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Abstract 

Managers and range scientists are interested in the response of 
such variables as forage production and animal performance to 
various environmental and management factors. Due to the inabil- 
ity to control many of the factors affecting range systems, produc- 
tion responses should include distributional information in addi- 
tion to their expected values. Recent developments in the estimation 
of conditional probability distribution functions provide the range 
scientist with a practical procedure to more fully characterize 
variable responses. The conditional probability distribution ap 
preach is applied to an analysis of forage production data from the 
literature. An illustration of the procedure in range decision analy- 
sis derives distributional information on animal performance and 
net return under several different steer stocking levels. 
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A continuing problem in range management is the gap between 
the data that are necessary versus those which are available for 
analyzing alternative management strategies. For example, func- 
tional relationships between weather and forage production and 
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the response of range vegetation to different treatments and graz- 
ing regimes are seldom known with certainty. 

Management decisions must incorporate this uncertainty to 
avoid the very real possibility of economic disaster resulting from 
unanticipated drought, insect infestations, animal disease, or any 
of the myriad of environmental factors that can affect the range 
livestock operation. Many researchers have included stochastic 
elements in the models. Vantassell et al. (1987) simulated calf 
weights as a function of alternative management and weather 
variables, generating deviations from expected weights as a func- 
tion of assumedly normally distributed residuals from their esti- 
mating regression equations. Riechers et al. (1989) ignored even 
this use of limited distributional information available from least 
squares techniques, and used expected values of forage standing 
crop resulting from varying precipitation levels. Rodriguez and 
Roath (1987) considered different levels of forage production in 
their dynamic programming analysis of short run grazing man- 
agement decisions. However, each individual production level was 
assumed to be equally likely to occur. It is unlikely that production 
levels actually are uniformly distributed over the assumed range of 
values. 

This paper presents a procedure to directly incorporate stochas- 
tic response functions for forage production conditional on annual 
precipitation. A particular level of precipitation results not in a 
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given quantity of forage growth, but rather yields a distribution of 
possible growth responses. For example, 25 cm of precipitation 
may yield forage growth of less than 125 kg ha-’ with a probability 
of 0.10, less than 150 kg with a probability of 0.25, and so on. An 
application of the procedure is used to derive conditional forage 
production estimates from data reported in Sneva and Hyder 
(1962). The paper concludes with a simple example of the use of the 
conditional probability density function approach in ranch manage- 
ment. 

The Conditional Distribution 

The conditional distribution approach derives estimates of the 
distribution of the dependent variable (e.g., forage production) for 
a given level of 1 or more conditioning variables (e.g., precipita- 
tion, previous utilization, site condition). Several conditional dis- 
tributions have been explored in the literature (Taylor 1984, 1990; 
Nelson and Preckell989; Moss et al. 1991). Taylor’s (1984) univar- 
iate approach is adopted here for determining the conditional 
distribution of range forage production under different precipita- 
tion levels. 

Taylor (1984) advocates the use of a conditional distribution 
function based on the hyperbolic tangent function. The hyperbolic 
tangent and its derivative, the square of the hyperbolic secant, bear 
close resemblance to a cumulative distribution function (cdf) and 
its related probability density function (pdf), respectively (Fig. 1). 
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Fig. 1. Values of the hyperbolic tangent and the square of the hyperbolic 
secant. 

The following transformation of the hyperbolic tangent function 
yields values between 0 and 1, and can be used an an empirical cdf 
relating foraging yield Y to annual precipitation amounts R: 

F(Y/R) = 0.5 + 0.5 tanh [P(Y,R)] (1) 
where F(Y/R) is the conditional cdf of yield for a given level of 
precipitation, P(Y,R) is a polynomial function of Y and R, and 

tanh is the hyperbolic tangent function, tanh u = (e” - e-“) 
(e” + em”) 

Equation [ 1] describes a flexible cumulative distribution function 
on Y for any given value of R. 

