Clipping frequency and intensity effects on big bluestem yield, quality, and persistence

J.R. FORWOOD AND M.M. MAGAI

Abstract

This study was initiated to determine the effects of defoliation frequency (based on amount of growth present), intensity, and length of grazing season on quantity and quality of big bluestem (Andropogon gerardi Vitman) in the Southern corn belt and to provide further data regarding the reasons for rapid quality decline of warm-season grasses. Three clipping frequencies (when plants reached heights of 30, 41, or 51 cm) at 2 intensities (stubble heights of 10 and 20 cm) were imposed on established plots of pure big bluestem (cv. Kaw). Harvest season length was studied by terminating clipping on 15 August and 15 September as 2 separate treatments. Two years of data indicated that big bluestem regrows insufficiently after 15 August to warrant additional harvests under the imposed managements. Prolonged regrowth and leaving a short stubble of 10 cm resulted in greatest yield. Short stubble led to greater reductions in nonstructural carbohydrates, but did not damage the stand compared to pre-study measurements. Nonstructural carbohydrate levels and stand composition improved with taller stubble. In vitro dry matter digestibility and crude protein were higher on treatments clipped to leave a 10-cm stubble. The greatest proportion of leaves resulted from treatments where a 20-cm stubble remained. These results agree with studies indicating that leaf maturity is more responsible for lower quality forage than is the amount of stem material present in the stand. Our results indicate heavy use can be more safely accomplished in the Southern corn belt than for areas to the west because big bluestem can be more intensively defoliated in the Southern corn belt (10-cm) than that recommended for other areas (20 to 40 cm).

Key Words: In vitro dry matter digestibility, Andropogon gerardi Vit, defoliation intensity, grazing season, warm-season grasses, forage quality, harvest regimes

Warm-season (C₄) grasses such as switchgrass (Panicum virgatum L.), Caucasian bluestem [Bothriochloa caucasia (Trin.) C.E. Hubbard], and big bluestem (Andropogon gerardi Vitman) have been shown to provide summer forage in complementary grazing systems with cool-season species. Conrad and Clanton (1963), Roundtree et al. (1974), and Krueger et al. (1974) have reported increased summer steer gains; 2 to 3 times greater carrying capacity over tall fescue (Festuca arundinacea Schreb.) during summers; and 83% increased beef gains in Nebraska, Missouri, and South Dakota, respectively.

A major disadvantage of warm-season grasses is their apparent low quality compared to cool-season grasses, especially at advanced stages of growth. Consequently, the timing, intensity, and redefoliation of these grasses is extremely important not only to quality but to persistence as well.

Major factors shown in the seasonal decline of forage quality include a decrease in leaf:stem and an increasing proportion of dead leaves in the sward (Beaty et al. 1968). Perry and Balten-
Table 1. Treatment initial cutting height (30, 41, or 51 cm frequencies) and stubble height (intensities—10 or 20 cm), cutting dates and total number of cuts for big bluestem during 1985 and 1986.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>1985 Cutting dates</th>
<th>Total cuts</th>
<th>1986 Cutting dates</th>
<th>Total cuts</th>
</tr>
</thead>
<tbody>
<tr>
<td>cm/cm</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30/10</td>
<td>5/9, 3/28, 6/18,</td>
<td>7</td>
<td>5/14, 0/2, 6/16,</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7/2, 7/24, 8/21,</td>
<td></td>
<td>7/2, 7/21, 8/19,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30/20</td>
<td>5/9, 5/17, 5/28,</td>
<td>11</td>
<td>5/14, 5/27, 6/2,</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>6/10, 6/21, 6/28,</td>
<td></td>
<td>6/11, 6/19, 6/30,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7/8, 7/18, 7/26,</td>
<td></td>
<td>7/10, 7/21, 7/31,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/21, 9/13</td>
<td></td>
<td>8/14</td>
<td></td>
</tr>
<tr>
<td>41/10</td>
<td>5/15, 6/10, 7/2,</td>
<td>5</td>
<td>5/22, 6/9, 6/24,</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>7/28, 9/6</td>
<td></td>
<td>7/16, 8/11</td>
<td></td>
</tr>
<tr>
<td>41/20</td>
<td>5/15, 5/31, 6/10,</td>
<td>7</td>
<td>5/14, 5/27, 6/9,</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>6/25, 7/8, 7/24,</td>
<td></td>
<td>6/19, 6/30, 7/16,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8/21</td>
<td></td>
<td>7/29, 8/19</td>
<td></td>
</tr>
<tr>
<td>51/10</td>
<td>5/20, 6/18, 7/18,</td>
<td>4</td>
<td>5/22, 6/11, 7/2,</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>9/6</td>
<td></td>
<td>7/16</td>
<td></td>
</tr>
<tr>
<td>51/20</td>
<td>5/20, 6/10, 7/8,</td>
<td>5</td>
<td>5/22, 6/2, 6/16,</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>7/28, 8/21</td>
<td></td>
<td>6/30, 7/16, 7/31,</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9/19</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Field Data Collection

