
51JOURNAL OF RANGE MANAGEMENT 52(1), January 1999

Abstract

We present a method for computerizing the transition rules
of a state-and-transition model and then linking this model to
a geographic information system. The resulting simulation
characterizes rangeland vegetation dynamics in space and
time. The method makes use of an expert system, a computer
program that forms logical chains of transition rules.
Simulation using state-and-transition rules, sometimes called
qualitative simulation, has the disadvantage that it is less pre-
cise than traditional numerical simulation. However, it may
have the advantage of being able to generate more robust sim-
ulation of complex vegetation communities. We demonstrate
the application of the method by constructing a model of hard-
wood rangeland in the western foothills of the Sierra Nevada.
The model is tested by comparison with historic black-and-
white aerial photographs. The model is found to agree gener-
ally with the observed data but to differ substantially in some
locations. Implications of this difference are discussed.
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The state-and-transition model, introduced to range sci-
ence by Westoby et al. (1989), has potential to be useful in
summarizing information about vegetation dynamics.
State-and-transition models in range management have
generally been implemented through simple printed flow-
charts, but they can be directly implemented on a computer
using expert system methodologies (Noble 1987). Expert
systems are a type of computer program that forms logical
chains of transition rules. Starfield and his collaborators
(Starfield and Bleloch 1983 Starfield et al. 1989) have
developed expert system-based ecosystem models com-
prised of discrete states together with rules to describe the
transitions between states. These models are used to fore-
cast the response of these ecosystems to various forms and
magnitudes of disturbance.

Computer implementation of state-and-transition models
offers a number of advantages. One is that the exercise of
writing the transition rules in precise logical form imposes
a high level of rigor and precision on the model. A second
is that using the computer to keep track of logical relation-
ships opens the way for more complex qualitative models
that include some degree of mechanism. A third is that it
offers the potential for introducing explicit representation
of spatial effects through the linkage with a geographic
information system (GIS). This explicit representation of
spatial variability is essential in an explanatory model that
is to be used as a management tool (Grice and Macleod
1994). The use of GIS and cartographic modeling (Tomlin
1990) provides a natural linkage between spatial and tem-
poral processes in the model. In this paper we introduce a
methodology for implementing state-and-transition models
as computer simulations and linking them with geographic
information systems.
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Resumen

Presentamos un método para computarizar las reglas de
transición de un modelo de estados y transición y enlazamos
este modelo a un sistema de información geográfica. La simu-
lación resultante caracteriza en espacio y tiempo la din mica
de la vegetación del pastizal. El método utiliza un sistema
experto, que es un programa de computación que forma
cadenas lógicas de las reglas de transición. La simulación
usando reglas de estado de transición, a veces llamada cuali-
tativa, tiene la desventaja de que es menos precisa que la sim-
ulación númerica tradicional. Sin embargo, tiene la ventaja
de ser capaz de generar una simulación mas sólida para
comunidades vegetales complejas. Demostramos la aplicación
del método construyendo un modelo del pastizal “hardwood”
al pie de la montaña del lado oeste de la Sierra Nevada. El
modelo es probado por comparación de fotografías aéreas
históricas en blanco y negro. Se encontró que el modelo
genealmente concuerda con los datos observados; sin embar-
go, difiere substancialmente en algunas localidades. Se dis-
cuten las  implicaciones acerca de esta diferencia



