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Double sampling or two-phase sampling involves sampling of
any population in 2 phases. The first phase yields data on any
desired factor by direct measurements as well as by some indirect
method. In the second phase, data are collected by the indirect
method only.

The estimated variance in double sampling with regression and
ratio estimators are described indetail by Cochran (1963). The first
sample is a simple random sample of size n’. The second sample of
size n is a random subsample from the first sample, but may be
drawn independently if this is more convenient. The first step is to
set up the estimate and to determine its variance. The auxiliary
variate (%) is used to make a regression estimate of y. Itisassumed
that the population is finite but very large and that the relation
between y; and x; is linear. In the first (large) sample (size n’), only x;
is measured. In the second (small) sample (size n), both x;and y: are
measured.

.One of the major problems in double sampling is determining
the number of samples required in each phase to give the desired
accuracy for the maximum economy. The efficiency of double
sampling depends on two things: (1) the precision of the
mathematical relationship, and (2) the cost of direct measurements
compared to indirect estimates.

If too many direct samples are taken, the cost of sampling
becomes unnecessarily high, while the use of too few direct
samples results in an unreliable mathematical relationship. Thus, it
is desirable to estimate the size of the two samples; the large sample
(n") and the small sample (n). In its application to estimating crop
biomass, the first phase of double sampling involves estimation of
the plant biomass ocularly or by capacitance meter. In the second
phase, the plant biomass is estimated as in the first phase followed
by clipping and weighing of the plants. For a detailed discussion on
the statistical aspects of the double sampling, the readeris referred
to Schumacher and Chapman (1948), Hansen et al. (1953),
National Research Council (1962), and Cochran (1963).

With a single factor under study and for a given sampling
procedure, optimum allocation of resources to direct and indirect
methods of estimation is well defined. However, a simple
procedure for optimum allocation in multivariate double sampling
is not available. A technique is described which enables the
investigator to find optimum allocation in multivariate double
sampling which minimizes cost or variance and also gives
achievable variances of the estimated means.

For sampling involving a single independent variable, the
procedure for optimum allocation in double sampling is reviewed.
According to Cochran (1963), the cost of double sampling is

C=nc, + n'cy’ )
where
C = total cost of double sampling
¢, = cost of obtaining one direct sample
¢n’ = cost of obtaining one indirect sample
n = number of direct samples
n’ = number of indirect samples.
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For a fixed cost C, optimum allocation (for minimum variance is
obtained when

0=V Va'ta Q)
N v/ Vaer'
= | _Cnp? A3)
e’ (1~ p%)
where
Vo= () U - 09 4)
Vi’ = p?S,2, %)
and

p= coefficient of correlation between y; and x; in sample n
Sy = standard deviation of yi.
Equations (1) and (2) or (3) determine n and n’. The techniques for
allocation in double sampling described by Wilm et al. (1944) and
Schumacher and Chapman (1948) are essentially the same as the
one described by Cochran (1963), and are, therefore, not given
here.

In our study of optimum allocation for multivariate double
sampling, the variance of the mean desired for the estimates of each
variate was specified, and the optimum allocation was the one
which achieved this at a minimum cost. Therefore, the basic
approach was to attain specified levels of precision at the minimum
cost. First, the variance of the regression and ratio etimator in
double sampling is given and then the allocation problem is
formulated and its solution described.

Estimated Variances in Double Sampling
The estimate of ¥ is
=3+ bE-%) )

where X’ and X are the means of X; in the indirect and direct
samples, respectively, and b is the least squares regression
coefficient of y; on xi, computed from the direct sample.

The variance of ¥, the regression estimate in double sampling,
is

Vgiu)=Yo + o' | W)
n n’
and a sample estimate of V(¥1,) is
sy  x + s?y - sk x

v (yn') = ;
n n
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Optimum Allocation

The cost of double sampling is given in equation (I). With k
variates, let V°; be the specified variance tolerance for the mean of
the j* variate. The precision specifications become

VEIs vy o -
From the approximate expression of variance in equation (7) and
from (9), it foll~»s that
A T R

n n

(10
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and the allocation problem with k variates becomes

minimize C = nc, + n'cy’,

11
subject to an
\ﬂ+v_____ﬂ’j < Voj (12)
n n’
G=a,...,k
n>n>0.

The overhead costs have been neglected because these do not enter
into the optimization problems (Kokan 1963).

