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Abstract 

The abundance of woody plants on grasslands and savannas 
often is controlled by the availability of water and its location in 
soil. Water availability to plants is limited by precipitation, but 
the distribution of soil water and period over which it is available 
in these ecosystems are intluenced by the transpiration rates of 
grasses. We discuss implications of recent and projected increas- 
es iu atmospheric CO2 concentration for transpiration, soil water 
availability, and the balance of grasses and shrubs. Au increase 
in CO2 concentration often reduces potential transpiration/leaf 
area by reducing stomata1 conductance. On grasslands where 
effects of stomata1 closure on transpiration are not negated by an 
increase iu leaf temperature and leaf area, rising CO2 concentra- 
tion should slow the depletion of soil water by grasses and poten- 
tially favor shrubs and other species that might otherwise suc- 
cumb to water stress. Predicted effects of CO, are supported by 
results from COZ-enrichment studies in the field and are compat- 
ible with recent models of interactions between resource levels 
and vegetation pattern and structure. 

Key Words: Cd grasses, competition, rooting depth, stomata1 
conductance, transpiration 

The importance of water availability to the geographic distribu- 
tion of vegetation types (Whittaker 1975, Woodward 1987, 
Stephenson 1990) and their productivities is widely-recognized 
(Rosenzweig 1968, Webb et al. 1983, Sala et al. 1988). Soil water 
balance, thus, is a key component of current models to predict 
effects of climatic and atmospheric change on vegetation 
(Woodward 1993, Neilson and Marks 1994). On grasslands and 
savannas, where plant productivity is strongly coupled to precipi- 
tation (Webb et al. 1983, Sala et al. 1988, Pandey and Singh 
1992), water availability in space and time exerts a dominant cli- 
matic control on the balance between grasses and woody species. 
In his study of southern African savannas, Tinley (1982) conclud- 
ed that soil water availability was the most important factor con- 
trolling the relative abundances of grasses and trees or shrubs. 
Similar conclusions have been drawn in other tropical savannas 
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(Medina and Silva 1990) where most grasses possess the C, pho- 
tosynthetic pathway. Water balance, however, also affects 
shrub/grass ratios in temperate and subtropical regions where the 
two growth forms coexist (Williams et al. 1987). These and other 
studies (e.g., Neilson 1986, Sala et al. 1992) suggest that relative- 
ly small changes in water balance may cause relatively large 
changes in the structure of grassland ecosystems. 

Atmospheric CO, concentration has nearly doubled since the 
last Ice Age, 18,000 years ago (Delmas et al. 1980), and has 
increased from about 275 ppm (parts per million; Neftel et al. 
1985, Raynaud and Bamola 1985) to the present concentration 
near 355 ppm during the last 200 years. It may rise to twice the 
current level during the next century (Trabalka et al. 1986). 
Stomata1 conductance usually declines as atmospheric CO, con- 
centration rises (Morison 1987). On grasslands, a decline in stom- 
atal conductance that reduces transpiration rate will increase soil 
water availability during intervals between rainfall. Woody or 
other plants that were previously excluded by low water avail- 
ability may be favored as a result. 

We review effects of atmospheric CO, concentration on stom- 
atal conductance and processes at the leaf, canopy, and higher 
scales that regulate the effect of stomata1 closure on transpiration. 
We then discuss consequences of slower transpiration for soil 
water levels and the balance between grasses and shrubs on 
grasslands and savannas. Effects of climatic changes that may 
accompany rising CO, concentration on grassland vegetation are 
addressed elsewhere (Parton et al. 1994). Influences of fire, 
browsing, grazing, and edaphic factors, other than soil water, that 
affect woody abundance also are not reviewed (Belsky 1990, 
Archer 1994, Archer et al. 1995). C4 species dominate many 
warm temperate and tropical grasslands and savannas. We, there- 
fore, emphasize possible effects of CO2 on Cd-dominated ecosys- 
tems like rangelands of the central and southern Great Plains and 
southwestern U.S. Consequences of rising CO, for transpiration 
and soil water balance on t$dominated grasslands are briefly 
discussed. 