52 JOURNAL OF RANGE MANAGEMENT 52(1), January 1999

Materials and Methods

Simulation methodology
The simulation methodology is

based on establishing a correspon-
dence between the rules of a rule-
based expert system (Noble 1987,
Plant and Stone 1991) and the transi-
tion rules of a state-and-transition
model. We use the QTIP (Qualitative
Temporal Inference Program) expert
system (Plant 1997) to encode the
model’s transition rules. The QTIP
incorporates qualitative (i.e., non-
numerical) simulation based on con-
cepts originally developed for
mechanical and electrical systems (de
Kleer and Brown 1984, Kuipers 1986,
Whitehead and Roach 1990). The
most important aspect of qualitative
simulation is that the variables take on
ordinal rather than rational or interval
values (Stevens 1946). The QTIP was
originally developed for the qualita-
tive modeling of crop production sys-
tems (Plant and Loomis 1991). The
important feature of the program for
application to state-and-transition
modeling is that it combines an expert
system with dynamic simulation of
system behavior. The QTIP uses an
event-based simulation (Langran
1992), which means that the time vari-
able jumps in chronological sequence
from one event to the next rather than
changing in fixed steps. The state-and-
transition model is linked with a GIS
through an algorithm that alternates
between spatial steps and dynamic
steps. The spatial model is laid out as
a grid of square cells in a raster-based
GIS. Spatial steps are carried out in
the Idrisi GIS (The Idrisi Project,
Clark University, Worcester, Mass.).
The specific GIS software is not criti-
cal, however. We used Idrisi because it
is a simple raster-based system that
functions very well and because a
large data set of Idrisi files has been
assembled for the study site. At each
time step, for each cell the program
calls on the GIS to determine the spa-
tial relationships between that cell and
the rest of the cells in the model (e.g.,
proximity to the nearest cell with a
high level of shrubs). Following this
GIS spatial analysis, the program uses
the QTIP dynamic simulation to

process state-transition rules, generat-
ing a prediction of the state of the cell
at a later time. This process is repeated
for every raster cell at each time step.

We demonstrate the algorithm by
applying it to an existing state-and-
transition model of the hardwood
rangelands of the western foothills of
the Sierra Nevada in California. The
output of the model is compared with
hardwood vegetation dynamics at a
study site located at the University of
California Sierra Foothill Research
and Extension Center (SFREC) (lati-
tude 39˚16'N, longitude 121˚16'W), at
elevation approximately 1,000 meters.
Soils are predominantly Auburn rocky
loam, which is a member of the
loamy, oxidic, thermic Ruptic-Lithic
Xerochrepts, and Sobrante very rocky
loam, which is a member of the fine-
loamy, mixed, thermic Mollic
Haploxeralfs. In this region the over-
story is dominated by blue oak
(Quercus douglasii H. and A.) in asso-
ciation with other oak species and
with foothill pine (Pinus sabiniana
Douglas). The understory includes a
number of native shrub species, e.g.,
ceanothus (Ceanothus spp.) and poi-
son oak (Toxicodendron diversilobum
(Torrey & A. Gray) E. Greene). The
groundcover, which formerly was
dominated by native perennial bunch-
grasses, now consists primarily of
introduced Mediterranean annual
grasses (e.g., wild oat, Avena fatua L.,
soft chess, Bromus mollis L.) and
forbs (e.g., filaree, Erodium spp.). The
region’s climate is Mediterranean,
with hot, dry summers and cool, wet
winters but with little frost. 

The purpose of this paper is to pre-
sent the methodology rather than to
develop a detailed simulation of a par-
ticular site or sites. We therefore use a
model made by combining 2 existing
state-and-transition models that have
been independently constructed for
hardwood rangelands in this region
(George et al. 1992, Huntsinger and
Bartolome 1992). These models are
similar in their classification of states.
The model of George et al. (1992) con-
tains more detail in its description of
groundcover and that of Huntsinger
and Bartolome contains a more detailed
description of the oak/shrub understory

states. To test the model, we compare
its output with a data set drawn from a
sequence of 5 black-and-white aerial
photographs taken between 1952 and
1993 of the study site. 

The simulation methodology is pre-
sented in 2 stages. The first stage
describes the dynamic component of
the model. This involves the develop-
ment of the state-and-transition model
and the translation of its transition
rules into a knowledge base for the
qualitative simulation model. The sec-
ond stage presents the spatial compo-
nent of the model. This involves link-
ing the transition rules of the QTIP
knowledge base with the analysis
modules of the Idrisi GIS.

The Dynamic Component
The qualitative simulation model is

based on the principle that each of the
model variables takes on categorical
values that may be either ordinal or
nominal (Stevens 1946). Ordinal val-
ues have an ordered relationship (e.g.,
high, moderate, and low). Nominal
values have no such ordering (e.g.,
sandy, rocky, and loamy). The method
replaces traditional dynamic equations
with expert system rules phrased so
that the direction of cause and effect
parallels the direction of inference in
the rule (Plant 1997). For example, if
a moderate or high fire causes ground-
cover to be low due to burning then
this would be phrased as

If fire_level ≥ moderate
Then groundcover = low.

