The Effect of Selected Presowing Seed Treatments on Germination of Lehmann Lovegrass Seeds

MARSHALL R. HAFERKAMP AND GILBERT L. JORDAN

Highlight: Samples of Lehmann lovegrass seeds were treated with various presowing seed treatments, oven drying, mechanical scarification, moistening, and moistening plus oven drying. The pretreated seeds were then allowed to germinate with adequate moisture at 24°C for 24 and 48 hours. Germination was significantly increased by mechanical scarification, oven drying, moistening plus oven drying, and certain moistening treatments of warm-vapor or cold-water imbibition.

Lehmann lovegrass (Eragrostis lehmanniana Nees.) has been used extensively for range reseeding in the semiarid southwestern United States (Jordan and Maynard 1970; Cable 1971; Herbel et al. 1973). In southeastern Arizona, Jordan and Maynard (1970) observed that Lehmann lovegrass seedlings seemed to emerge better from seedings made in March than in June of the same year. This difference was observed only when March seedbeds contained some residual winter moisture but not enough for germination and the following summer was marginal with respect to precipitation. Neither March nor June seedbeds contained moisture adequate to support germination until the arrival of summer rains in July and August. Thus, we can assume seeds were subjected to various combinations of moistening, drying, heating, and attack by microorganisms during the interval between planting and the arrival of summer rains.

Moistening, drying, and heating may act as presowing seed treatments in dormancy removal. They also could increase the rate of germination of Lehmann lovegrass seeds. Brauen (1967) found dormancy and sensitivity to light were reduced by sorting with air. Wilhelm (1969) showed total and rate of germination were increased by pretreatments of moistening at 10 or 24°C followed by air drying at 24°C. Jordan (unpublished data) observed the rate of germination for Lehmann lovegrass seeds was increased when seeds were imbibed in a water saturated atmosphere and then oven dried at 70°C. Oven drying of air dry seeds at 70°C also was effective. Seed response varied with age of seed, with older seed responding better than 1-year-old seed. Bleak and Keller (1972) found that seeds of Lehmann lovegrass premoistened for 36 hours at 16°C and 18 hours at 28°C followed by surface drying for 2 minutes had 21 to 31% seedlings emerge in 5 days, while only 6% emerged for nontreated seeds.

In the present study the effects of 15 different presowing seed treatments on Lehmann lovegrass seeds were compared on a 10-year-old lot of seeds.

Materials and Methods

Seed Source

Seeds of Lehmann lovegrass, Arizona Accession 68, lot 4856, were produced at the Soil Conservation Service, U.S. Department of Agriculture, Plant Materials Center, Tucson, Ariz. This lot was a mixture of seeds collected in November 1963, July 1964, and October 1964, and was approximately 10 years old. Variation in seed size was reduced by sorting with air.

Seed Treatment

The fifteen treatments listed in Table 1 included air drying, oven drying, mechanical scarification, moistening, and moistening plus oven drying.

Control: Seeds were air dried and stored in the laboratory.

Oven dried (OD): Seeds were oven dried for 24 hours at 70°C in a mechanical convection oven immediately prior to testing. Seeds contained approximately 2% moisture (dry weight basis) after oven drying.

Scarified: Seeds were mechanically scarified in a modified Forsberg seed cleaner (Brauen 1967; Wright 1973). An 8-ml volume of seeds was placed on the abrasive inner surface of the inner cylinder. The cylinder was held in a horizontal position and seeds scarified for 8 sec.

Warm vapor imbibition (24v): Separate treatments consisted of imbibing samples (100 seeds) for 24, 48, or 72 hours in a water saturated atmosphere (approximate relative humidity 95%) in the dark...
at 24°C, followed by oven drying for 24 hours at 70°C. Another set of samples (100 seeds) received the same imbibition treatments but were not oven dried. Individual 100 seed samples, in small nylon sacks, were placed in a larger cloth sack and suspended in a modified Stults germinator for treatment.