Taylor (1984) points out that in field studies, as opposed to 
controlled experiment station trials, a range of values for Y is not 
observed for each distinct value of R. Consequently, similar values 
of the conditioning variable(s) must be grouped and the mean of 
the group can be taken as the single observation Ri for the ith 
grouping. The ri observations Yij, j=l ,...,ri, associated with the 
values of precipitation included in group i are then sorted in 
ascending order and assigned cumulative distribution values Zij 
equal to j(l/ ri), where ri is the total number of Y values for (pooled) 
observations Ri. 

Given these values of Ri, Yij, and Zij, the following relationship is 
estimated using ordinary least squares (OLS) regression 

zij = P(Yij,Ri) + tij (3) 
The degree of the polynomial and the number of interaction terms 
between Y and Rare determined by the researcher to give the most 
parsimonious relationship among the variables given the size of the 
data set. 

Taylor (1984) also points out that, given experimental data, the 
OLS estimates of the coefficients in [2] will be biased. This bias 
results because a nonstochastic variable, z, enters the regression as 
the dependent variable, and the stochastic variables, P(Y,R), are 
treated as independent variables. The independent variables are 
therefore correlated with the error term erj, giving rise to the biased 
OLS coefficient estimates. The OLS estimates can, however, be 
used as starting values in maximum likelihood estimation proce- 
dures (Greene 1990) to derive the unbiased coefficients. 

The pdf of the conditional hyperbolic tangent distribution 
results from differentiation of [ 11, 

f(Y/R) q  0.5 P’(Yij,RJ sech*[P(Ya,Ri)] (3) 

where P’(Yij,Ri) is the partial derivative of the polynomial function 
P with respect to Y, evaluated at the point (Yij,Ri). The hyperbolic 
secant of u, or sech u, is defined as the hyperbolic tangent divided 
by the hyperbolic sine. Using the definition of tanh u from above, 
sech u q  tanh u*[2(e” - em”)]. 

The likelihood function can thus be formed for the independent 
and identically distributed observations i and r: 

L(p) = II II 0.5 P’(Yij,Ri) sech*[P(Yij,Ri)] (4) 
i=t j=l 

For estimation of the coefficient vector /3, it is more convenient 
to rewrite [4] in logarithmic form: 

n ri 
InL(j3) q  (n 2 ri) ln(0.5) + C C ln[P’(Yiij,Ri)] (5) 

i=l i:l j:l 

n ri 
2 C C ln(sech[P(Yij,Ri)]] 

i=r j=l 

Maximum likelihood procedures are available in most statistical 
software packages for the direct maximization of equation [5]. 

Sneva and Hyder (1962) report annual precipitation and forage 
production observations as percentages of normal for various 
range sites representative of the Intermountain West. Eighty-eight 
paired observations were used to estimate an empirical distribution 
of forage and precipitation using the procedures outlined above. 

The following polynomial function was determined to be best 
among the alternatives evaluated. Maximum likelihood parameter 
estimates and their associated t-statistics (in parentheses) are 
reported below: 

u = P(Y,R) q  -0.1563 + 0.059OY - (6.304E-5)Y* - 0.0509R (6) 
(-0.400) (12.089) (-6.460) (-9.928) 

Use of [6] results in pdf’s that are conditional upon precipitation 
levels R (Fig. 2). Conditional forage yields corresponding to differ- 
ent levels of the cdf can be derived by inverting [ 1] and solving for Y 
for different values of cr’, the desired cdf value: 

a! q  F(Y,R) = 0.5 + 0.5 tanh (P(Y,R)) (7) 
= 0.5 + 0.5 (e” - em”) 

( > 
(e” + e-4 

Solving [A for u yields: 

u = 0.5 (In(a) - ln( 1 -a)) O-4) 

Since u is quadratic, Y, expressed as percentage of average forage 
production, can be solved for any specified values of (Y and R: 
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Fig. 2. Values of the probability density function for forage production for 
precipitation levels equal to 50,100, and 150% of normal calculated from 
substituting equation [6] in equation 91. 

y = -b f J b* - 4ac 
(9) 

2a 

where Y will be the 2 roots of the quadratic expression and, from 
the polynomial in [6], a = 6.304E-4, bz0.0590, and c=(-O.l563 - 
O.S(ln(cu)-ln( I-(u))-O.O509R). No difficulty was encountered in 
choosing the “more reasonable” of the 2 roots of this quadratic 
function in the empirical application. 