By obtaining a solution to the above plan, we actually obtain the
solution to a series of plans. Let C° be the sampling cost

C°=ncn + n'ey’, 13)
which satisfies
o V') < v, (14)
n n
then the fixed cost (C’) sample
r
is
-1 and l., r>0, (16)
r T
which satisfies
V) S 1V . an

Choice of Precision Specifications

No definite answer can be given to the question, “what is a
desirable level of precision?” The desired precision will depend on
the purpose at hand. The quantities Vs and V' on the left-hand side
of the inequalities can be estimated from a preliminary sample in
which y; is measured and x; is estimated for each variate. The V%, or
the righthand side of the inequalities are specified:

1. from the past experience or from values reported in the

literature, or
2. by specifying coefficients of variation for ¥ of each variate

V=G o an
Yi
3. by specifying a bound (B) on the error of the estimate
B = 2SE, ‘ (18)
which is equivalent to
a19)

vy =B .
4

Solution of the Allocation Problem

The purpose of optimization is to find the best possible solution
among the many potential combinations of sampling ratios for a
given problem in terms of effectiveness or performance criterion.
The usual analytical approach for optimization of nonlinear
programming problems is to use the calculus and/or Lagrange
multipliers. However, the geometric programming approach of
Duffin et al. (1967), developed for solving algebraic nonlinear
programming problems, was used to obtain solutions to the
multivariate double sampling problem. A programming algorithm
using the above analytical techniques has been described in detail
by Ahmed and Bonham (1980).

Test data for this allocation problem were collected at the
Central Plains Experimental Range, administered by the Science
and Education Administration-Agricultural Research of the U.S.
Department of Agriculture, near Nunn, Colo. Statistical
summaries of the double sampling data are given in Table 1.
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ssssssssssven  PROGRAN FOR OPTINUM ALLOCATION IN DOUBLE SANPLING s»sssnssassas

HOU NANY CONSTRAINTS

14

COST FUNCTION

T3 .95

INPUT CONSTRAINT COEFFICIENTS AND RIGHT-HANDSIDE
(SEPARATED BY A COMNA OR A SPACE)
CONSTRAINT 12

T 5.5 1056.8 .24

CONSTRAINT 2:

7T 36.8 182.2 3.14

CONSTRAINT 33

7 5.8 31.8 .28

CONSTRAINT 4:

7.9 5.9 .04

CONSTRAINT 52

7 3.3 15.2 .056

CONSTRAINT 62

? 15.8 80.8 .74

INITIAL OPTIMUM ALLOCATION PLAN

THE NUMBER OF DIRECT SAMPLES = 98.9
THE NUKBER OF IMDIRECT SAMPLES = 671.4
THE COST OF SANPLING UITH THIS PLAM = ¢  B830.29
VARIANCES OF THE MEANS
VAR1T VAR 2 VAR3I VAR 4 VARS VAR 4
SPECIFIED 24 3.14 .28 .04 .08 24
ESTINATED .21 .64 .11 .02 .08 .28

HOU NANY SANPLING PLANS DO YOU VANT
k-

ENTER THE COST OF EACH PLAN
{SEPARATED BY A COMRA OR A SPACE)

7 700 400 500 400 300

OPTIONAL OPTINUM ALLOCATION PLANS

cosy SAKPLES VARIANCES OF THE NEANS
DOLLARS Nt N2 VARt VAR 2 VAR3 VAR 4 VARS VAR S
SPECIFTED VARIANCES 24 3.14 .28 .04 «06 74
OPTIONAL PLANS
PLAN 0 B830.29 98.9 47t.4 .2 84 o1 .02 .08 .28
PLAN 1 700.00 83.4 346.0 .25 W26 .13 +02 .07 .33
PLAN 2 800.00 71.5 485.2 .30 .89 .13 .02 .08 .39
PLAK 3 500.00 59.6 404.3 .36 1.07 .18 .03 09 A7
PLAN 4 400.00 47.7 323.4 .45 1.34 .22 <04 a2 .58
PLAN § 300,00 33.7 242.4  .5Y 1.78 .29 .03 Ak .78

Fig. 1. Computer printout from program DUBSAM.

Table 1. Statistical analysis of the double sampling data. Regression of
clipped green weight against estimated green weight.

Standard
Clipped green weight (gm)  deviation
about the
Sampie regression
Species size Mean deviation line
Bouteloua gracilis 50 490 10.60 2.35
(H.B.K.) Lag.ex Steud.
Sporobolus cryptandrus 50 17.74 14.80 6.07
(Torr.) A. Gray
Aristida spp. 50 5.32 6.14 2.41
Sphaeraicea coccinea 50 2.10 2.61 0.94
(Pursh) Rydb.
Chenopodium spp. 50 2.37 4.30 1.82
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The average time needed to clip a plot was 10 times higher than
that needed to ocularly estimate a piot. On the average, i5 plots
were clipped per day. The daily wage of a skilled person was

assumed to be $75. This gave a cost of $5 for obtaining one clinned
bttt o - g OncClppe

plot and $.50 for estimating one plot ocularly.