Interactions Between CO, Concentration and Transpiration 

One of the more consistent, though not universal, effects of an 
increase in atmospheric CO2 concentration is a decrease in leaf or 
stomatal conductance (Morison 1987, Field et al. 1995). Morison 
and Gifford (1984a) found that leaf conductance of 16, mostly 
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C,, agricultural and horticultural species declined a mean 36% 
when grown at double the present COz concentration. Few stud- 
ies report stomatal conductance or resistance of C, plants grown 
at different atmospheric CO, concentrations. In our review of the 
stomata1 responses of C4 plants to CO,, conductance was reduced 
an average 34% across 16 observations and 29% across 12 
species by an approximate doubling of the current CO, concen- 
tration (Table 1). Little is known of the stomata1 responses of 
plants grown at lower-than-current CO2 levels. Available evi- 
dence suggests, however, that stomatal conductance may be more 
sensitive to a given change in CO, over subambient than elevated 
concentrations (Fig. 1; Polley et al. 1996a). 

It is important to recognize that conductance is typically mea- 
sured on sunlit leaves near the tops of well-watered plants. 
Absolute differences in conductance between CO, treatments are 
usually reduced by water stress (Gifford and Morison 1985), low 
light levels such as those found within canopies (Knapp et al. 
1994), and high leaf-to-air vapor pressure deficits (Morison and 
Gifford 1983, Bunce 1993). 

A decrease in conductance tends to reduce transpiration and 
lessen the rate at which soil water is depleted in a given environ- 
ment. For these changes to occur, however, effects of stomata1 
closure on transpiration must not be offset by an increase in leaf 
area or leaf temperature, or by feedbacks between transpiration 
and evaporative demand of the atmosphere. 

Most C3 plants grow and accumulate leaf area faster when 
atmospheric CO* concentration is increased (Poorter 1993), part- 
ly because higher CO2 stimulates photosynthesis. This is particu- 
larly true when plants have adequate nutrition and are grown 
alone or in stands of low density (Bazzaz 1990). There are excep- 
tions (Morgan et al. 1994), but photosynthesis, growth, and leaf 
area of C4 plants are relatively unaffected by increases in CO2 
concentration when the soil is wet (Morison and Gifford 1984b, 
Curtis et al. 1989, 1990, Polley et al. 1994, Dippery et al. 1995, 
Polley et al. 1996a). Water conserved by closing stomates, how- 

ever, may allow plants at high CO, concentration to continue 
growth longer into drought (Gifford and Morison 1985, Owensby 
et al. 1993b, Samarakoon and Gifford 1995). Higher CO;? levels 
may also speed physiological recovery of some plants from 
drought (Knapp et al. 1993b). 

Leaf growth and area in both C3 and C4 plants may be limited 
by resources other than water or CO,. Low nitrogen availability 
frequently limits production on C, grasslands (Seastedt et al. 
1991). The growth response of C4-dominated tallgrass prairie to 
elevated CO, was limited by low nitrogen availability more dur- 
ing a dry year than during a relatively wet year (Owensby et al. 
1994). Production of ungrazed tallgrasses may also be limited by 
light (Knapp et al. 1993a). These limitations may partially be off- 
set if resource utilization efficiency rises as CO, concentration 
increases. Biomass production per unit of nitrogen increases as 
CO, concentration rises for both C, and C, species (Owensby et 
al. 1993a, Polley et al. 1994, Polley et al. 1995). Rising CO, 
increases the amount of carbon fixed per unit of absorbed light in 
C, (Long and Drake 1991), but not C, plants (Knapp et al. 
1993b). 