At each harvest date, a 0.5 kg sample was hand-clipped randomly from each plot at treatment heights and separated into leaf blade and stem plus sheath portions to evaluate leaf and stem percentage for various treatments and for forage quality determination. Leaves were separated at the collar so that only leaf blades were considered as leaf portions while stem portions included leaf sheaths and elongated stem. Total herbage yield was harvested from a 0.9 by 3.7 m strip. Leaf, stem, and a herbage subsample obtained from the total harvested material for each plot, were weighed green, then dried for at least 3 days in a forced draft oven at 40°C for quality analyses. Leaf and stem yields from entire plots were calculated from total yield using percentages of each as determined from hand separations. All forage yields were reported on a dry matter (DM) basis. The remainder of the plots was harvested similar to the sampled strip. Dried samples were ground to pass a 1-mm screen, and stored in sealed plastic containers for laboratory analyses.

Root and crown samples were collected in April 1985 and 1986 and March 1987 to determine concentration of total nonstructural carbohydrates (TNC) at the beginning of the growing season. At least 3 plants from each plot were selected randomly, removed to a depth of 15 cm, and washed clean of soil material. Roots were trimmed to approximately 7.6 cm below, and crowns 3.5 cm above, the root-stem junction and washed in cold water. Samples were dried at 100°C for 1 hour, then at 65°C for 48 hours, ground to pass a 1-mm screen, and stored in sealed plastic containers for laboratory analyses.

JOURNAL OF RANGE MANAGEMENT 45(6), November 1992 555

Laboratory Analyses

In vitro dry matter digestibility was determined by the direct acidification method as described by Marten and Barnes (1980). Duplicate samples of leaf blades, stems (including leaf sheaths), and subsamples of total herbage were analyzed separately. Means of the duplicates were used in analyses of variance. Leaf and stem portions of big bluestem were analyzed for total nitrogen using a LECO FP-28 Nitrogen Determinator (Sweeney and Rexroad 1987). Nitrogen values were multiplied by 6.25 to obtain crude protein (CP).

Total nonstructural carbohydrates (TNC) were measured by extracting with 0.2 N H₂SO₄ (Smith et al. 1969) and titrating reducing sugars by the Shaffer-Somogyi technique outlined by Heinze and Murneek (1940).

Experimental Design

Experimental design was a repetition (2 years on 1 site) of a split plot with 3 replicates. Whole plots were the 2 lengths of harvest season. Split plots were plant height at cutting/stubble height combinations in a factorial arrangement. The F tests for whole plots used pooled replicates nested in whole plots and years as the error terms. Other F tests used the split plot error mean squares. All effects were considered model I. Analyses of variance were conducted on yield, quality, and persistence data.

Analysis of variance for dry matter yields of individual treatments were summed across harvests in each year to give a season-long total, while means over harvests were considered for forage quality. Persistence data were analyzed directly each year. Trends in response variables were investigated using orthogonal polynomials. Tests for parallelism and equal curvature were also done. All tests used 0.5 as Type I error rate.

Results and Discussion

Dry Matter Yield

Total dry matter yield averaged over 2 years was 2,420 and 2,650 kg ha⁻¹ for the 15 August and 15 September terminations, respectively, while average IVDMD values were 480 and 492 g kg⁻¹ for 15 August and 15 September, respectively. Defoliation treatment did not influence whether sufficient regrowth existed until 15 August or 15 September. The total number of harvests depended on the amount of time elapsed from previous harvest and the rate of growth. Because no significant differences were obtained between the 15 August or 15 September harvest termination dates or between years, discussion will focus on effects of clipping frequency (height at clipping) and intensity (stubble height) on big bluestem averaged over 2 years.

