Cubed Alfalfa Hay or Cottonseed Meal-Barley as Supplements for Beef Cows Grazing Fall-Winter Range

R.C. COCHRAN, D.C. ADAMS, P.O. CURRIE, AND B.W. KNAPP

Abstract

A 2-year study evaluated the efficacy of supplements for beef cows grazing mixed grass prairie during the fall and winter. Cows were allotted to 3 treatments: (1) range forage only, (2) range forage plus 1.2-1.3 kg alfalfa cubes • d⁻¹, and (3) range forage plus .9 kg cottonseed meal-barley cake • d⁻¹. Supplements were fed daily to provide approximately 50% of crude protein requirements. Treatment effects did not depend (P<0.10) on year for independent variables evaluated. Although weather conditions differed among years, observed changes in weight and condition score were similar (P<0.10) for both years. Supplemented cows gained weight; but supplement type did not influence weight gains. In contrast, un-supplemented cows displayed significant weight loss. Supplemented cows either maintained or slightly increased in body condition during the fall-winter period. However, body condition of un-supplemented cows decreased (P<0.05) compared with condition of supplemented cows. Supplementation with alfalfa cubes resulted in similar performance compared with supplementation with cottonseed meal-barley cake. Supplementing diets of wintering range cows with feeds high in protein improved performance compared with no supplementation.

Supplementing beef cattle grazing on native winter rangeland in the Northern Great Plains is common but costly. Reducing these costs requires supplementation practices that meet nutritional requirements while enhancing forage utilization. Energy supplementation of animals consuming poor quality forage often results in depressed cellulose and hemicellulose digestibility (Henning et al. 1980, Kartchner 1981), reduced protein digestibility (Cook and Harris 1968), and decreased intake of forage (Crabtree and Williams 1971a,b; Lamb and Eadie 1979). In contrast, supplementing poor quality forage with a nitrogen or protein source frequently yielded increased forage intake (Amos and Evans 1976, Kartchner 1981), improved crude protein digestibility (Coleman and Wyatt 1982) and elevated crude fiber digestibility (Lyons et al. 1970). Alfalfa is a protein-rich feedstuff that generally costs less than traditional “protein” supplements. Alfalfa has been successfully used to complement the diets of sheep fed low quality tall fescue (Hunt et al. 1985). However, published evaluations of alfalfa fed at low levels to wintering range cattle are limited (Clanton et al. 1980). In addition published comparisons of performance results from cattle fed cubed alfalfa hay and traditional supplements are not available. Therefore, we tested the hypothesis that supplementing cows grazing fall-winter range with low levels of alfalfa cubes will result in similar performance (as defined by changes in body weight and condition) relative to supplementing with an equivalent quantity of nitrogen in the form of cottonseed meal-barley cake. Moreover, we tested whether supplementation with feeds high in protein improves performance compared with no supplementation.

Materials and Methods

Trials were conducted at the Fort Keogh Livestock and Range Research Laboratory, Miles City, Mont., during the fall and winter of 1982/83 and 1983/84. The study was conducted in 6 paddocks contained within a 342-ha mixed grass prairie pasture. Predominant forage species were blue grama (Bouteloua gracilis), western wheatgrass (Pascopyrum smithii), needle-and-thread (Stipa comata), and buffalograss (Buchloé dactyloides). Browse species available included greasewood (Sarcobatus vermiculatus), shadscale (Atriplex confertifolia), Gardner’s salt (Atriplex gardneri), winterfat (Crotaloides lanata), big sagebrush (Artemisia tridentata wyomingensis), and silver sagebrush (Artemisia cana) (Kartchner 1981).

Mature, pregnant crossbred cows (n=87 for 1982/83 and n=64 for 1983/84) were randomly assigned to the 6 paddocks. Stocking rates were maintained at levels which insured forage availability was not limiting in either year. Stocking rates used were considered moderate to light based on previous work with the pasture used in this study (Holscher and Woolfolk 1953). Two paddocks were randomly assigned to each of 3 supplement treatments: (1) range forage only, (2) range forage plus alfalfa cubes, and (3) range forage plus 30% cottonseed meal-70% barley cake. Alfalfa was fed to supply 50% of the crude protein requirement (NRC 1976) of a dry, pregnant, mature cow in the middle third of gestation (1.3 kg • d⁻¹ for 1982/83 and 1.2 kg • d⁻¹ for 1983/84). Cottonseed meal-barley cake was fed to supply similar levels of energy and protein as the alfalfa cubes (.9 kg • d⁻¹ during both years). Supplements were offered on a daily basis. During trials, alfalfa hay cost $65.00/ton; cubing costs varied between $10.00 and $20.00/ton. The cottonseed meal-barley cake we used was valued at $230.00/ton. Other commonly used range cake (barley cake adjusted to 20% crude protein) by ranchers in eastern...
Montana cost $165.00/ton during our study. We began trials on 3 November 1982 and 4 October 1983 and continued them until forage availability warranted providing additional energy as hay. Termination dates were 25 January 1983 and 10 January 1984.