This information was used informulating the objective function.
The quantities V, and V.’ in the left-hand side of the constraints
were calculated using equation (8). The right-hand side of the
constraints, or the precision specifications, were obtained from the
test data using equation (17). A 10% CV for the estimated means to

be obtained was epﬁtﬂﬁpﬂ

Based on these calculations, the test problem was of the form.
Minimize Cost = 5n + .5n’

subject to
5.5/n + 106.8/n’ < .24 (constraint for Bouteloua gracilis)
36.8/n + 182 2/n’ < 3.14 (constraint for Sporobolus

crytandrus)
5.8/n+ 31.8/n’ < .28 (constraint for Aristida spp.)
09/n+ 59/n'< 04 (constramt for Sphaeralcea coccmea)

2 Y e L 1& Vw? e NEL fmmcncbondon PUR PR &/ VTP L ey
J.Io/11 T LI LfEE UJU \bUllBtldllll 10T Lri€énopoqiuins Spp. }

n>n>0.

Solution to this problem was obtained using the program
DUBSAM (Ahmed and Bonham 1980). The computer printout is
given in Figure 1.

The most important binding constrainb(s) may not be important
practically. For a practical solution of the tolerance SEuulg, a series
of sampling plans for varying costs and degrees of precision can be
worked out. The sampler can then choose the plan which best fits
the particular budget and precision requirements.

The program was written for solution of problems with up to 10

constraints (species). It can, however, be modified to handle more

than 10.
Cae sl UGNy Iy Prpvey ) NSRS NPTy S |y S pRpy pupay Sy = D0 o
For the test problem, the number of direct samples (n ) was 99 aud

that of indirect samples (n") was 672. The

plan, excluding the fixed cost, was $830.29 (Fi gure 1). Optional plans
for variable costs of $700, $600, $500, $400, and $300 were also
obtained. With an allocation plan up to the cost of $400, only the
precision requirements for Bouteloua gracilis and Chenopodium
ssp. were violated. With a plan cost of $300, all the precision
requirements except that of Sporobolus cryptandrus were violated.
The optimum ratio of clipped plots to ocularly estimated plots was

6.6 (672, + 99) (Fig. 1).
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Conclusions

The optimum allocation problem in multivariate double
sampling can be solved by analytical or graphical methods as
described by Ahmed and Bonham (1980). However, the computer
can be used more conveniently to obtain the solution of the opti-

allasntian meahlam nond cammling nlane far aman ~aato

A
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The constraints most binding may not be important practically
For a practical solution of the tolerance setting, develop a series of

plans for varying costs and degrees of precision. Then the plan
which best fits in terms of the budget and precision requirements
can be chosen.

Although the pnncnples and methods are generally applicable
the data obiained and presenied here are applicabie oniy to the

specific site sampled and for the year. This technique for optimum
allocation in multivariate double samnling for biomass estimation

0CaAllonN 1N INVAINVAIIAIC COVDIC 3alllptilp 10T ROINas £311INallo

is not restricted in its use. The technique will be found useful in all
situations of double sampling and in all fields of study where the
interest is in finding optimum allocation of resources for taking
direct and indirect measurements on one or more variables. This
technique will aiso be found useful in stratified sampling. In
stratified double sampling, optimum allocation can be worked out
for each stratum, and the information so collected ¢can then be

pooled for estlmatmg population parameters.

Literature Cited

Ahmed, J., and C.D. Bonham 1980. DUBSAM-Algorithm and computer
program for optimum allocation in multivariate double sampling for
biomass estimation. Colorado State Univ., Range Science Series, No. 33
1IN0 n
w7 p.

Cochran, W.G. 1963. Sampling Techniques. John Wiley & Sons, Inc., New
York. 413 p.

Duffin, R.J., E.L. Peterson, and C. Zener. 1967. Geometric Programming:
Theory and Application. John Wiley & Sons, Inc., New York. 278 p.

Hansen, M.H., W.N. Hurwitz, and W.G. Madon. 1953. Sample Survey
Methods and Theory. John Wiley & Sons, Inc., New York. 2 vol.

Kokan, A.R. 1963. Optimum allocation in multivariate surveys. J.R.
Statist. Soc. Amer. 126:537-563.

National Research Council. 1962. Range research: Basic problems and
techniques. Nat. Acad. Sci. Nat. Res. Council Pub. No. 890.
Washington, D.C. 341 p.

Schumacher, F.X., and R.A. Chapman. 1948. Sampling methods in

arect Bull N,

frpragtorn and ranaa managamant Iniy V. haol S
Orest Hun. iNO.

s A
101TSiry anda rangd management. Duke Univ nCOa

7. 222 p.
Wilm, H.G., D.F. Costello, and G.E. Klipple. 1944. Estimating forage yield
by the double sampling method. Amer. Soc. Agron. J. 36:194-203.

3
Py
[{«]]