Each step of the dynamic simulation
process involves testing all the rules
and implementing any that apply. This
process is repeated cyclically until no
new conclusions can be drawn (this is
called forward chaining, cf. Plant and
Stone 1991). For example, if the rule
base contained a second rule stating

If groundcover = low
Then seed_production = low

and if input data included a value of
moderate for fire_level, then the for-
ward chaining process would first use
the first rule to generate the value low
for groundcover and then use the sec-
ond rule to generate the value low for
seed_production. Dynamics are intro-
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duced into the model by incorporating
the capability to alter values at a later
time as described below. 

Figure 1 shows the hardwood range-
land state-and-transition model with
the catalog of transitions, expressed in
the descriptive form proposed by
Westoby et al. (1989). The transition
descriptions have been slightly simpli-
fied from the original papers of
George et al. (1992) and Huntsinger
and Bartolome (1992) to facilitate
translation into computer form. The
model emphasizes the dynamics of the
long-lived shrub and tree life forms
that dominate these ecosystems. 

The first step in converting this
state-and-transition model into a quali-
tative simulation model is to establish
the variables and their range of values.
Table 1 lists the full set of variables in
the model. The variables characteriz-
ing the vegetation are: (1) groundcov-
er, the level of cover of the herba-
ceous groundcover, (2) shrubs, the
understory shrub cover level, (3)
saplings, the cover of immature trees,
(4) overstory, the cover of mature
trees, and (5) litter_level, characteriz-
ing the amount of herbaceous material
left at the end of the growing season.
There are 4 variables characterizing
the 4 external inputs simulated in the
model: fire_level, grazing_level, her-
bicide_applied, and tree_cutting.
Finally, there are 2 fixed-value para-
meters, soil_texture and soil_depth.

Each of the variables describing
vegetation may take on 1 of the values
high, moderate, or low. The 3 vari-
ables groundcover, shrubs, and over-
story play a special role in the qualita-
tive model since they determine the
location’s state in the state-and-transi-
tion model. There are 8 possible com-
binations of high and low values
among the 3 vegetation types.
However, only 4 of these are possible
in a real state since groundcover and

shrubs are assumed to be mutually
exclusive so that they cannot both
remain high or low in the same cell.
(A location that consisted of bare rock
could have both values low at the
same time in a stable state, but such a
location would not take on any other
values and so may be ignored in this
discussion). Each of the 4 possible
combinations of values is interpreted
as one of the states in the state-and-

transition model as shown in Table 2.
The values of litter_level, herb-
icide_applied, tree_cutting, grazi-
ng_level, and soil_depth are also
high, moderate, or low. The variable
soil_texture may be either rocky_loam
or very_rocky, reflecting the 2 soil tex-
tures found at the test site. The vari-
able fire_level may take on 1 of the 4
values none, grass_fire, shrub_fire,
and crown_fire.

The full QTIP knowledge base inter-
preting the state-and-transition model
is available at the world wide web
given at the end of the paper. The
model is written in the QTIP knowl-
edge base syntax, which is based on
the computer language LISP (Winston
and Horn 1981). A complete descrip-
tion of this syntax is given by Plant

Transition 1 (Grassland to oak/pine - grassland). This transition is sufficiently rare that it is not
included in the catalog of Huntsinger and Bartolome (1992). Protection from grazing and fire
facilitates overstory regrowth in situations where such regrowth is possible. Foothill pine estab-
lishes an overstory in about 20 years. Oak overstory, if it is established at all, takes about 50 years
to mature. Herbaceous understory remains present. Overstory establishment is inhibited by dense
litter mat that prevents seed contact with soil, and by shallow or infertile soil.

Transition 2. (Oak/pine-grassland to grassland). Drought, crown fire, herbicide application, or
cutting remove overstory trees and leave herbaceous groundcover.

Transition 3 (Grassland to shrub). Protection from grazing and fire facilitates shrub invasion
where conditions favor such invasion. Shrub establishment is favored by rocky soil, even in the
presence of grazing. Therefore, this transition often takes place in regions that were previously
dominated by shrubs but underwent transition to grassland (Transitions 4, 5, or 7). Shrubs become
dominant in 10 to 20 years. Herbaceous understory declines as shrub cover increases. 

Transition 4 (Shrub to grassland). Wildfire or controlled burning remove shrubs and groundcov-
er. Groundcover is re-established in the succeeding year from residual and dispersed seed.

