing sea-
son. Newly emerged tillers were classified
into 3 categories (intravaginal, extravagi-
nal, or rhizomatous) based on the position
of the emerging tiller. Tillers that emerged
from within the subtending leaf sheath
were considered intravaginal tillers while
extravaginal tillers emerged through the
subtending leaf sheath (Briske 1991).
Tillers that emerged more than 3 cm from
the nearest existing tiller were considered
to be rhizomatous. Colored wires were
placed on the base of each new tiller to
indicate category and date of emergence.

In 1991, these same 12 quadrats at each
location were evaluated to determine the
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winter survival of the 1990 tillers by
counting the number of l ive ti l lers.
Surviving tillers were classified as bienni-
al. Counts were done in mid-April, mid-
May and at the end of September in 1991.
In September, biennial and new tillers
were clipped separately, separated into
vegetative and reproductive tillers, dried
for 3 days at 55°C, and weighed.

In 1991, 12 new 0.5 m2 quadrats were
randomly located in the same study areas
at each location and monitoring was con-
ducted in the same manner as in 1990
except that at the Panhandle Experimental
Range, monitoring of tiller emergence
began in mid-April rather than mid-May.
Evaluation of these 12 quadrats for bienni-
al tillers was conducted in April and
September of 1992.

Daily tiller initiation rate was calculated
as follows:

Daily tiller initiation rate = 

number of new tillers 1.0 m-2 

number of days since previous sampling

The number of tillers emerged was con-
verted from 0.5m- 2 to the more recogniz-
able 1.0 m - 2. Based on the 1991 tiller
emergence patterns at the Panhandle
Experimental Range, 1 April was selected
as the beginning date for calculating rate
of tiller initiation for the first sampling
period each year. 

Tiller emergence was analyzed as a split
plot in time with time being a sub-plot fac-
tor to allow for a greater resolution of time
(Briske and Hendrickson 1998). Differences
between locations were analyzed using
study site nested within location as an error
term and differences between time and
location by time were analyzed using time
by study site nested within location as an
error term. A majority of tiller emergence
occurred early in the growing season and
so only the first 4 time periods were
included in the data analysis. Tiller emer-
gence data were log transformed to correct
for a non-normal distribution. Results are
presented using non-transformed data for
clarity of presentation. Standard errors
were calculated across the first 4 time
periods. Tillers within each type category
were pooled over time periods, because of
small sample sizes in some time periods
and categories, and analyzed for differ-
ences between locations and study sites
within location. Analysis was conducted
using the SAS PROC GLM module (SAS
1989). Means separation was done using
the Student-Newman-Keuls’ test.

The absolute number of tillers that
emerged and the rates of tiller emergence
were correlated with the sum of the pre-
cipitation received during the 14 and 3 0 -

day intervals prior to the sampling period.
Tiller emergence was also correlated with
the 30-year average precipitation on a
monthly basis. Correlations were done
using the PROC CORR procedure in SAS
(SAS 1989). Significance was determined at
P ≤  0.05 unless otherwise noted. Standard
errors were calculated averaged across sam-
pling dates.

The Panhandle Experimental Range had
relatively few biennial tillers. Therefore,
most of the data used in evaluating the
contribution of biennial tillers came from
the Gudmundsen Sandhills Laboratory.
Standard errors used in the comparison of
the contributions of new and biennial
tillers to biomass and tiller numbers were
calculated across study sites and quadrats.
Standard errors, used in evaluating the
number and percent of biennial tillers
from each sampling date, were calculated
across study sites and quadrats within
sampling dates.