Greatest yield was found with long regrowth (clipping when 51 cm height was attained) and clipping to a 10-cm stubble, compared to treatments which were clipped frequently to a 20-cm stubble (Table 2). Anderson and Matches (1983) reported that cutting Caucasian bluestem and switchgrass to a 15-cm stubble height gave

Table 2. Effects of clipping frequency and intensity on total dry matter yield (TDM), L:S and leaf yield of big bluestem (Average of 2 years).

<table>
<thead>
<tr>
<th>Frequency (height) at cut</th>
<th>Intensity (stubble remaining)</th>
<th>TDM (kg ha⁻¹)</th>
<th>L:S</th>
<th>Leaf yield (kg ha⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(cm)</td>
<td>(cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td>2624</td>
<td>0.85</td>
<td>2230</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1928</td>
<td>0.91</td>
<td>1755</td>
</tr>
<tr>
<td>41</td>
<td>10</td>
<td>2510</td>
<td>0.83</td>
<td>2083</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2176</td>
<td>0.88</td>
<td>1915</td>
</tr>
<tr>
<td>51</td>
<td>10</td>
<td>3879</td>
<td>0.79</td>
<td>3064</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>2107</td>
<td>0.84</td>
<td>1770</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td></td>
<td>759</td>
<td>0.05</td>
<td>578</td>
</tr>
</tbody>
</table>
higher yields than when cut to a 20-cm stubble. Ethredge et al. (1973) found a similar response for bermudagrass [Cynodon dactylon (L.)]. Frequent clipping has often resulted in reduced yield compared to less frequent harvests (Ethredge et al. 1973, bermudagrass; Owensby et al. 1974, big bluestem). Orthogonal polynomials (Table 3) reveal the yield responses of big bluestem to cutting frequency under 10- and 20-cm intensities was not parallel. Lower cutting height (10 cm) increased total dry matter yield at a more rapid rate than the 20-cm height as forage was harvested less frequently (51 cm). Table 2 shows the same trend for stem yield (significant slope of the line for 10-cm intensity but not for 20-cm) with the lines not parallel. Since regression of leaf yield revealed the lines for harvest frequency to be parallel with different intensities, we speculated the total dry matter differences observed at 41 and 51 cm may have been due to more stem material when big bluestem is harvested at 51-cm frequency. Trends (averages over 2 years) for total dry matter and leaf yield are shown in Figure 1.

Leaf and Stem Composition
The 51/10 treatment yielded 40% more TDM and 30% more leaf blade DM than any other treatment. However, greatest leaf:stem was obtained from treatments clipped to leave a 20-cm stubble (Table 3). This may have resulted from less elongated stem being removed when clipped at a higher level (20 cm stubble). There were significant stem DM yield differences due to intensity, frequency, and year X frequency interaction (Table 2). Low clipping (10 cm
Table 3. Summary of statistical significance from F tests for whole plant, leaf and stem IVDMD, and leaf and stem protein of big bluestem.

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>TDM</th>
<th>Leaf yield</th>
<th>Stem yield</th>
<th>L:S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Season (S)</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Frequency (F)</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>Intensity (I)</td>
<td>**</td>
<td>**</td>
<td>**</td>
<td>**</td>
</tr>
<tr>
<td>S × F</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>S × I</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>F × I</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>S × F × I</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>F linear:11</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>F linear:12</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Parallelism</td>
<td>*</td>
<td>*</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>F quadratic:11</td>
<td>*</td>
<td>*</td>
<td>*</td>
<td>NS</td>
</tr>
<tr>
<td>F quadratic:12</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>Equal quadratic</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
<tr>
<td>CV</td>
<td>6.2</td>
<td>33.5</td>
<td>68.5</td>
<td>6.4</td>
</tr>
</tbody>
</table>

NS Nonsignificant

F linear:11 * NS **

F quadratic:12 * NS **

F quadratic:11 * NS **

S-FXI NS NS NS NS

SXFI NS NS NS NS

SXFI NS NS NS NS

SXI NS NS NS NS

SFI NS NS NS NS

Frequency NS NS NS NS

Intensity NS NS NS NS

NS Nonsignificant

NS Nonsignificant
the 15 September harvest which did not allow testing the effect of late harvest on persistence. Treatments clipped to a short stubble remained similar in ground cover while those clipped to a 20-cm stubble showed a marked stand improvement from year to year (Table 6).

Table 6. Big bluestem composition as a percentage of total basal cover as affected by sampling date and intensity. Treatments occurred during 1985 and 1986.