Transition 5 (Oak/pine - shrub to grassland). Drought or crown fire remove both trees and
shrubs. Herbicide application or cutting remove overstory trees and, in combination with lower
intensity fire, lead to establishment of herbaceous groundcover.

Transition 6 (Oak/pine - grassland to oak/pine - shrub). This transition occurs over a span of
decades, if at all. Protection from fire and grazing facilitates this transition in areas where it is pos-
sible. As with Transition 3, this transition often takes place in regions where the understory was
previously dominated by shrubs but underwent transition to grassland.

Transition 7. (Oak/pine -shrub to oak/pine - grassland). Shrub fire removes shrub understory
and may kill pines. Herbaceous groundcover established in succeeding year from residual and dis-
persed seed.

Transition 8. (Oak/pine - shrub to shrub). Herbicide application or cutting removes trees. If
shrub understory is left intact it will remain stable.

Fig. 1. State-and-transition description of vegetation dynamics of blue oak woodland in the
western foothills of the Sierra Nev., based on a synthesis of existing state-and-transition
models of George et al. (1992) and Huntsinger and Bartolome (1992).

Table 1. List of parameters and variables used in the state-and-transition model for hardwood
rangeland.

Vegetation layers External inputs Fixed parameters

overstory fire_level soil_depth
saplings grazing_level soil_texture
shrubs herbicide_applied
groundcover tree_cutting
litter_level
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(1997), but the rules are self-explana-
tory. Each rule is numbered according
to the transition it interprets. For
example, rule T3&6.4 (i.e., the fourth
rule used in transitions 3 and 6) has
the following form:

(Rule T3&6.4 
if(soil_type/=very_rocky) 

shrubs = low) 
(grazing_level=low)
(litter_level)=low)
(dist_shrubs=low)

then (predict shrubs moderate plus
time 5 prob 0.2))

Transitions 3 and 6 involve shrub
invasion. The transition rule states that
if the soil texture is not very rocky,
and if the current grazing level is low
but the litter level is also low (as
would occur, for example, after a
grass fire), and if the current shrub
level is low but there are shrubs near-
by, then there is a 20% chance that a
moderate level of shrubs will be pre-
sent on the site in 5 years. The value
of 20% was determined by our own
experience and observations from his-
torical aerial photos at the SFREC.
Other rules in the knowledge have a
similar structure. Each rule is a state-
ment of cause and effect in the sense
that if the parameters have the values
indicated in the “if” part of the rule,
then this will cause the effect shown
in the “then” part of the rule. The
probabilistic component of the rule is
implemented by selecting a random
number on the interval 0 to 1. If the
number is between 0 and 0.2, the tran-
sition is implemented, otherwise not.

A single time step of the model con-
sists of successively running through
the rules as described above. If the test
of the “if” part of a rule is passed, the
“then” part is implemented. If the
implementation involves an event that
occurs at a later time, as is the case
with Rule T3&6.4 above, then this

transition is placed in a chronological-
ly ordered “event queue.” All the rules
in the knowledge base are cyclically
tested until no new transitions are gen-
erated. At this point the time step is
complete for that raster cell. If any
events have been placed in the event
queue, after all raster cells are
processed the system updates its time
to the value of the next occurring event
and the transition is implemented. The
spatial portion of the algorithm is car-
ried out, and the process is then repeat-
ed with the new parameter values. 

The Spatial Component
The spatial component of the simu-

lation process links the state-and-tran-
sition model of the previous section to
the geographic information system.
Parameter and variable values for the
model are stored in GIS layers (these
are Idrisi files, called image files in
Idrisi terminology), with 1 layer for
each parameter or variable. Each
image file contains data for the grid of
cells that represents the site. Each cell
in an image file contains a single num-
ber that represents the value in that
cell of the quantity represented by the
GIS layer. The raster cells in the hard-
wood rangeland model are squares
representing a land surface 35 m on a
side. This size was selected because it
is small enough to characterize rela-
tively uniform areas but large enough
that a single cell will contain more
than 1 tree.

At each time step the QTIP program
proceeds on a cell-by-cell basis. For
each cell it first reads from the Idrisi
image files the values of all the model
variables in that cell. It then runs a
single dynamic step of the simulation
for the cell. During this step, any time
a transition rule is invoked to predict a
future event, QTIP creates new Idrisi
image files to store that event. After
the time step has been carried out for

all of the cells, QTIP calls Idrisi to
perform GIS operations such as dis-
tance and area calculations using the
newly-written image files.

