Vegetation response to increased stocking rates in short-duration grazing

MICHAEL H. RALPHS, M. MORT KOTHMANN, AND CHARLES A. TAYLOR

Abstract

Short-duration grazing (SDG) has been purported to increase forage production and utilization compared to other grazing systems, and thus can sustain higher stocking rates. This study was designed to determine if standing crop could be maintained as stocking rates increased. Four stocking rate treatments ranging from the recommended rate for moderate continuous grazing to 2.5 times the recommended rate were applied in a simulated 8-pasture SDG system. There was little change in frequency and composition of short-grasses over the study, but mid-grass frequency and composition both declined. Standing crop of all major forage classes declined as stocking rates increased. However, the rate of decline was less than proportional to the increase in stocking rate during the growing season. By fall, standing crop was inversely proportional to stocking rate, leading us to conclude that standing crop could not be maintained at the higher stocking rates. Low standing crop in the fall indicated a potential shortage of forage at the high stocking rates during the winter.

Key Words: standing crop, forage availability, frequency

Stocking rate is a critical factor affecting livestock production from rangelands. Understocking results in wasted forage and lower animal gain per unit area. Overstocking results in excessive utilization of forage, deterioration of range condition, and lower gain per animal. Stocking rate directly affects frequency and intensity of defoliation (Hodgson and Olleronshaw 1969). As frequency and intensity of defoliation increase, production and vigor of plants decrease (Trlica 1977), palatable plants are replaced by less desirable species, and carrying capacity is reduced (Ellison 1960, Sarvis 1941, Lewis et al. 1956).

Two basic approaches have been used to minimize grazing damage to vegetation and soil: stock at moderate rates to avoid damage to desirable forage plants; and/or defer grazing to allow heavily utilized plants an opportunity to regain vigor (Martin and Whitfield 1973). Since it may not be possible to control the intensity of defoliation on individual plants in conventional grazing systems, management has generally reverted to periodic rests or deferment following grazing to allow recovery of desirable plants and to maintain desired species composition (Heady 1984).

Short-duration grazing (SDG) enhances the manager's ability to control the frequency of defoliation, and thus intensity of defoliation, of individual plants. SDG is a form of rotational grazing that utilizes high stock density for short periods in an attempt to uniformly graze a pasture. Livestock are rotated to a new pasture before regrowth occurs. Rotating through several pastures allows extended rest periods for plants to recover before livestock return (Kothmann 1980, 1984; Maleehek and Dwyer 1983). SDG is purported to sustain higher stocking rates through increased forage production and utilization compared to other grazing systems (Savory 1978). The purpose of this study was to determine if herbage availability (as measured by standing crop), and species composition of the standing crop, could be maintained at increased stocking rates over a 5-year period under SDG.

Materials and Methods

The study was conducted at the Texas Agricultural Experiment Station near Sonora, Texas (100° 39’ W, 30° 34’ N). Soils were Tarrant stony clay, 8 to 15 cm deep, and Tarrant silty clay, 15 to 25 cm deep (members of the clayey-skeletal, montmorillonitic, thermic family of Lithic Hapludolls). Range site classification was Low Stony Hills (SCS 1972). Vegetation on both soils was a mixed-grass prairie dominated by common curlymesquite [Hilaria belangeri (Steud.) Nash], Wright threeawn (Aristida Wrightii Nash), purple threeawn (A. purpurea Nutt.), and sideoats grama [Bouteloua curtipendula (Michx.) Torr.], with scattered motts of live oak (Quercus virginiana Mill.). Sacahuista (Nolina texana S. Wats.), a large grass-like plant of the Liliaceae family, was abundant on the shallow Tarrant stony clay soil and was considered the major nonherbaceous forage species.

An 8.5 ha pasture was subdivided into 2 blocks of 4 pastures each, roughly along the soil boundary. Four stocking rate treatments were randomly applied to the 4 pastures in each block. Herd size was constant and pasture sizes were varied to obtain the desired stocking rates. Stocking rates in block 2 were 20% greater than those in block 1 because there was a higher proportion of the deeper Tarrant silty clay soils which were more productive than the shallow Tarrant stony clay soil. Stocking rates were 1.38, 2.05, 2.64, and 3.46 AUM/ha for block 1, and 1.67, 2.52, 3.23, and 4.21 AUM/ha for block 2. These represented 1, 1.5, 2 and 2.5 times the recommended stocking rate for the respective sites (Merrill 1954).