<table>
<thead>
<tr>
<th>Sampling date</th>
<th>Intensity 10 cm</th>
<th>Intensity 20 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 1985</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td>May 1986</td>
<td>27</td>
<td>49</td>
</tr>
<tr>
<td>April 1987</td>
<td>22</td>
<td>71</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td></td>
<td>7.3</td>
</tr>
</tbody>
</table>

Total Nonstructural Carbohydrates
Leaving a short stubble (10 cm) resulted in lower (P<0.05) TNC concentrations in crowns of big bluestem with the 41 and 51-cm clipping frequency (Table 7) compared to the 20-cm intensities over the 2-year period. Owensby et al. (1974) reported a linear downward trend in TNC as clipping intensity of big bluestem increased. The similarity of TNC concentrations resulting from the 30/10 and 30/20 (same growth period) treatments to that obtained from the 41/10 and 51/10 treatments (longer regrowth periods and shorter stubble) lead us to speculate that frequent removal of top growth requires use of plant energy similar to intensive defoliation at fewer frequencies. Length of harvest season had no significant effect on total nonstructural carbohydrate levels, because regrowth was very limited after 15 August.

Table 7. Total nonstructural carbohydrate levels of big bluestem as affected by clipping frequency and harvest intensity. Data are averaged for 1986 and 1987 sampling dates.

<table>
<thead>
<tr>
<th>Clipping frequency</th>
<th>Clipping intensity 10 cm</th>
<th>Clipping intensity 20 cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>3.7</td>
<td>3.3</td>
</tr>
<tr>
<td>41</td>
<td>2.9</td>
<td>4.4</td>
</tr>
<tr>
<td>51</td>
<td>4.0</td>
<td>5.3</td>
</tr>
<tr>
<td>LSD (0.05)</td>
<td></td>
<td>0.8</td>
</tr>
</tbody>
</table>

Reserve levels of carbohydrates (averaged over treatments) were significantly lower in 1987 than in 1986 (means of 4.4 and 3.4%, respectively) indicating the effects of clipping carry over into at least the next growing season (Kinsinger and Hopkins 1961). Levels of TNC found in the present study (3.5 and 4.3% for 10-cm and 20-cm intensities, respectively) were similar to those found in the Kansas Flint Hills after 1 year's rest from light grazing (McKendrick et al. 1975) or under continuous or intensive grazing (Owensby et al. 1977).

Conclusions
Forage production and quality of big bluestem is strongly affected by frequency, intensity, and time of defoliation. We hypothesized that big bluestem could be harvested more intensively and later in the fall (15 September) in the Southern corn belt than the Great Plains to the west, but found that under the harvest regimes tested, there were no differences between 15 August and 15 September harvests. The best way to utilize big bluestem under those growing conditions was to allow sufficient regrowth between defoliations (41-cm or 16 inch) for the accumulation of reserve carbohydrates and then to leave a short stubble (10-cm or 4 inch) allowing high quality regrowth to occur. The similarity in ground cover values between pre-study and that at termination of the study, lead us to believe that if necessary big bluestem can be more intensively defoliated in the Southern corn belt than that recommended farther west (20–40 cm) (Anderson 1986). These data agree with the theory that in regions where plant growth is not limited by moisture, big bluestem, like switchgrass, may be defoliated more severely than recommended in the drier Great Plains with minimal damage to the stand (Anderson and Matches 1983). Our results indicate that leaving a 20-cm stubble will result in stand improvement should that be the primary objective. Two years' data indicated that the 41/10 management resulted in optimum yield and quality of the harvest regimes for big bluestem in Missouri. It appeared that declining leaf quality with maturation may be just as important or more so than accumulation of stem material due to maturation in the downward quality trend. Since our data agree with results of Perry and Baltes (1979), it is recommended that grasses such as big bluestem be managed to avoid leaf longevity. Systems similar to intensive early stocking (Launchbaugh and Owensby 1978) with ample regrowth time before dormancy are recommended. For the area east of the Missouri River, use of big bluestem and similar tall grass species in complementary grazing systems will often result in moving cattle from cool-season species to warm-season pasture before the former is fully utilized. This small sacrifice may be required in order to gain the larger benefit of proper warm-season pasture use through reduced leaf longevity. Results from studies such as this may be more solidly confirmed by long-term data collection (5–10 years).

Literature Cited