In the present hardwood rangeland
model there is only 1 spatial calcula-
tion. This involves the spread of
shrubs. At the spatial and temporal
scale of the model, shrubs are
assumed to spread more rapidly to
contiguous regions so that the proba-
bility that a site with herbaceous
groundcover will be invaded by
shrubs is increased if there are shrubs
at a nearby site. This is reflected in
Rule T3&6.4, given as an example in
the previous section, in which the
variable dist_shrubs must have the
value low for the rule to be triggered.
This variable represents the distance
from the cell to the nearest cell in
which the variable shrubs has the
value high. Idrisi computes values of
the variable dist_shrubs for each cell
during the spatial part of the simula-
tion algorithm. This is accomplished
in a 3 step process. First, a layer is
constructed in which each cell is
assigned a value 0 or 1 depending on
whether the variable shrubs has the
value high in that cell. Next, the Idrisi
Distance module is used to compute
the distance of each cell from the
nearest high-shrub cell. Finally, these
distances are reclassified as low if
they have a value of 175 m or less.

Idrisi image files are also used to
characterize external inputs to the sys-
tem. Disturbances (e.g., fire, tree cut-
ting, herbicide application, and
changes in the grazing regime) are
defined in image files and read by
QTIP during the spatial part of the
algorithm. Each disturbance is treated
as an event and placed in the “event
queue.” Conditions after the distur-
bance are re-evaluated during the
dynamic time step, and a forecast con-
sistent with these new conditions is
generated. If a change in value takes
place in any cell, then all changes of
value of that variable in that cell pre-
dicted at a later time are eliminated
from the event queue. For example, if
the event queue contains a transition
of the shrub variable to moderate in
5 years and a fire takes place in the
meantime reducing shrubs to low in

Table 2. Correspondence between values of variables in the model and states of the state-and-
transition model for hardwood rangelands.

State groundcover shrubs overstory

I.   Grassland high low low
II.   Shrubs low high low
III.  Oak/pine- grassland high low high
IV.  Oak/pine- Shrubs low high high
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that cell, then the shrub transition to
moderate in that cell is removed from
the queue of future events.

Comparison of model output with
study site

The model was tested by comparing
its simulation results with the vegeta-
tion dynamics in a 49 ha site on the
Koch tract of the SFREC. The site is a
square, 700 m on a side. Black and
white aerial photographs including the
site taken in 1952, 1972, 1984, 1989,
and 1993 were obtained from the
National Archives, USDA, and the
WAC Corporation, Eugene, Ore. All
photos were taken in May, June, July,
or August. An orthophotograph of the
site taken in 1978 was obtained from
the US Geological Survey and was
used as the base map. The pho-
tographs were georegistered to the
base map using the Idrisi Resample
module with approximately 20 land-
marks in each photograph.

Figure 2 is a simple schematic map
of the site. The southeast corner,
denoted area 4 in Figure 2, is privately
owned. The remainder of the site was
incorporated into the SFREC in 1960.
The northeast portion, denoted area 2
in Figure 2, was surrounded by an
exclosure in 1972, and no domestic
animal grazing has occurred in this

area since that time although wild her-
bivores still have access. Area 1 in
Figure 2 has been continuously grazed
since the late nineteenth century
(McClaran 1986). Detailed grazing
records are not available, but the graz-
ing intensity on the SFREC has been
moderate (approximately 0.7
acres/AUM) for at least the last 20
years. Grazing intensity on the pri-
vately-owned area is generally heav-
ier. An area in the ungrazed region,
denoted area 3 in Figure 2, was
cleared of oak trees in 1964. Parts of
the grazed area of the SFREC have
been cleared more recently in 1988
and 1989. The southwest portion of
the site was part of an area in which
McClaran (1986) examined fire scars
in tree rings in order to establish the
dates at which fires had occurred.
McClaran concluded that the most
recent fire on the site occurred in
1944.