Results

Emergence date and category:
There were no significant differences in

tiller recruitment between locations in
1990 (P > 0.10); however, tiller emer-
gence during the 1990 growing season
was 160% greater at Gudmundsen
Sandhills Laboratory than at Panhandle
Experimental Range (Fig. 1). In 1991,
tiller emergence declined by 25% at the
Gudmundsen Sandhills Laboratory but
nearly doubled at the Panhandle

Experimental Range so total tiller emer-
gence was very similar between locations
(P > 0.75) (Fig. 2). Over 50% of the total
tiller emergence for the season occurred
by mid-May for both years and locations
(Fig. 1 and 2). After early June, tiller
emergence generally declined and
remained low for the remainder of the
growing season. 

Time, but not location by time, had a sig-
nificant effect on tiller recruitment in 1990,
thus  tiller emergence was pooled over
location (Fig. 1). Each of the first 3 sam-
pling periods in 1990 had significantly
greater tiller recruitment than the subse-
quent period (Fig. 1). In 1991, there was a
location by time interaction (Fig. 2) and
tiller recruitment patterns were analyzed
separately at each location. The pattern of
tiller emergence at the Gudmundsen
Sandhills Laboratory was similar to 1990
although there were no significant differ-
ences between the mid and late June time
periods (Fig. 2). At the Panhandle
Experimental Range, tiller emergence was
similar in early and mid June and those
time periods were significantly greater than
late June (Fig. 2).

The Gudmundsen Sandhills Laboratory
had significantly more extravaginal and
rhizomatous tillers than the Panhandle
Experimental Range in 1990. However,
intravaginal tiller number was influenced
more by site within location than by loca-
tion. In 1991, the Gudmundsen Sandhills
Laboratory had significantly more intrav-
aginal tillers than the Panhandle
Experimental Range, but the number of

Fig. 1. Number of tillers that emerged (m-2) on each monitoring date in 1990 pooled across
locations for the Gudmundsen Sandhills Laboratory (GSL) and the Panhandle
Experimental Range (PER). Newly emerged tillers were classified as either intravaginal,
extravaginal or rhizomatous at each monitoring date. Numbers in parentheses are the total
number of tillers that emerged (tillers m-2). Data was pooled over locations for each emer-
gence date. Bars with different letters represent significant differences (P < 0.05) in total
tiller emergence among the first 4 dates.
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extravaginal tillers was similar between
locations. The number of rhizomatous
tillers, in 1991, was affected more by site
within location than by location.

Over the 2-year period, extravaginal
tillers made up more than 63% of all
t i l lers recruited at the Gudmundsen
Sandhills Laboratory and over 75% of all
tillers recruited at the Panhandle
Experimental Range. Extravaginal tillers
comprised more than 50% of the emerged
tillers at any single sample date (Figs. 1
and 2) and they were the only tiller cate-
gory to emerge from 24 July to 28 August
1990 and from 6 August to 19 August
1991 at the Panhandle Experimental

Range. Rhizomatous tillers were the next
largest category and they were 20 and
18% of total t i l ler emergence at the
Gudmundsen Sandhills Laboratory and the
Panhandle Experimental Range, respec-

tively. Intravaginal tillers contributed the
least number of tillers at both locations
with only 7% and 16% of the emerged
tillers being intravaginal at the Panhandle
Experimental Range and the Gudmundsen
Sandhills Laboratory respectively. 

Tiller initiation correlations
Absolute tiller recruitment and tiller ini-

tiation rate were poorly correlated with
14-day and 30-day precipitation amounts
(Fig. 3). Correlation coefficients were less
than 0.3 (P > 0.20). An exception was
tiller initiation rate and 30-day precipita-
tion at Gudmundsen Sandhills Laboratory
in 1991 (r = 0.43, P = 0.07). Correlations
between tiller emergence and longer-term
precipitation data  (monthly totals over 30
years) was also low (r < 0.30, P > 0.20).