The value of the conditional pdf approach increases when obser- 
vations corresponding to a given level of the conditioning variable 
are not normally distributed. The hyperbolic tangent function, or 
any of the other distributional forms that have been used, preserves 
nonnormalities that are likely to arise in field research. Direct 
estimation of the mean and of higher moments of the forage 
production conditional upon precipitation levels can be obtained 
by performing the following integrations: 

E(Y) q  /z Y f(Y/R) dY, and (10) 
plr =b (Y-E(Y))’ f(Y/R)dY (11) 

where E(Y) is the expected level of forage production given R and 
c(k is the kth central moment of the distribution of Y. Solutions to 
[lo] and [ 111 can be obtained by use of numerical integration 
procedures. 

A Ranch Decision Making Application 
A relatively simple decision problem, and one that is commonly 

faced by ranchers of the Intermountain West, concerns the choice 
of purchasing short yearlings in the spring, grazing them through 
the season, and selling them as feeder cattle in the fall. One source 
of uncertainty confounding the decision is the amount of forage 
production that will be available and subsequent animal weight 
gains. Variation in expected forage production, as well as the shape 
of the cumulative distribution of forage availability, introduces a 
considerable amount of uncertainty into the likely net returns 
resulting from the stocker decision. Additional uncertainty sur- 
rounds rates of gain and animal forage intake, but this simple 
example will abstract from these other sources of risk. The distri- 
butional information relating precipitation and forage production 
obtained from evaluation of Sneva and Hyder’s data can provide 
some of the quantitative information useful in analyzing the 
stocker decision. 

It is assumed in this application of the distributional model that 
the rancher has 810 ha of improved range available to be grazed. 
Forage production in an average year is assumed to be 150 kg ha-’ 
of consumable forage. Production varies, however, depending 
upon precipitation totals. 

The rancher is assumed to choose the optimal number of days to 

grazing to maximize expected net return from the venture, evalu- 
ated over all possible states of nature. A state of nature in this 
example is defined as a particular outcome of the random variable, 
annual precipitation. Returns in this example are equal to the 
ending weight of the animal times the futures price reported in 
February, 1992 for October delivery, minus the initial purchase 
price of the steer. Ending weight is dependent on the number of 
days of grazing available which, in turn, is dependent on state of 
nature, or annual precipitation. Gain is approximated by a 
decreasing linear function of time on the range. Daily gain is 
assumed to be 1.36 kg day-’ initially, falling to 0.454 kg day-’ at the 
end of 5 months. Ending weight is thus a concave quadratic func- 
tion of days of grazing. 

The number of days of grazing available under each precipita- 
tion state of nature depends upon the total available forage, 
divided by daily consumption by the animals. Daily forage con- 
sumption is assumed to equal 2.5% of animal weight. The final 
functional constraint limits the number of steers by the total quan- 
tity of available forage under the most restrictive precipitation 
state of nature. 

The example problem can be expressed: 

30 
Maximize 2 Oj S(pfWj-paw,) (12) 

j=l 

subject to Wj - &Dj 5 W, for all j 
D._afj<O I for all j 

cs for all j 
c&S I afj for all j 

Parameter and variable definitions are presented in Table 1. 

Table 1. Parameter and variable definitions for the example problem. 

Variables Parameters 

Wj - Ending weight under j 0j - probability of precipitation state 
Dj - Number of days of use under j of nature j (=I / 30 

gj - daily gain (kg) of steer on S - Number of steers to purchase 
improved range (gj = pr - Future sale price (October feeder 
(1.36-0.0059 I&)) cattle futures price quoted for 

2 week of 2/ IS/92 

Cj _ daily forage consumption 
(2.5% of average animal 
weight over the season, 
or Ci = 

0.025* (m) 
2 

p0 - California price of 450 lb (204 kg) 
steer quoted on 2/ 15/92 

W, - Beginning weight (204 kg) _. 
a - hectares of range (810 ha) 
fj - conditional forage supply under j 

Precipitation levels were derived from annual data at Elko, Nev., 
for the period January 1930 through December 1984. Analysis of 
the sample autocorrelation and partial autocorrelation functions 
found no significant year to year correlation structure in the series. 
Consequently, precipitation levels could be generated assuming 
independence between years. 