Animals were weighed to the nearest 0.5 kg at 14-day intervals throughout the course of each trial. Before weighing, cows were allowed to graze but were held off water for approximately 18 hours. Body condition scores were recorded for each cow at the beginning and end of each trial based on a palpated determination of fleshing over the ribs and thoracic vertebrae as described by Bellows et al. (1971). Scores were independently estimated by 2 individuals. Possible range for numerical scores was from 1 (thinnest) to 10 (fattest). The average of the 2 individuals' scores was used as the estimate of condition.

Four esophageally fistulated steers were used to collect diet samples from each of 2 paddocks during each collection period. Diet samples were collected to evaluate forage quality during the study. Collections were made during December and January of 1982/83 and October, November, December and January of 1983/84. Samples were collected during the morning following an overnight fast. Masticates were subsampled, composited, and dried for a minimum of 48 hours at 50° C. Fistula forage samples and supplements were ground with a Wiley mill to pass a 1-mm screen and then analyzed for various chemical constituents (Table 1). Crude protein was determined by AOAC (1980) procedures.

Table 1. Chemical composition1 and digestibility of range forage and supplements.

<table>
<thead>
<tr>
<th>Item</th>
<th>OM</th>
<th>CP</th>
<th>ADF</th>
<th>NDF</th>
<th>ADL</th>
<th>IVOMD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Year 1 - 1982/83</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range forage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>December</td>
<td>91.9</td>
<td>3.2</td>
<td>51.5</td>
<td>77.8</td>
<td>5.8</td>
<td>50.4</td>
</tr>
<tr>
<td>January</td>
<td>91.7</td>
<td>3.0</td>
<td>51.4</td>
<td>77.8</td>
<td>4.9</td>
<td>57.1</td>
</tr>
<tr>
<td>Alfalfa cubes</td>
<td>89.2</td>
<td>15.9</td>
<td>34.7</td>
<td>43.6</td>
<td>6.3</td>
<td>63.8</td>
</tr>
<tr>
<td>Cottonseed meal-barley</td>
<td>95.0</td>
<td>22.1</td>
<td>9.6</td>
<td>20.9</td>
<td>2.4</td>
<td>82.0</td>
</tr>
<tr>
<td>Year 2 - 1983/84</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Range forage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>91.2</td>
<td>6.5</td>
<td>48.7</td>
<td>73.2</td>
<td>4.2</td>
<td>65.5</td>
</tr>
<tr>
<td>November</td>
<td>90.8</td>
<td>5.7</td>
<td>49.3</td>
<td>72.4</td>
<td>4.0</td>
<td>67.9</td>
</tr>
<tr>
<td>December</td>
<td>91.3</td>
<td>5.1</td>
<td>50.4</td>
<td>74.2</td>
<td>4.4</td>
<td>63.9</td>
</tr>
<tr>
<td>January</td>
<td>89.4</td>
<td>4.8</td>
<td>49.4</td>
<td>72.5</td>
<td>4.9</td>
<td>61.9</td>
</tr>
<tr>
<td>Alfalfa cubes</td>
<td>88.6</td>
<td>17.6</td>
<td>32.8</td>
<td>42.7</td>
<td>5.4</td>
<td>69.3</td>
</tr>
<tr>
<td>Cottonseed meal-barley</td>
<td>95.0</td>
<td>22.1</td>
<td>9.6</td>
<td>20.9</td>
<td>2.4</td>
<td>82.6</td>
</tr>
</tbody>
</table>

1 OM=organic matter. CP=crude protein. ADF=acid detergent fiber. NDF=nutrient detergent fiber. ADL=acid detergent lignin. IVOMD= in vitro organic matter digestibility

Acid detergent fiber, neutral detergent fiber, and acid detergent lignin were determined as described by Goering and Van Soest (1970). A modification (White et al. 1981) of the Tilley and Terry (1963) procedure was used for determining in vitro organic matter digestibility.