Biennial tiller yield:
Most tillers did not survive the follow-

ing winter. Only 22% of the tillers, which
emerged during the 2-year study, became
biennial tillers at the Gudmundsen
Sandhills Laboratory and only 6% at the
Panhandle Experimental Range. In 1991,
less than 1% of all the tillers that emerged
during the growing season at the
Panhandle Experimental Range became
biennial tillers. Because of their minimal
contribution to numbers and biomass at
the Panhandle Experimental Range, those
biennial tillers were not included in any of
the data analysis regarding biennial tillers.
Approximately 30% of tillers harvested in
1991 from plots established in 1990 at the
Gudmundsen Sandhills Laboratory were
biennial tillers but this had declined to
20% in 1992 (Fig. 4). Biennial tillers made
up 12% of the yield from all live prairie
sandreed tillers in 1991 and 6% of the
1992 biomass at the Gudmundsen
Sandhills Laboratory (Fig. 4). 

Yields of biennial tillers may have
decreased because of harvesting in
September rather than earlier in the grow-
ing season. However, there were no signif-
icant differences (P > 0.05) at the
Gudmundsen Sandhills Laboratory when
the number of biennial tillers recorded

Fig. 2. Number of tillers that emerged (m - 2) on each monitoring date in 1991 at the
Gudmundsen Sandhills Laboratory (GSL) and the Panhandle Experimental Range (PER).
Newly emerged tillers were classified as either intravaginal, extravaginal or rhizomatous
tillers at each monitoring date. Number in parentheses is the total number of tillers that
emerged (tillers m- 2) during the growing season at each location. Data was not pooled
because of a location by time interaction. Bars with different letters represent significant
differences (P < 0.05) in total tiller emergence between the first 4 dates for each location.

Table 1. Mean individual tiller weights for tillers surviving from the previous year (biennial) and
tillers that emerged during the current year at the Panhandle Experimental Range (PER) and
Gudmundsen Sandhills Laboratory (GSL). Biennial tillers recorded in 1991 and 1992 had
emerged in 1990 and 1991 respectively.

                          PER                                                            GSL                            
Harvest Date Biennial Tillers Current Year Tillers Biennial Tillers Current Year Tillers 

- - - - - - - - - - - - - - - - - - - - - - - - - - - (mg.) - - - - - - - - - - - - - - - - - - - - - - - - - - -
1991 78 ±   4 759 ± 48 131 ± 3 443 ± 33
1992 321 ± 63 414 ± 21 93 ± 3 334 ±   8
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early in the season was compared to bien-
nial tillers recorded later in the growing
season. Tillers that emerged during the
current growing season were 30 to 880%
heavier then the biennial tillers (Table 1).
These extremes were both recorded at the
Panhandle Experimental Range but at the
Gudmundsen Sandhills Laboratory, cur-
rent year tillers were 230 to 260% heavier
than the biennial tillers. 

At the Gudmundsen Sandhills
Laboratory, tiller cohorts that emerged
early in the growing season the previous
year made up the largest percentage of
biennial tillers (Fig. 5). However, tillers
that emerged later in the growing season
were more likely to become biennial tillers
(Fig. 5). May tiller cohorts made up
approximately 33% of the biennial tillers
in 1991 and 60% of the biennial tillers in
1992. The 1991 biennial tiller population
had a large contribution from tiller cohorts
that emerged later in the season in 1990
because of increased tiller emergence later
in the season combined with increased
potential for these tillers to become bienni-
al. Over 70% of the biennial tillers at
Gudmundsen Sandhills Laboratory were
from the extravaginal tiller category (Table
2) because of the greater number of extrav-
aginal tillers. Extravaginal tillers had the
highest survival rate in the 1990 cohort but
survival rates were similar between the
extravaginal and intravaginal categories in
the 1991 tiller cohort (Table 2).

Discussion

The unimodal pattern of tiller emer-
gence in prairie sandreed differs from the
more commonly reported bimodal tillering
pattern of other perennial grasses in tem-
perate zones (Langer 1963, Butler and
Briske 1988, Briske and Richards 1995).
However, unimodal tillering patterns have
been reported for the C3 grasses, crested
wheatgrass, and bluebunch wheatgrass,
(Mueller and Richards 1986). In a Kansas
study of 2, C4 grasses, indiangrass had a

bimodal tiller recruitment pattern while
big bluestem, had a unimodal pattern
(McKendrick et al. 1975). 