Other feedbacks may reduce effects of stomatal closure on tran- 
spiration. Leaf temperatures may increase when stomates close 
because less energy will be dissipated by transpiration (Morison 
and Gifford 1984a). The resulting increase in leaf-to-air vapor 
pressure gradient will lessen water savings from a decrease in 
conductance. Transpiration is also influenced by the temperature 
and humidity of air around and immediately above a plant 
canopy. When air in this canopy “boundary” layer does not mix 
with that higher in the atmosphere, its temperature and humidity 
become highly dependent on transpiration itself. Slower transpi- 
ration reduces humidity of the air in the boundary layer and 
increases the amount of energy that heats the air (Jarvis and 
McNaughton 1986, McNaughton and Jarvis 1991, de Bruin and 
Jacobs 1993). These changes, in turn, increase the evaporative 
demand of air and reduce water savings from stomatal closure. 
Stable boundary layers develop most frequently above well- 

Table 1. The percentage change in stomata1 conductance (gs) of well-watered Cd plants caused by an approximate doubling of the current 
CO, concentration. Stomata1 conductance was measured at or near the CO, level at which plants were grown. Conductance was reduced 
by a mean 34% across observations. CTC=closed-top chamber, OTCPopen-top chamber, GC=growth chamber. 

Species Growth CO, Growth Condition Change 
in g, Reference 

Andropogon gerardii 
Andropogon gerardii 
Andropogon gerardii 
Andropogon gerardii 
Andropogon gerardii 
Andropogon glomeratus 
Andropogon virginicus 
Amaranthus retroflexus + Setaria faberii 
Atriplex canescens 
Echinochloa crus-galli 
Eleusine indica 
Eragrostis orcuttiana 
Paspalum plicatulum 
Schizachyrium scoparium 
Sorghum bicolor 
Zea maw 

(mm) 
3371658 
354t716 
AmbieotQX Ambient 
Ambieotl2X Ambient 
tibieot/2X Ambient 
3501650 
3801650 
35onOO 
3601680 
3501675 
3501675 
3401680 
3401590 
3601680 
3301660 
34OtiI8 

CTC, Field 
CTC, Field 
OTC, Field 
OTC, Field 
OTC, Field 
Gc, Pot 
cc, Pot 
Gc, Pot 
GC, Pot 
Gc, Pot 
l-x, Pot 
tic, Pot 
Gc, Pot 
Gc, Pot 
CTC, Field 
OTC, Pot 

(%) 
-42 
-36 
-51 
-51 
-51 
+ll 
-13 
-55 
-20 

0 
0 

-71 
-37 
-58 
-12 
-51 

Kirkham et al. 1991 
Nie et al. 1992a 
Knapp et al. 1993b 
Knapp et al. 1994 
Ham et al. 1995 
Bowman and Strain 1987 
Wray aod Strain 1986 
Garbutt et al. 1990 
Polley et al. 1996a 
Potvio and Strain 1985 
Potvio aod Strain 1985 
Smith et al. 1987 
Gifford aod Morisoo 1985 
Polley et al. 1996a 
Chaudhuri et al. 1986 
Rogers et al. 1983 
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Fig. 1. Stomata1 conductance of sunlit leaf blades of the C4 grass 
Schizuchyrium scoparium (little bluestem) as a function of the CO2 
concentration at which plants were grown. (A) The line is a regres- 
sion through single measurements per plant with an infrared gas 
adyxer (PoUey et al. 1994). (B) Vertical bars denote 1 standard 
error of the mean of 18 daily averages of leaf (blade) conductance. 
Conductance was measured during a separate experiment on 5 
plants from each CO2 treatment. Note that the scale of the y-axis 
diiers in A and B. 

watered agricultural crops with plant canopy conductances in 
excess of 20 mm set” (McNaughton and Jarvis 1991). Canopy 
conductances are smaller, and stomatal control of transpiration is 
greater, in most grasslands and other extensively-managed vege- 
tation in arid and semi-arid regions (e.g., Valentini et al. 1995). 

Atmospheric CO, aad Evapotranspiration: Field Studies 

Extensive data are now available from CO2 enrichment studies 
on salt marsh in Maryland, USA (Drake 1992) and tallgrass 
prairie in Kansas, USA (Owensby et al. 1993b). These data can 
be used to evaluate impacts of elevated CO, on the water balance 
of C4-dominated ecosystems. Doubling CO2 caused little increase 
in leaf or canopy photosynthesis of C4 grasses in either ecosys- 
tem, except during or shortly following drought (Ziska et al. 
1990, Drake and Leadley 1991, Drake 1992, Kirkham et al. 1991, 
Nie et al. 1992a, 1992b, Knapp et al. 1993b), but reduced poten- 

tial water loss by halving stomata1 conductance (Kirkham et al. 
1991, Knapp et al. 1994). 