Two grazing herds, each consisting of two 317-kg heifers and twelve 40-kg yearling ewes (3 AU), were rotated through the pastures with the order of rotation randomly assigned at each grazing cycle. Pastures were alternately grazed 3 days and rested 51 days. To facilitate sampling and available labor, the grazing cycles of the 2 blocks were staggered. The cycle of block 1 began with the grazing period on 24 September 1980. The cycle of block 2 began on 21 October. The grazing cycles continued through October 1985.

Standing crop of individual plant species was measured seasonally using the two-step sampling technique described by Anderson and Kothmann (1982). Vegetation was sampled before the first grazing period at the beginning of the study in September 1980, and at the end of the rest periods in May and July 1981, and in May, July and October 1983. Fifty plots were systematically located along randomly selected transects which ran the length of each pasture. Units of foliage cover were visually estimated using a 1 X 0.25-m frame sectioned with a 6.25-cm grid. Ten of the plots were clipped and species were separated and dried to determine weight per unit of cover. Standing crop was calculated as the product of weight per unit of cover, multiplied by the number of cover units of each plant species.

Standing crop data were analyzed by analysis of variance (SAS 1985) in a split-split plot design to determine differences between stocking rate treatments, years, and seasons within years (Table I). In addition, the relationship between stocking rate (independent variable) and total standing crop (dependent variable) was described by linear regression for each season within years. Slopes of
the seasonal regressions were compared to the initial regression of the standing crop in the fall of 1980 to determine differences ($P<.10$).

Composition of species in the standing crop was calculated by dividing the standing crop of individual species or major forage classes by the total herbaceous standing crop. The percent of each species in the standing crop was calculated at the beginning of the study and near peak standing crop during the summers of 1981 and 1985. A split-plot ANOVA was used to compare treatments and years.

Frequency of occurrence of the major warm-season grasses (curlymesquite, sideoats grama and threawnals) was calculated from the standing crop plots. Percentage change in frequency from the beginning of the study to the summer of 1985 was calculated and plotted as quadratic regressions on stocking rates. Frequency data from treatment 3 in block 2 were dropped from the regression due to sampling errors.

Sacahuista was most abundant on the shallow Tarrant stony clay loams; thus large differences in sacahuista density occurred between pastures and blocks. Standing crop was determined by counting the sacahuista plants in each pasture. Thirty to 50 plants in each pasture were randomly selected and the height and diameter measured and conical volume calculated. Fourteen plants of varying sizes were selected outside the study area; the volume was multiplied by the weight per unit volume to obtain the average weight per plant. The number of plants was multiplied by the weight per unit volume to obtain the average weight per plant in each pasture. The volume of the sampled plants was multiplied by the weight per unit volume to obtain the average weight per plant in each pasture. The number of plants was multiplied by the average weight per plant to obtain standing crop. Sacahuista standing crop was analyzed by analysis of covariance in a split-plot design to compare differences among stocking rate treatments and years. The initial number of sacahuista plants in each pasture was used as the covariate.

Results and Discussion

Figure 1 illustrates the changes in standing crop of important species and forage classes over the study. There were significant differences ($P<.01$) in standing crop of all species and total standing crop between seasons (Table 1). Cool-season grasses and forbs generally achieved peak growth in the spring. In 1981, precipitation was high throughout the spring (Fig. 2) and supported continued growth of cool-season grasses into the summer. Standing crop of warm-season grasses peaked in the summer.

There were also significant differences ($P<.05$) between years for all species and total standing crop, except for curlymesquite and forbs (Table 1). Change in standing crop over time is confounded with different amounts of precipitation received. Precipitation in 1980 was only 84% of average with poor seasonal distribution (Fig. 2). The low standing crop at the beginning of the study reflects the drought condition. Precipitation in 1981 was 30% above average and uniformly distributed throughout the spring and summer. Standing crop of most species peaked in the summer of 1981. Precipitation in 1985 was 90% of average; however, it was timely (18 cm fell in June and 10 cm fell in September) and ensured adequate soil moisture for growth during the summer and fall.

Total standing crop generally declined as stocking rate increased in spite of the favorable precipitation in 1981 and 1985. The slope of the regression between standing crop and stocking rate in the fall of 1980 at the beginning of the study does not differ from 0 ($P=.18$) (Fig. 3). The uniform low standing crop reflects the drought condition. The slope of the regression in the fall of 1985 is significant ($P<.03$) and differs ($P<.05$) from the slope of the regression in the fall 1980 (Fig. 3). There is little difference in standing crop from the beginning to the end of the study at the higher stocking rates. Heavy grazing pressure and high utilization kept the standing crop low even through precipitation was not limiting. The higher standing crop at the lighter stocking rates was due primarily to curlymesquite (see Fig. 1), which increased in response to the favorable precipitation (Thurow et al. 1988). The slope of regressions in the summers of 1981 and 1985 also differs from the regression at the

Table 2. Decrease in standing crop and the ratio of decreasing forage supply in relation to the increased demand from increasing stocking rates.