Regionally, patterns of tiller emergence
may be linked to precipitation patterns or
the length of the growing season (Briske
1991). In our more site specific study,
tiller emergence during the growing sea-
son and the rate of daily tiller emergence
were poorly correlated with either yearly
or 30-year average precipitation events
which was similar to reports from sideoats
grama [Bouteloua curtipendula ( M i c h x . )

T o r r . ] (Hendrickson 1996). Moreover,
although both locations received more pre-
cipitation during the 1991 than in the 1990
growing season, total tiller emergence
decreased from 1990 to 1991 at
Gudmundsen Sandhills Laboratory while
increasing by 100% at Panhandle
Experimental Range. However, Cullan et
al. (1999) suggested that soil moisture and
the ability of plants to absorb soil moisture
may be critical factors in determining
recruitment in prairie sandreed. The sandy
substrate at both locations complicates the
response to precipitation because its
coarse texture allows for deep percolation
of even minor rainfall events (Barnes and
Harrison 1982). Thus, frequency of pre-
cipitation events may be more important
that total precipitation.

Biennial tillers did not make a large con-
tribution to tiller recruitment  (6 to 22%) or
aboveground biomass, which was surpris-
ing since the longer season of growth and
development is often considered to give a
growth advantage to biennial tillers
(Langer 1956, Briske 1991). However in
our study, new tillers were 200% heavier

Fig. 3. Daily tiller initiation rates (tillers m-2 day-1) and precipitation events (cm) during the
growing season at the Gudmundsen Sandhills Laboratory and the Panhandle
Experimental Range during the 1990 and 1991 growing seasons. The numbers in paren-
thesis represent total precipitation received during the growing season at each location
and each year. 

Table 2. Percentage of tillers that emerged during the preceding year and survived to become
biennial tillers from each tiller category and the percentage that each tiller category con-
tributed to the composition of the biennial tiller population in 1991, 1992 and averaged over
both years at the Gudmunsen Sandhills Laboratory. Data from the Panhandle Research Range
not presented.

Composition of the
Survival Rate                                         Biennial Tiller Population        

Tiller Category 1990 1991 Average 1990 1991 Average 

- - - - - - - - - - - - - - - - - - - - - - - - - - -(%) - - - - - - - - - - - -- - - - - - - - - - - - - - - 
Extravaginal 27 ± 2.2 27 ± 3.8 27 ± 2.0 86 ± 2.7 70 ± 1.3 78 ± 3.9
Intravaginal 8 ± 2.7 25 ± 2.2 16 ± 4.2 6 ± 2.2 15 ± 1.3 10 ± 2.3
Rhizomatous 9 ± 4.7 17 ± 2.3 13 ± 2.9 8 ± 2.7 15 ± 2.6 12 ± 2.4
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than biennial tillers thus early emergence
did not seem to give a growth advantage to
biennial tillers. If biennial tillers died prior
to the harvesting date in September, their
numbers and biomass could have been
underestimated. However, biennial tillers
numbers were generally similar between
the early (April and May) and September
monitoring dates.

The largest percentage of biennial tillers
were from tiller cohorts that emerged early
in the previous growing season because of
the larger tiller recruitment. However,
later emerging tillers were more likely to
become biennial. Although, tillers which
emerge early in the growing season gener-
ally have the greatest probability of
becoming reproductive (Briske 1991), in
our study a majority of biennial tillers
were still vegetative when they were har-
vested at the end of the second growing sea-
son. A study of morphological development
in prairie sandreed conducted during the
same time period at Gudmundsen Sandhills
Laboratory also indicated a majority of
tillers remained vegetative throughout the
growing season (Hendrickson et al. 1998).
This suggests that the limited number of
biennial tillers in prairie sandreed may not
be a result of the tillers completing their life
cycle but rather because of the small num-
ber of tillers recruited late in the growing
season when they were more likely to
become biennial. In Montana, C3 g r a s s
tillers took 2–3 years to flower and C4g r a s s
tillers took 1–2 years although the results
varied by species (White 1977). 