Water savings expected from the decline in conductance at ele- 
vated CO, concentration were partly offset in Kansas by higher 
leaf temperatures (Kirkham et al. 1991) and, in years with below 
normal precipitation, greater leaf area (Owensby et al. 1993b). In 
spite of these negative feedbacks on transpiration, water loss/soil 
surface area was significantly reduced by elevated CO2 in both 
salt marsh and tallgrass prairie. Evapotranspiration was reduced 
even during drought periods when C, growth was stimulated by 
CO*. Doubling CO2 concentration reduced evapotranspiration 
from C4 cord grass (Spartina pafens (Ait.) Muhl.) communities in 
salt marsh by 28% to 29% in each of 2 years (Drake 1992). 
Kirkham et al. (1991) calculated that during a l-month period in 
1989, doubling atmospheric CO, concentrations reduced evapo- 
transpiration 15% from Cd-dominated tallgrass prairie that was 
watered weekly to field capacity, and 7% when watered weekly 
to one-half of field capacity. Average rates of evapotranspiration 
per unit soil surface were reduced 18% under well-watered condi- 
tions and 8% when supplemental water was withheld the follow- 
ing year (Nie et al. 1992b). Similarly, daily evapotranspiration 
from tallgrass prairie near peak biomass was reduced 22% during 
a relatively wet year by doubling the current CO, concentration 
(Ham et al. 1995). As a result of the decline in evapotranspira- 
tion, soil water levels in tallgrass prairie were consistently higher 
at elevated CO2 concentration (Kirkham et al. 199 l), even during 
periods of relatively severe drought (Owensby et al. 1993b). 

Similar changes in soil water balance are possible in C,-domi- 
nated communities as CO, rises, if leaf growth is limited by 
nitrogen availability (Hatton et al. 1992, Polley et al. 1995), phe- 
nology, or other factors. Jackson et al. (1994) found that doubling 
the current CO* concentration on a C, grassland reduced stomatal 
conductance and transpiration of the dominant species, wild oat 
(Avenu barbata Brot.), by about 50%. The decline in water use 
per unit leaf area at elevated CO, was not offset by an increase in 
leaf area, and soil water content increased 34% by season’s end. 

Field estimates of the amount of water that might be saved on 
more arid grasslands as CO, rises are not available. Rates of 
water loss will almost certainly depend on the size, intensity, and 
temporal pattern of precipitation events. Generally, however, 
effects of CO2 concentration on soil water balance should be 
smaller in arid than in relatively mesic ecosystems (Table 2). 

Table 2. Predicted effects of rising atmospheric CO2 concentration 
on transpiration, soil water availability, and the balance of shrubs 
and grasses on arid and relatively mesic grasslands and savannas. 

Parameter Mesic Grassland Arid Grassland 

Transpiration/Leaf area Reduced Reduced 
Leaf Area Increased during Increased 

dry periods 

Total Transpiration 
Change in Soil 
Water Content 

Shallow 
Deep 

Shrub/Grass 
Ratio of 

Vegetation 

Reduced Small or no reduction 

Increased Little change 
Potentially Increased No change 

Increased (especially if 
most precipitation falls Little change? 
when plants are active) 
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Most precipitation events in arid and semi-arid environments are 
small and a high proportion of water from small rainfall events is 
lost to evaporation (Noy-Meir 1973, Sala et al. 1992). Rising CO, 
concentration consistently increases growth and leaf expansion of 
Cd grasses when water becomes limiting (Gifford and Morison 
1985, Owensby et al. 1993b). Transpiration rates of C, species, 
therefore, may also decline less, as CO, rises, in arid than in more 
mesic ecosystems. Whether the smaller absolute effect of CO, on 
soil water balance in arid than in more mesic ecosystems will 
prove important to vegetation dynamics remains to be deter- 
mined. 