Locations at the site containing each
of the 4 vegetation states in the state-
and-transition model of Figure 1 were
identified and their position deter-
mined using a differentially corrected
GPS (Trimble Pro-XL, Trimble
Navigation, Sunnyvale, Calif.). The
locations recorded with the GPS were
identified in the most recent (1993)
aerial photograph and used to guide
photointerpretation. Each of the aerial

photographs was interpreted after
mounting the photograph on a light
table. Our conclusions regarding our
ability to accurately interpret black-
and-white photos matched those of
Davis et al. (1995). Different tree
species could not be distinguished at
all. Individual mature trees could easi-
ly be distinguished from shrubs, but
clusters of immature trees were diffi-
cult to distinguish from shrubs. In
general, mature trees appeared darker
than other vegetation. Shrub understo-
ry could not be reliably distinguished
from herbaceous understory.

Photointerpretation was partially
carried out using image processing
software Paint Shop Pro (JASC, Inc.,
Eden Prairie, Minn.) and Adobe
Photoshop (Adobe Systems, Mountain
View, Calif.). The georegistered aerial
photographs were subdivided into 400
square cells, each having a side length
of 35 m on the ground, corresponding
to the raster cells in the GIS model.
For each cell a histogram of the fre-
quency of darkness of the gray tones
was constructed. Amount of dark gray
in the cell was correlated to canopy
cover by comparing ground-based
observations with the 1993 photo.
Cover was classed as high, moderate,
or low based on the cover classes
defined by Pillsbury et al. (1991), with
their “scattered” and “low” categories
lumped together as low. Thus, 0–33%
cover was classed as low, 34–75%
cover was classed as moderate, and
76–100% cover was classed as high.
The cover classes in each cell of the
1952 photo were then estimated based
on their gray level.

The 1952 photograph did not appear
to contain many areas high in shrubs.
Therefore, shrub cover was assumed
to be generally low at the start of the
simulation except in 2 areas that
appear to have been high in shrubs.
Soil texture data was taken from the
library of Idrisi image files maintained
by the SFREC. The original files,
which had been digitized from SCS
soil survey maps, were resampled to
the model grid of 35 m on a side. Soil
depth was assumed to be moderate
except in those areas where rocky out-
croppings could be observed on the
ground.

Fig. 2. Schematic map of the study site used to illustrate the state-and-transition model. Site is
700 m on a side and is located at the University of California Sierra Foothills Research and
Extension Center. The site is divided into 4 areas based on grazing and clearing history.
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The simulation process consisted of
setting the model variables to values
consistent with those in the 1952
photo and running the model for a
simulated time of 41 years. Simulation
output was compared quantitatively
with the 1993 aerial photograph as
follows. The photograph was resam-
pled to the same 35 m grid as the
model, so that each raster cell in the
photo was assigned the gray scale
value at the center of the cell. These
values were then reclassified into 1 of
3 values, corresponding to high, mod-
erate, and low cover. A GIS layer was
then produced by subtracting the
model output from the resampled,
reclassified image. Cells in this resul-
tant layer could take on one of 5 val-
ues between –2 and 2. A value of –2,
for example, indicated that the photo

was low and the model output was
high. A value of 0 indicated no differ-
ence. The level of agreement of
between the model and the 1993 photo
was then indicated by the frequency
histogram of the resultant GIS layer.
The mean and standard deviation indi-
cate the level of bias and the accuracy
of the model, respectively. A mean
and standard deviation of zero would
indicate a perfect match of model out-
put to the data.

Results

The first row of Table 3 shows the
frequency histogram comparing the
initial model with the data. Figure 3
shows the resampled, reclassified
1993 aerial photo and the model out-

put of the variable overstory in year
1941. In all figures of model output,
the light shade of gray represents cells
in which overstory has the value low,
the medium shade represents the value
moderate, and the darkest shade of
gray represents the value high.

The initial simulation results indicat-
ed fairly good general agreement. One
subjectively substantial difference
between the model output and the real
data was that the site had several areas
where tree establishment remained
low over the entire simulation (these
areas are also clearly visible in an ear-
lier 1937 photo not used in this study
because of its poor quality). The
model had no provision to predict the
existence of these areas. There are a
number of possible reasons for the
existence of these treeless areas
including shallow soil, dense litter
mats from medusahead (Taeniatherum
asperum Nevskii) infestations, and
subtle differences in soil properties
such as acidity, water holding capaci-
ty, and drainage. In the absence of any
evidence favoring one particular cause
over another, we established a variable
called overstory_potential and gave it
the value low in those cells that did

Table 3. Frequency histograms of deviation of the simulation output from actual data. Histogram
values indicate difference between data and model, where high, moderate, and low are valued
at 2, 1, and 0 respectively. Mean and standard deviation respectively indicate level of bias and
accuracy of model. 

