Vegetative Differences Among Active and Abandoned Towns of Black-tailed Prairie Dogs (Cynomys ludovicianus)

LOIS E. KLATT AND DALE HEIN

Highlight: Vegetational differences were studied among one active prairie dog (Cynomys ludovicianus) town and three towns which had been abandoned 1, 2, and 5 years, respectively. Blue grama (Bouteloua gracilis) and buffalograss (Buchloe dactyloides) were dominant on all four study areas. Percent cover of total vegetation, grasses, and increaser and invader species declined with length of abandonment. Percent cover of the only decreaser, western wheatgrass (Agropyron smithii), was similar on the abandoned towns and lowest on the active town. Composition of vegetation on the four study areas did not indicate that the usual stages of secondary succession on short grass prairie had occurred on the abandoned prairie dog towns. Most changes in vegetation following abandonment of 5 years or less by prairie dogs were apparently relatively minor and would not benefit cattle grazing significantly.

The objective of this study was to describe differences in vegetation among an active prairie dog town and towns abandoned for different numbers of years in shortgrass prairie. Koford (1958) compared vegetation of an active town and adjacent rangeland in shortgrass prairie and found that total plant cover was approximately twice as great in the town as it was outside. Koford also found that total cover in an area of the town occupied by prairie dogs for several years was
greater than in a newly occupied area. Himes (1966) found that total cover in a town that had been abandoned for 2 years was 14%, compared to 35% when the town was occupied. Bonham and Lerwick (1976) reported that grazing by black-tailed prairie dogs favored increase of buffalograss, invasion of annuals, and more species present due to selective grazing on a few preferred species, including blue grama.

Study Area and Methods

This study was conducted 11 km north of Fort Collins, Colo., in an area of 35 to 40 cm mean annual precipitation. The climate supports a shortgrass prairie dominated by buffalograss and blue grama, with western wheatgrass common.

Data were collected on four study areas. Study area A was an active town. Because of prairie dog eradication activities, area B had been abandoned for 1 year, area C for 2 years, and area D for 5 years prior to this study. Area B had been occupied by prairie dogs for 3 or 4 years before being poisoned. The other three areas had been occupied by prairie dogs for at least 36 years before areas C and D were poisoned. Areas A, C, and D were located on loamy plains soils, while area B was on loamy foothills soil (11 S Dep Agr 1968). Blue grama is the potential dominant on loamy plains soils, and western wheatgrass is the potential dominant on loamy foothills soil. All four areas were native grasslands that were moderately grazed part of the year by cattle.

Vegetation was sampled during June—August by means of a grid of points in a frame 0.5 m square, in a variation of the point frame method (Cook and Box 1961). The square frame was crossed at top and bottom by eight equally spaced wires, four in each direction, resulting in a set of 16 points 20 cm directly above a second set of 16 points. In the field, the vegetation or soil directly under each vertical pair of 16 aligned points in the grid was recorded. When more than one layer of vegetation occurred under a point, the top layer was recorded; this occurred less than 1% of the time.

Vegetation was sampled systematically at 3-m intervals along two transects that crossed the town at the area of greatest concentration of burrows and proceeded to the edges of the town. One transect ran magnetic north to south, the other east to west. Data were recorded for 100 to 200 grids (1,600 to 3,200 points) per study area.

Criteria of Stoddart and Smith (1975) were used, where decreaser refers to species that decrease under grazing pressure, increaser to species that increase under grazing, and invader to species not present in the climax vegetation but which invade following grazing. Percent cover for each plant species was computed as the percent of the total number of points for an area in which the species was recorded.

Results

Most of the species recorded were increasers or invaders; only one, western wheatgrass, was a decreaser (Table 1). Total number of species recorded differed among the four study areas because of the varying number of species of forbs present on different areas. Only on species of forb was recorded on area A. In C and D, five and three species of forbs were recorded, respectively. Area B, however, had 1 species of forbs. Similarly, the total number of plant species was lowest in area A (11), highest in B (23), and low in C and D (15 species each).