Goodness of fit tests failed to reject the hypothesis that the 
annual data fit the gamma distribution. Maximum likelihood 
estimators were calculated for the distribution’s 2 parameters (cy = 
11.28 and p q  0.86). Annual precipitation was generated using the 
random number generating routine for the gamma distribution 
(GGAMR) from the International Mathematical and Statistical 
Libraries’ (IMSL) computer collection of statistical subroutines. 

Thirty precipitation levels were randomly generated. Days of 
grazing, ending weights, and enterprise net returns were calculated 
for stocking levels of 300,325, and 350 steers. Ten model solutions 
were obtained for each of the 3 stocking levels corresponding to (Y 
values of 0.10 through 1 .OO, in increasing increments of 0.10. The 
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lower values of o would represent a more conservative estimate of 
forage production for a given level of precipitation. For example, 
forage production corresponding to an a value equal to 0.20 would 
mean that there was an 80% probability that production would 
exceed this value. 

Table 2. Mean ending weight of individual steers and days of grazing for 
300,325, and 350 steers under increasing values of o. 

bility 

!? 
0:2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 
1.0 

Ending weight Grazing Period 
300 325 350 300 325 350 

316 311 306 
319 314 309 
321 316 311 
323 318 313 
325 319 315 
326 321 316 
327 322 318 
329 324 319 
332 328 323 

116 108 101 
119 111 104 
122 114 106 
124 116 109 
127 118 111 
129 120 113 
132 123 115 
138 129 120 

A similar interpretation can be applied to the results reported in 
Table 2. For example, using the 0.20 value of (Y again, there is an 
80% probability that ending weights will exceed 316 kg when 300 
steers are purchased, 311 kg when 325 steers are purchased, and 
306 kg when 350 steers are purchased. Identical quantities of forage 
are available for the common cr value, but the lower stocking level 
allows a greater number of days of grazing, with the subsequent 
gain in animal weight. 

Net returns are sensitive to (Y as well (Fig. 3). If the rancher is 

A simple stocker problem was used to illustrate the usefulness of 
the procedure in providing distributional information resulting 
from alternative management decisions. The procedures can, how- 
ever, be equally valuable for hypothesis testing based on examina- 
tion of the estimated conditional probability functions of the 
dependent variables resulting from different levels of the environ- 
mental and management conditioning variables. 

This application abstracts from the complex interaction of many 
random variables that affect animal production in an extensive 
range operation. It is no easy matter to introduce multivariate 
distributions when 2 or more of the important variables are ran- 
dom and are correlated. Ad hoc procedures have been proposed 
(Condra and Richardson 1978). More recently, Moss et al. (1991) 
proposed a more rigorous procedure to impose multivariate distri- 
butions in agricultural simulation models. However, since the 
purpose of this paper is to present estimation procedures for condi- 
tional probability density functions, some accuracy in the example 
is foregone to emphasize both the procedures and the potential 
gains from using conditional distributions in range studies. 
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intervals impose normality on the regression error terms, often 
incorrectly. 

Recent work in the simulation of agricultural systems has con- 
centrated on directly estimating cumulative probability distribu- 
tions for dependent variables, conditional upon 1 or more levels of 
variables assumed to be important in affecting the shape of the 
distribution functions. This paper has described the use of one such 
distribution, the hyperbolic tangent function, in providing distri- 
butional information on forage yields conditional on annual pre- 
cipitation levels. The hyperbolic tangent function is particularly 
useful for determining expected values of the dependent variables, 
yielding values similar to regression fitted values. In addition, the 
function allows numerical integration techniques to be applied for 
determining second, third, and higher order moments of the 
distribution. 