Weight and condition score data were evaluated by analysis of variance. Terms included in the model and their corresponding degrees of freedom were year (1), treatment (2), year X treatment (2), paddock within year X treatment (6), animal within paddock within year X treatment (153). Terrain differed among paddocks; consequently, 1 degree of freedom from the paddock within year X treatment interaction was used to account for this known source of variation among paddocks. The random variation among paddocks (5 degrees of freedom) was used as the testing term for year, treatment and year X treatment interaction. Orthogonal contrasts were used to partition treatment sums of squares. Contrasts were

Results and Discussion

Treatment effects did not depend (P>0.10) on year for any of the responses evaluated. Although temperatures were warmer and less snow fell (Fig. 1) during year 1 (1982/83) compared with year 2 (1983/84), we observed no difference (P>0.10) among years in total weight or condition score change. Supplemented cows gained weight (Table 2); supplement type did not influence (P>0.25) weight gains. Similarly, we observed no difference (P>0.50) among cows receiving either supplement for change in body condition score (Table 3). Supplemented cows maintained or slightly increased in body condition during the fall-winter period.

Unsupplemented cows lost more (P<0.025) weight during fall and winter than supplemented cows. Body condition scores of unsupplemented cows also decreased during fall-winter. We observed lower (P<0.05) condition scores in unsupplemented cows compared with supplemented ones. Condition score and reproductive characteristics have been observed to be more highly correlated than body weight and reproductive characteristics (Staigmiller et al. 1979). Dzuik and Bellows (1983) indicated that the dam should have a minimum score of 5 at calving to ensure adequate postpartum reproduction. We observed condition scores in unsupplemented cows below this level and surmise that this could potentially depress their reproductive performance during the postpartum period.

Fig. 1. Fourteen day averages of daily minimum temperature and snow cover.

Fig. 2. Weight profile of beef cows during fall-winter 1982-83.

Weight profiles of supplemented cows paralleled those of unsupplemented one during year 1 (Fig. 2), but diverged during
would increase the maintenance energy requirement of cows (NRC 1981) at the beginning of severe weather during both years. Generally, periods of substantial snow cover accompanied colder temperatures (Adams and Reynolds 1983). There-fore, the rapid weight losses we observed may reflect actual decreases in empty body weight as well as decreases in gut fill. The small increases in live weight at the end of both trials correspond with decreases in snow cover and increased temperature. Increased grazing activity, and thus gut fill may explain this rapid recovery of body weight.

Evaluation of supplement prices and quantity fed indicated that similar winter performance could be realized for approximately half the costs when using alfalfa cubes (11 cents \(\cdot \text{hd}^{-1} \cdot \text{d}^{-1} \)) compared with cottonseed meal-barley cake (23 cents \(\cdot \text{hd}^{-1} \cdot \text{d}^{-1} \)). If barley cake adjusted to 20% crude protein ($165.00/ton) was fed at the same level as the cottonseed meal-barley cake and produced similar performance response, there would continue to be a 5 cents \(\cdot \text{hd}^{-1} \cdot \text{d}^{-1} \) advantage for supplementation with alfalfa cubes. A price differential of 5 to 12 cents \(\cdot \text{hd}^{-1} \cdot \text{d}^{-1} \) would be a significant savings for ranchers who routinely choose to supplement their cows during the fall and winter. However, the competitive advantage from supplementing with alfalfa cubes is highly dependent on the prices of alfalfa hay and other supplemental feeds. Therefore, final choice of supplement type may be modified by feed prices within a given year. Determination of the usefulness of winter supplementation is complex due to modifying influences of cow body condition, physiological state, forage quality, weather, pre- and postpartum nutritional treatments, varying management schemes, and cattle prices. However, several long-term supplementation studies (Black et al. 1938, Bellido et al. 1981, Heitschmidt et al. 1982) indicate that benefits from supplementation may be substantial during significant stress periods (e.g., severe winters, drought, extreme weed infestation, and heavy stocking rates). Under more favorable conditions, the usefulness of supplementation programs has been questioned (Bellows and Thomas 1976, Bellido et al. 1981). Further work identifying levels of supplementation appropriate for various stressors and development of supplementation strategies which are related to stressor presence and severity would be useful in reducing costs associated with unnecessary supplementation.

In conclusion, changes in live weight and condition score observed in this study support the hypothesis that similar or improved performance can be realized using an alfalfa cube supplement compared with providing an equivalent quantity of nitrogen as cottonseed meal-barley cake. This finding concurs with results reported by Clanton et al. (1980) for grazing cows supplemented with alfalfa hay or soybean meal during the winter period. Supplementing the diets of wintering range cows with feeds high in protein improved performance compared with no supplementation.

Table 2. Least squares means\(^1\) for initial weight, final weight and weight change\(^2\) of pregnant beef cows at the initiation and termination of supplementation periods.