In each area two or three species present, and the remainin cover was distributed fairly evenly among the remaining species (Table 1). In each area buffalograss dominated the cover, with blue grama second. Forbs and shrubs were numerous, but each species comprised less than 2% of the total cover (Table 1).

Total plant cover ranged from 70.7% in area A to 58.3% in area (Table 1). Most of this difference appeared in the grass component which ranged from 68.5% in area A to 5.9% in D. Percent cover of increaser and invader grasses, including the dominant buffalograss and blue grama, declined between areas A and D, while percent cover for the one decreaser, western wheatgrass, was lowest on area A and similar among the three abandoned towns (Table 1).

Percent cover of forbs showed the same trend among areas as of number of species of forbs (Table 1). Percent cover of forbs was low in area A, low in C and D, but higher in B. Within the forb component of vegetation, both annual and perennial invaders and perennial forbs showed the same trends among areas as did total forbs.

Discussion

Composition of vegetation on the four study areas did not indicate that the stages of secondary succession described by Costello (1944) for this region had occurred on the abandoned prairie dog town Russian thistle (Salsola kali), which dominated the first stage of succession described by Costello, occurred only in area C as a min species. Slimflower scurfpea (Psoralea tenuiflora), scarlet globe mallow (Sphaeralcea coccinea), silky sophora (Sophora sericea), at red threeawn (Aristida longiseta), which were mentioned by Costel in the second stage of succession, appeared in area B (abandoned year). Also, according to Costello, annual plants were important ear in succession and perennial plants became important in later stages. In our study, the percent cover of annual forbs, perennial forbs, ar grasses all declined between area A (active) and D (abandoned years).

It appeared, then, that prairie dog activities on these study areas d not cause the rangeland to revert to an appreciably earlier stage of succession. The dominant species on all four study areas agreed for the most part with those listed by Tilestone (1961) for prairie dog towns on shortgrass prairie.

Percent cover for the decreaser, western wheatgrass, was slight higher on the abandoned towns than on the active town. However, percent cover declined for the increasers and invaders from area A to area B. These data indicated that, in terms used for rangeland graz by cattle, range condition improved slightly following eradication prairie dogs.

Koford (1958), among others, found that the mounds of bare s around prairie dog burrows were invaded by forbs following abande This could explain the highest percent cover and most species for forbs occurring on area B, while those were lowest on area A. Fi (1966) reported a similar response to cessation of cattle grazing; for immediately increased greatly. Results of our study indicated the removal of prairie dogs affected range similarly to removal of cattle this respect.

In contrast to this study and others on shortgrass prairie, Smi (1967) found that on tallgrass prairie percent cover was higher adjo adjacent range than on active prairie dog towns. It should be noted that percent cover is not strictly analogous to production (Bjugstad a Whitman 1970).

Since data were taken from four different towns rather than from t same town over 5 years, variables other than length of time sin abandonment could have influenced the results. For example, due differences in soils, the potential dominant on area B was west

---

Table 1. Vegetation on one active (A) and three abandoned (B = 1 year, C = 2 years, D = 5 years) prairie dog towns, Larimer County, Colo.

<table>
<thead>
<tr>
<th>Species</th>
<th>Status</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agropyron smithii</td>
<td>1</td>
<td>2.3</td>
<td>5.1</td>
<td>6.9</td>
<td>6.7</td>
</tr>
<tr>
<td>Muhlenbergia torreyi</td>
<td>3</td>
<td>5.5</td>
<td>0.2</td>
<td>9.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Oryza hispanica</td>
<td>x</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Aristida longiseta</td>
<td>2</td>
<td>2.8</td>
<td>0.4</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Bouteloua gracilis</td>
<td>2</td>
<td>20.7</td>
<td>22.8</td>
<td>22.8</td>
<td>22.2</td>
</tr>
<tr>
<td>Buchloe dactyloides</td>
<td>2 (3 on B)</td>
<td>37.2</td>
<td>32.4</td>
<td>31.9</td>
<td>25.0</td>
</tr>
<tr>
<td>Perennial grasses (subtotal)</td>
<td>A</td>
<td>68.5</td>
<td>60.8</td>
<td>57.7</td>
<td>55.2</td>
</tr>
<tr>
<td>Annual grasses (2 spp.)</td>
<td>x</td>
<td>0.1</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Forbs (14 spp.)</td>
<td>2, 3, x</td>
<td>0.1</td>
<td>2.6</td>
<td>0.6</td>
<td>0.4</td>
</tr>
<tr>
<td>Shrubs/half-shrubs (6 spp.)</td>
<td>2, 3, x</td>
<td>2.1</td>
<td>2.7</td>
<td>1.9</td>
<td>2.0</td>
</tr>
<tr>
<td>Total vegetation (27 spp.)</td>
<td>A</td>
<td>70.7</td>
<td>65.5</td>
<td>60.3</td>
<td>58.3</td>
</tr>
</tbody>
</table>