Difference -2 -1 0 1 2 Mean Std Dev

Original Model 0.105 0.0925 0.6675 0.0975 0.0375 -0.13 0.8631
Modified Model 0.0975 0.08 0.6625 0.1225 0.0375 -0.0775 0.8593

Fig. 3. (a) 1993 aerial photograph resampled to the same cell size as the model (35 m) and reclassified into categories of low (0–33% cover),
moderate (34–75% cover), and high (76–100% cover). (b) Model output in year 41, corresponding to 1993. In both images the lightest shade
corresponds to cover value of low, the medium shade corresponds to a cover value of moderate, and the darkest to shade corresponds to high.
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not exhibit increase in canopy cover
or sapling growth over the time span
of the simulation. Figure 4 shows a
representation of the overstory_poten-
tial layer used in the modified model.

Figure 5 shows the overstory com-
ponent of the simulation of the model
as finally constituted. Only in those
cells in which the value of
overstory_potential was low was there
any difference between the simulation
results with the original and the modi-
fied models. In the figure each aerial
photograph is matched with the corre-
sponding model output. In both the
simulation output and the data, the
general tendency of the site between
years 1952 and 1972 was for canopy
cover to increase. Cover remained
roughly constant between the years
1972 and 1993 except in areas that
were cleared. The second row of Table
3 shows the frequency histogram of

comparison between the model output
and the resampled, reclassified aerial
photo. There is little quantitative
improvement, although the modified
model does (since it is forced to) accu-
rately reflect the fact that some areas
on the site remain treeless. It is impor-
tant, however, to recognize that the
reference data set of Figure 3a,
although it is constructed according to
objective criteria, may itself be criti-
cized for its accuracy of representa-
tion.

Discussion and Conclusions

As shown in Figure 3 the simulation
results generally reflect the vegetation
dynamics observed on the test site as
interpreted through analysis of historic
aerial photographs. The vegetation
trends on the site fall within the pat-

tern of vegetation dynamics observed
by Davis et al. (1995). They found
that there has been little or no net
statewide gain or loss of canopy cover
in those areas of blue oak woodland
not subject to artificial vegetation loss
(e.g., through urban development or
clearing). They found that some areas
of blue oak woodland increased in
canopy cover and some declined. It
should be noted that on our study site
much of the increase in canopy cover
was due to the increase in size of
mature trees. There is little indication
of substantial growth of trees from
recently germinated acorns. 

The simulation results presented in
this paper are not a true validation test
of the model. This would require
replication of the comparison between
model and real site on a range of ran-
domly selected sites. The object of
this paper is not to present a properly
validated spatial state-and-transition
model but rather to demonstrate that
the methodology introduced in this
paper may be useful for developing
spatially explicit state-and-transition
models. This methodology consists of
interpreting the catalog of transitions
as a set of rules in the rule base of a
qualitative simulation model and of
linking this qualitative model to a GIS
by alternating between dynamic and
spatial updating of the model vari-
ables. The qualitative simulation
model is used to provide the dynamic
updating and the GIS is used to pro-
vide the spatial updating. 

Since vegetation communities are
highly stochastic, no simulation pro-
gram can predict with certainty the
future course of vegetation dynamics.
Markov and semi-Markov transition
models have been used to study vege-
tation dynamics in a probabilistic
sense (Callaway and Davis 1993,
Scanlan 1994, Scanlan and Archer
1991). The alternating spatial and tem-
poral step algorithm used in this paper
could be applied equally well to these
models to add an explicit spatial com-
ponent. Within the context of qualita-
tive models such as that discussed in
this paper, there are at least 2 ways to
incorporate uncertainty about the out-
come of the process. One is to include
an explicit uncertainty calculus in the

Fig. 4. Spatial distribution of the parameter tree_potential, introduced to induce the model
output to display areas that remain treeless for at least 56 years.
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program. This is common practice in
expert system design (Plant and Stone
1991, chapter 3). In the present appli-
cation the 2 most appropriate repre-
sentations of uncertainty are Bayesian
networks (Olson et al. 1990) and
fuzzy logic (DuBois and Prade 1980).
A second approach, which is taken in
the QTIP program described in this
paper, is to provide a framework for
Monte Carlo simulation (Rubinstein
1981). In this approach, the result of
an individual simulation is dependent
on the value of 1 or more random vari-
ables. The simulation is run repeated-
ly, generating values of these random
variables each time, and statistics are
collected describing the distribution of
the simulation results.