Potential Consequences of Lower Evapotranspiration to 
the Species Composition of Grasslands and Savannas 

Grasses may prolong growth into periods without rainfall by 
reducing transpiration and effectively conserving soil water. 
There are at least 2 ways, however, in which water saved by 
grasses could benefit woody and other plants (Fig. 2). First, the 
water could be used by plants that share rooting space with grass- 
es. Seedlings of shrubs and other plants depend at least initially 
on water in the rooting zone of grasses (Williams and Hobbs 
1989, Harrington 1991, O’Connor 1995). Even large woody 
plants may compete directly with grasses for water and other 
resources (Carlson et al. 1990, Dugas and Mayeux 1991, Belsky 
1994, Le Roux et al. 1995, Monttia et al. 1995). Secondly, water 
conservation by grasses could increase deep percolation of subse- 
quent rainfall. Shrubs and other plants that root more deeply than 
grasses (Knoop and Walker 1985, Sala et al. 1989, Medina and 

Silva 1990, Brown and Archer 1990, Sala et al. 1992, Axmann 
and Knapp 1993, Bragg et al. 1993, Nizinski et al. 1994) would 
be favored as a result. The depth to which precipitation moves 
depends partially on soil water content (Hanks and Ashcroft 
1980). Deep percolation should increase, therefore, if the water 
content of upper soil layers remains higher for longer periods. 
Generally, this should occur more often in relatively-mesic than 
in arid grasslands. 

Water at depth is recharged on some grasslands largely by rain- 
fall during the dormant season of grasses (e.g., Cable 1969). In 
these ecosystems, changes in grass transpiration probably will not 
greatly affect growth of deeply-rooting shrubs. On many grass- 
lands and savannas, however, shrubs depend on deep percolation 
of water during the period that grasses are growing (Knoop and 
Walker 1985), and could benefit from a positive feedback of ris- 
ing CO, on soil water content. 

The importance of the vertical distribution of soil water to 
shrub/grass ratios on savannas is well-recognized and has been 
conceptualized in a “two-layer” model of shrub/grass competi- 
tion (Walter 1971, Walker et al. 1981, Walker and Noy-Meir 
1982). Shallowly-rooting grasses are assumed to have primary 
access to, and to be superior competitors for, water in upper soil 
layers. The more deeply-rooting shrubs primarily access water 
below the roots of most grasses. The model does not consider 
influences of fire, browsing or grazing, and edaphic factors, other 
than soil moisture and soil texture, that could influence 
shrub/grass ratios (Belsky 1990, Archer 1994). It is, however, 
supported by studies in tropical savannas (Knoop and Walker 
1985, Sala et al. 1989, Medina and Silva 1990), and is consistent 
with the observed influence of topography and drainage on 
wocdy cover (Tinley 1982, Coughenour and Ellis 1993). 
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Fig. 2. Schematic diagram showing major pathways of water flux for grasslands and savannas. Rising atmospheric CO, concentration is pre- 
dicted to reduce transpiration from shallowly-rooting grasses and other species, increase the duration of water in upper soil layers, and, in 
some ecosystems, increase percolation to soil layers occupied by deeply-rooting species like shrubs. 
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Results from a C02-enrichment study on tallgrass prairie in 
Kansas, USA are consistent with the prediction that some plants 
will benefit from changes in soil water balance at elevated C02. 
Although the mechanism has not been established, basal cover of 
forbs increased concurrently with soil water content following a 
doubling of the current CO, concentration (Owensby et al. 
1993b). In the absence of fire or browsing, woody plants would 
likewise be expected to increase in size and abundance by 
exploiting the greater availability of soil water. 