Biennial tillers may represent a small
pool of long-lived tillers that provide

prairie sandreed with an alternative popu-
lation maintenance mechanism. This
observation is difficult to assess because
of the limited time frame of the experi-
ment but a majority of biennial tillers
remained vegetative even at the end of
their second growing season. Although the
contribution of axillary buds and tiller
recruitment to population persistence has
been explored (Hendrickson and Briske
1997), there is limited information regard-
ing the role of tiller longevity in this
regard. There have been reports of tiller
ages of up to 5 years in northern wheat-
grass [Agropyron dasystachyum ( H o o k )
Scribn.) in Saskatchewan, Canada (Zhang
and Romo 1995) and 3-year old western
wheatgrass (Agropyron smithii R y d b . )
tillers were observed in Montana (White
1977). These reports are from areas with
more severe winter climates and contrast
with lifespan of 1–2 years in more moder-
ate climates (Langer 1956, Briske 1991,

Fig. 4. Contribution of current year tillers and biennial tillers to biomass (g m-2) and tiller
numbers m-2 at the Gudmundsen Sandhills Laboratory in 1991 and 1992. Biennial tillers
had emerged during the previous growing season (1990 and 1991 respectively) and sur-
vived overwinter. Current year tillers were tillers that emerged in the 1991 and 1992 grow-
ing seasons. Current year tiller biomass was separated into vegetative and reproductive
components but biennial tiller biomass was pooled over both components.

Fig. 5. The number and percent of new tillers m-2 marked on each monitoring date in 1990
and 1991 that survived overwinter and became biennial tillers the following year at the
Gudmundsen Sandhills Laboratory. 
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Briske and Richards 1995). From a practi-
cal point of view, a majority of the prairie
sandreed tillers appeared to function as
annual tillers similar to reports of prairie
sandreed tillers in Montana (White 1977).

The limited contribution of biennial
tillers in our study emphasized the impor-
tance of tillers initiated during the current
year to tiller density and productivity.
However tillers, which emerge during the
growing season, are often initiated early
and make some limited subterranean
growth in the previous growing season
(Bredja et al. 1988). Therefore, stress that
occurs during this crucial time period
early in the growing season may affect
tiller numbers into the following growing
season. For example, tiller and axillary
bud numbers of prairie sandreed per unit
area decreased when prairie sandreed and
its associated species were clipped early in
the growing season (June) over a 3-year
period (Mullahey et al. 1991). Organic
reserves of prairie sandreed were also
adversely affected by a single grazing
event in June or July but not August
(Reece et al. 1996). These responses col-
lectively indicate that tiller numbers dur-
ing the year may be determined relatively
early in the previous growing season.
Consideration of the effects of environ-
mental variables and management over
multiple years needs to be incorporated
into current management decisions.

Conclusions

In prairie sandreed, the tillering pattern
and role of biennial tillers contrasts with
patterns observed in other species (Langer
1956, Briske 1991). Prairie sandreed has a
unimodal tillering pattern and a majority
of tillers do not survive over winter. The
few biennial tillers that are produced are
small and make a minor contribution to
biomass production as opposed to tillers
that emerge during the growing season.
The developmental morphology of prairie
sandreed and the low correlations with
precipitation indicate current-year tiller
production may be linked to conditions in
previous years. Given the importance of
prairie sandreed for ecological functions
and as a forage resource, quantifying the
effects of preceding and current-year man-
agement as well as environmental vari-
ables on tiller emergence is warranted. 
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