The methodology of qualitative sim-
ulation may be compared to more
quantitative methods such as tradition-
al simulation models (Shugart 1984)
and individual-based models (Hum-
phries et al. 1996). The qualitative
simulation model has 2 primary
advantages in this use over numerical
population models. The first is that the
qualitative model fits more naturally
with the transition rules of the state-
and-transition model. These transition
rules are expressed in qualitative
rather than quantitative terms. The for-
ward-chaining algorithm of the
dynamic step, in which rules are suc-
cessively and repeatedly tested to
determine whether the conditions of
their “if” parts are satisfied, ensures
that all rules will be invoked when it is
appropriate to do so. Moreover, the
QTIP program, like all rule-based
expert systems, can provide a means
for explaining its transitions (e.g.,
Plant and Stone 1991). In QTIP, each
time a rule is invoked to change the
value of a variable, a record of that
transaction is added to a file. After a
simulation run, this file can be used to
assist in determining how the solution
was generated. 

The second advantage of qualitative
simulation is that, to use the terms of
Plant (1997), the qualitative model
trades precision for robustness. That
is, the solution of a qualitative model,
since it is expressed in terms of a few
discrete states rather than a continuum
of numerical values, lacks the preci-

Fig. 5a
1952

Fig. 5b
1952

Fig. 5c
1989

Fig. 5d
1993

Fig. 5. Orthographically registered aerial photographs of the study site, shown next to the
corresponding model output of the value of overstory. (a) Site in 1952, used as the initial
state in the model. (b) Site in 1972. (c) Site in 1989. (d) Site in 1993. The 1993 photograph
was used to calibrate the gray scale. In both images the lightest shade corresponds to cover
value of low, the medium shade corresponds to a cover value of moderate, and the darkest
shade corresponds to high.
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sion of a traditional numerical model.
However, because each state repre-
sents a range of numerical values, and
because the dynamics of the solution
are controlled by a model with an
inherently simpler structure, the quali-
tative model may be more robust than
the numerical one. Traditional numeri-
cal models have been useful for deriv-
ing general principles in community
ecology but have been less successful
in accurately predicting the dynamics
of particular ecological communities.
The qualitative simulation methodolo-
gy does have disadvantages. It cannot
provide precise numerical estimates of
observable quantities. Also, the rela-
tively coarse, categorical description
of states makes it difficult or impossi-
ble to describe some subtle processes
in vegetation dynamics. 

Qualitative simulation fits naturally
with the state-and-transition model as
a complement to GIS for spatial and
dynamic simulation. This is illustrated
by the ability of the simple model
demonstrated here to detect spatial
inconsistencies in the state-and-transi-
tion model such as the persistence of
treeless areas. Westoby et al. (1989)
emphasized that the primary use of the
state-and-transition model is as a man-
agement tool. Grice and Macleod
(1994) pointed out that most state-
and-transition models have been
descriptive with little or no explanato-
ry component. If such a model is to
contain an explanatory component, it
must also be spatially explicit if it is to
be truly useful as a management tool.
Although Bellamy and Brown (1994)
discussed the advantages of linkage
between a state-and-transition model
and a GIS, there have been few
attempts to actually implement such a
linkage. 

The application of a computer-
based, spatially explicit state-and-tran-
sition model depends on the spatial
scale of the model. The model
described in this paper is approximate-
ly at the scale of the individual pad-
dock. At this scale, the model dis-
cussed in this paper would be useful to
the individual ranch manager as a tool
for evaluating alternative vegetation
and animal management scenarios to
estimate their effect on oak growth or

regrowth. At a larger spatial scale,
such models would be useful to policy
makers as a means of estimating or
visualizing the effect of alternative
land use policies on vegetation
dynamics. A primary value in both the
small scale and the large-scale use is
the possibility of enabling the manag-
er to identify unintended conse-
quences of management decisions.

Software Availability

The qualitative simulation model
runs on any DOS-based computer
with a 486 or Pentium processor. The
source code is written in C and can be
compiled using any common C com-
piler. This source code as well as the
model itself is available on the
Internet at

http://agronomy.ucdavis.edu/plant.
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