Woody ingress on grasslands may generate a series of positive 
feedbacks on ecosystem hydrology that reinforce the shift in 
growth form composition (Joffre and Rambal 1993). Grass pro- 
duction and transpiration often decline following woody inva- 
sion, resulting in higher soil water levels and, in some ecosytems, 
greater infiltration to soil depths where woody roots are concen- 
trated (Knoop and Walker 1985, Sala et al. 1989). Heavy grazing 
or other factors that reduce leaf area and transpiration of grasses 
may also increase soil water content. Alternatively, water may 
move through woody roots from deep, moist soil to surface layers 
where it can be used by grasses (Richards and Caldwell 1987, 
Dawson 1993). 

Summary and Conclusion 

Water availability exerts an important control on the composi- 
tion of vegetation on grasslands and savannas where evaporative 
demand often exceeds precipitation. Rising atmospheric CO, 
concentration increases plant production per unit of transpiration 
(Morison 1993, Polley et al. 1993), perhaps allowing plants to 
grow and reproduce on less water than was formerly required. 
These changes alone could alter species distributions and local 
abundances (Idso and Quinn 1983). On some grasslands and 
savannas, plant composition may also respond to indirect impacts 
of CO, on soil water balance. A C02-caused decrease in canopy 
transpiration rate should generally favor more mesophytic species 
by slowing soil water depletion and, in some ecosystems, may 
benefit more-deeply-rooting plants by increasing percolation. 
Effects of rising CO, on individual species, however, will remain 
difficult to predict. Species dynamics in any community depend 
on dispersal rates, seedling establishment, and other factors, 
including grazing and fire, that may vary independently of CO2 
concentration (Belsky 1990, Archer 1994, Archer et al. 1995, 
Polley et al. 1996b). 

Effects of CO2 concentration on soil water availability and veg- 

Rehrtrmsbipto-EcosystemsaIldOthel.HypothgesFlodels. etation dynamics in the future will also depend on accompanying 
changes in climate. Temperature+aused increases in evapotran- 

A progressive shift to taller plants as CO2 concentration and 
average levels of soil water increase is compatible with predic- 
tions from the vegetation models of Tilman (1988) and Smith and 
Huston (1989). In both of these models, vegetation change 
through time or over spatial resource gradients is driven by the 
relationship between soil resource (water and nitrogen) availabili- 
ty and potential plant height. As soil water availability increases, 
competition for light favors an increase in the mean height at 
which leaf area is displayed (Smith and Huston 1989). 

Vegetation dynamics on grasslands may, therefore, be increas- 
ingly driven by competition for light or other soil resources as 
soil water availability increases. Not all competitors of grasses 
will be favored. Perhaps only plants that can grow above the 
grass canopy, or that are competitive for the limited nitrogen on 
many grasslands, will benefit. Basal cover of Poa pratensis L. on 
tallgrass prairie declined at elevated COZ, apparently because the 
short-statured grass was shaded by taller species or was limited 
by low nitrogen availability (Owensby et al. 1993b). Fertility and 
other soil characteristics are important determinants of 
shrub/grass ratios on some grasslands and savannas (Walker 
1993). Saline or poorly-drained soils limit woody invasion 
(Belsky 1990), but soil fertility commonly determines the type 
(evergreen, sclerophyllous vs. deciduous, mesophyllous) of 
woody invader that is successful. 

Variation in soil water content across landscapes also influ- 
ences species composition on some grasslands and savannas 
(Coughenour and Ellis 1993, Walker 1993). Drainages, or sites 
that receive runon, may have a greater abundance of shrubs than 
adjacent areas. It is, of course, difficult to predict effects of rising 
CO, on the spatial distribution of water on grasslands with com- 
plex terrain. Hydrologic simulations for a forested catchment, 
however, indicated that elevating CO, altered the spatial distribu- 
tion of soil water by increasing the number of areas with moist 
soil (Hatton et al. 1992). 

spiration may offset predicted increases in precipitation in some 
regions (Neilson and Marks 1994) and reduce positive effects of 
higher CO, concentration on soil water balance. Given the sensi- 
tivity of species composition on grasslands to precipitation and 
soil water balance, interactions between climatic change and ris- 
ing CO2 concentration must be more clearly understood before 
we will be able to predict the future dynamics of vegetation in 
these ecosystems. 
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