<table>
<thead>
<tr>
<th>Stocking rate treatment1</th>
<th>Total herbaceous standing crop</th>
<th>Ratio of available forage2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0x</td>
<td>530 kg/ha</td>
<td>877 kg/ha</td>
</tr>
<tr>
<td>1.5x</td>
<td>433 kg/ha</td>
<td>578 kg/ha</td>
</tr>
<tr>
<td>2.0x</td>
<td>433 kg/ha</td>
<td>578 kg/ha</td>
</tr>
<tr>
<td>2.5x</td>
<td>410 kg/ha</td>
<td>704 kg/ha</td>
</tr>
</tbody>
</table>

1Increase in stocking rate compared to the recommended rate.

2Ratio to stocking rate treatment 1.0x standing crop.

JOURNAL OF RANGE MANAGEMENT 43(2). March 1990

105
Fig. 1. Standing crop of species and forage groups at 4 stocking rate treatments at seasonal sampling periods during the first and last year of the 5-yr study. Pooled standard error (PSE) was calculated as the square root of the mean square error from the ANOVA. Standing crop was sampled at the end of the 51-d rest periods in the grazing cycles.
This pasture was uniformly covered by the deep Tarrant silty clay. It appears to deviate from the trend of the other treatments (Fig. 3).

The 2.5X stocking rate treatment in block 2 (4.21 AUM/ha) elevated standing crop in this pasture, both at the beginning and end of the study, was due to the higher growth potential of the site soil and had the lowest cover of oak motts and sacahuista. The elevated standing crop in this pasture, both at the beginning and end of the study, was due to the higher growth potential of the site rather than the effects of the stocking rate treatment.

Stocking rate did not significantly influence species composition of the standing crop. However, species composition did change (*P<0.01) from the beginning to the end of the study (Table 3). MID-grasses declined from 43% of the standing crop at the beginning of the study, to 20% in the summer of 1981, and finally dropped to only 10% in the summer of 1985. Since composition was based on standing crop measured at the end of the 51-day rest periods, this represents regrowth during the rest period plus residual ungrazed forage from previous periods. The composition of the dominant bunchgrass species (threeawns and sideoats grama) each declined from about 20% of the standing crop at the beginning of the study to less than 4% in the summer of 1985. These species were utilized heavily by both sheep and cattle during late spring/early summer while they were growing rapidly (Ralphs unpublished data). Composition of curlymesquite (the dominant shortgrass species) remained fairly constant throughout the study. Curlymesquite was utilized for a greater part of the year because of its dominance in the community. Composition of cool-season grasses increased in 1981, due to the abundant spring and early summer precipitation. Forbs increased throughout the study; however, bitterweed (Hymenosoxis odorata DC) an important poisonous plant, comprised 60% of the forb component in 1985.

Increasing stocking rates did not change the relative frequency of curlymesquite from the beginning to the end of the study (Fig. 4). Frequency of sideoats grama and threeawns increased in the lightest stocking rate treatments but declined as stocking rates increased. However, we observed that close defoliation in all stocking rate treatments removed the old growth from large bunches of sideoats grama and other mid-grasses, resulting in their replacement by small individual tillers of low vigor. Butler and Briske (1988) also reported the breakup and fragmentation of large plants of little bluestem (Schizachyrium scoparium [Michx] Nash) in SDG stocked at 1.5 and 2 times the recommended rate. They
Standing crop of forage declined as stocking rates increased from the rate recommended under continuous grazing to 2.5 times that rate. During the growing season, the decline in standing crop was less than proportional to the increase in stocking rate. By fall, standing crop was inversely proportional to stocking rate, indicating a potential shortage of forage during the dormant winter season. This SDG was not able to sustain forage production, and probably not species composition at increased stocking rates. Forage responses to increasing stocking rates observed in this study under SDG are similar to those expected from continuous grazing at the same stocking rates.

Conclusions

Standing crop of forage declined as stocking rates increased from the rate recommended under continuous grazing to 2.5 times that rate. During the growing season, the decline in standing crop was less than proportional to the increase in stocking rate. By fall, standing crop was inversely proportional to stocking rate, indicating a potential shortage of forage during the dormant winter season. This SDG was not able to sustain forage production, and probably not species composition at increased stocking rates. Forage responses to increasing stocking rates observed in this study under SDG are similar to those expected from continuous grazing at the same stocking rates.

Literature Cited