1 Species with >0.5% cover are listed individually; complete data and list of all 27 species recorded is available upon request from authors.

2 Status: 1 = decreaser, 2 = increaser, 3 = invader, x = undetermined (Stoddart and Smith 1975).
wheatgrass, while the potential dominant on the other three towns was blue grama. Thus, one would expect to find more western wheatgrass on area B. However, this was not the case. Apparently, grazing influence of prairie dogs was more important than soil type in determining percent cover of western wheatgrass.

In summary, following abandonment of prairie dog towns in shortgrass prairie in northeast Colorado, results of this study indicated decreases in total vegetative cover and in percent cover of all grasses combined, which includes the dominant plant species. Only western wheatgrass increased slightly. Most changes were relatively minor except for markedly more species of forbs in the area abandoned by prairie dogs for 1 year compared to the other areas. Results of this study indicated that eradication of prairie dogs would not significantly improve shortgrass prairie for cattle during the first few years following abandonment of the towns.

Literature Cited


A Low-Cost Portable Deer Enclosure

W. WILLMS, R. TUCKER, AND L. STROESSER

Highlight: Polyethylene fishing net was used as fence material to construct low-cost portable deer enclosures to pen tame and semitame mule deer (Odocoileus hemionus hemionus) for diet observations. Three workers could disassemble and set up a 225 m² pen at a new location in approximately 1.5 hours.

Research using tame deer may be hampered by a lack of adequate holding facilities. Deer-proof fences are expensive and their construction is time consuming. An alternative to wire and board fences is fishing net, which is a relatively inexpensive material. Fences made of netting for one fence, 15 m × 15 m, with rope and wooden supports

The fishing net was 12-cm mesh, 550 m long by 25 mesh deep, with double selvage top and bottom and weighed 120 kg. To facilitate handling, polypropylene rope 6 mm diam. was woven along the top and bottom webbing. To erect the fence, steel posts were driven at each comer of the plot. To the posts, 2.5-m long dried fir samplings (5 cm diam.) were wired and guy wires attached. The ends of the top and bottom ropes were tied to a comer post, stretched tight, and tied to the next comer post. The webbing was then distributed evenly along the distance by sliding it along the two ropes (Fig. 1). When the right amount of webbing was evenly spaced, pre-cut 2-m long samplings were placed upright every 4 m to support the top rope and hold the bottom rope down. Notches cut in the ends of the saplings fit over the ropes. The middle post along each side of the pen was supported by another steel post for greater rigidity.

It is important that the right amount of webbing be used for the height desired. If too little webbing was used, the top and bottom ropes were pulled together too tightly, and if too much was used, the webbing sagged. The right amount was found through trial and error. It was found that the original folded length of 550 m when erected yielded about 350 m for a 2-m high fence. Higher fences could be made, but the length would be reduced.

Netting for one fence, 15 m × 15 m, with rope and wooden supports is easily carried by two people and may be managed by one person. Another benefit of the webbing is that when animals jump into it there

The authors are graduate student, Department of Plant Science, University of Alberta, Edmonton; range technician, Research Station, Agriculture Canada, Kamloops, British Columbia. Manuscript received November 5, 1977.