<table>
<thead>
<tr>
<th>Item</th>
<th>Treatments</th>
<th>Orthogonal contrasts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range forage only (RFO)</td>
<td>Alfalfa cubes (AC)</td>
</tr>
<tr>
<td>Animals, (no.)</td>
<td>53</td>
<td>49</td>
</tr>
<tr>
<td>Initial weight (kg)</td>
<td>516</td>
<td>517</td>
</tr>
<tr>
<td>Final weight (kg)</td>
<td>505</td>
<td>541</td>
</tr>
<tr>
<td>Weight change (kg)</td>
<td>24</td>
<td>14</td>
</tr>
</tbody>
</table>

\(^1\)Pooled across years.
\(^2\)End-beginning weight.
\(^3\)SE = standard error.

Table 3. Least squares means\(^1\) for initial, final and change in condition score\(^2\) of pregnant beef cows at the initiation and termination of supplementation periods.

<table>
<thead>
<tr>
<th>Item</th>
<th>Treatments</th>
<th>Orthogonal contrasts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Range forage only (RFO)</td>
<td>Alfalfa cubes (AC)</td>
</tr>
<tr>
<td>Animals, (no.)</td>
<td>53</td>
<td>49</td>
</tr>
<tr>
<td>Initial condition score</td>
<td>5.1</td>
<td>5.2</td>
</tr>
<tr>
<td>Final condition score</td>
<td>4.6</td>
<td>5.4</td>
</tr>
<tr>
<td>Condition score change</td>
<td>-.5</td>
<td>2</td>
</tr>
</tbody>
</table>

\(^1\)Pooled across years.
\(^2\)End-beginning score; 1 = thinnest, 10 = fattest.
\(^3\)SE = standard error.

Fig. 3 Weight profile of beef cows during fall-winter 1983-84.

with decreased snow cover and increased temperature. Increased grazing activity, and thus gut fill may explain this rapid recovery of body weight.

The rapid weight losses we observed may reflect actual decreases in empty body weight as well as decreases in gut fill. The small increases in live weight at the end of both trials correspond with the same level as the cottonseed meal-barley cake and produced similar performance response, there would continue to be a 5 cents \(\cdot \text{hd}^{-1} \cdot \text{d}^{-1} \) advantage for supplementation with alfalfa cubes. A price differential of 5 to 12 cents \(\cdot \text{hd}^{-1} \cdot \text{d}^{-1} \) would be a significant savings for ranchers who routinely choose to supplement their cows during the fall and winter. However, the competitive advantage from supplementing with alfalfa cubes is highly dependent on the prices of alfalfa hay and other supplemental feeds. Therefore, final choice of supplement type may be modified by feed prices within a given year. Determination of the usefulness of winter supplementation is complex due to modifying influences of cow body condition, physiological state, forage quality, weather, pre- and postpartum nutritional treatments, varying management schemes, and cattle prices. However, several long-term supplementation studies (Black et al. 1938, Bellido et al. 1981, Heitschmidt et al. 1982) indicate that benefits from supplementation may be substantial during significant stress periods (e.g., severe winters, drought, extreme weed infestation, and heavy stocking rates). Under more favorable conditions, the usefulness of supplementation programs has been questioned (Bellows and Thomas 1976, Bellido et al. 1981). Further work identifying levels of supplementation appropriate for various stressors and development of supplementation strategies which are related to stressor presence and severity would be useful in reducing costs associated with unnecessary supplementation.

In conclusion, changes in live weight and condition score observed in this study support the hypothesis that similar or improved performance can be realized using an alfalfa cube supplement compared with providing an equivalent quantity of nitrogen as cottonseed meal-barley cake. This finding concurs with results reported by Clanton et al. (1980) for grazing cows supplemented with alfalfa hay or soybean meal during the winter period. Supplementing the diets of wintering range cows with feeds high in protein improved performance compared with no supplementation.

Literature Cited

DEADLINE DATES

Items such as columns, advertisements, announcements, lists, and reports must be in the Denver office by the following dates to ensure publication in the respective issues of **RANGELANDS:**

- April—March 3
- June—May 3
- August—July 5
- October—September 5
- December—November 1
- February—December 7

Position announcements must be in the Denver office by the following dates to be published in the respective issues of the **JOURNAL OF RANGE MANAGEMENT:**

- March—February 1
- May—April 4
- July—June 2
- September—August 4
- November—October 5
- January—December 1

Publications will normally be mailed by the 11th of the month of publication. Allow at least 2 weeks for delivery in the US.