Cold water imbibition (10w)
Separate treatments consisted of imbibing samples (100 seeds) for 24, 48, or 72 hours in free water in the dark at 10°C, followed by oven drying for 24 hours at 70°C. Another set of samples (100 seeds) received the same imbibition treatments but were not oven dried. Samples (100 seeds) were imbibed on two pieces of Eaton-Dikeman No. 617 filter paper moistened with 7 ml of sterile distilled water (SDW) in 100 by 15 mm disposable petri dishes. Dishes were randomly distributed on four trays situated in the center of a Model 500 T. L. Cleland International, Inc. germinator.

Germination Environment
To evaluate the effect of the 15 presowing seed treatments, samples (100 air-dry seeds) were treated and then imbibed at 24°C for 24 or 48 hours. Samples were immersed in 10 ml SDW contained in 125 ml Erlenmeyer flasks closed with rubber stoppers containing holes plugged with glass wool. Flasks were randomly distributed atop a metabolic shaker (Fig. 1) designed for the flasks to tilt 30° from horizontal twelve times each minute for aeration purposes. The shaker was placed in a Sherer Controlled Environment Lab. Model CEL 37-14 growth chamber. Samples imbibed for 24 hours were maintained in the dark, but samples imbibed for 48 hours were illuminated once with 12.92 kilolux for 3 hours between hours 24 and 27. The shaker was used for germination studies and additional metabolic studies because complete seedling recovery was possible with this method. Brauen (1967) suggested some seeds of A-68 were light sensitive. Preliminary studies had indicated that this lot of seeds would also respond to light. Separate samples were used for germination counts at 24 and 48 hours without replacing in chamber and thus were not exposed to light. One flask per treatment was removed after 24 hours and one flask per treatment was removed after 48 hours of imbibition in germination conditions. Germination percentage was determined with a Luxo magnifying lamp or binocular microscope (10×). Seeds were considered germinated when the testa was split.

Statistical Treatment
Six replications were run over time for each treatment at 24 and 48 hours of imbibition. Data were subjected to analysis of variance, and LSD were used to separate means where a significant difference occurred (p<0.05). The use of FLSD for multiple comparisons was based on reports from Carmer and Swanson (1968, 1971).

Results and Discussion
Germination percentages for pretreated Lehman lovegrass seeds are presented in Table 1. Control seeds germinated 4 and 36% after 24 and 48 hours of imbibition, respectively. Germination at 24 and 48 hours was significantly (p < 0.05) increased by scarification, oven drying (OD), certain periods of warm vapor (24v) or cold water (10w) imbibition and moistening plus oven drying. Treatments of short duration 24 and 48 hours of warm vapor imbibition and 24 hours of cold water imbibition did not significantly (p < 0.05) increase germination percentage at 24 hours above that for control seeds. Oven drying (OD) was as effective as any treatment used. OD following long duration, 72 hours of imbibition in warm vapor and 48 and 72 hours in cold water, did not yield germination percentages at 24 hours which were significantly (p < 0.05) greater than the same treatments without OD.

Pretreating Lehman lovegrass seeds with treatments of mechanical scarification, oven drying, or moistening plus oven drying allowed rapid germination to occur. The moistening and moistening plus oven drying treatments might occur naturally in the field, especially when seeds are planted in moist soil in March rather than dry soil in June. Therefore, planting on the earlier date may be beneficial for seedling establishment.

The data suggest that several distinct mechanisms are involved in hastening germination. Mechanical scarification probably increased seed coat permeability to water and gas. Lehman lovegrass seeds are covered by a gelatinous coating which can become a barrier to water and gas when moistened. Thus moistening plus oven drying or oven drying alone may have disrupted this barrier and improved germination. In addition, oven drying at certain stages of physiological development may have caused reorganization of some structural compounds and/or denaturation of others. Seeds imbibed in the warm vapor or cold water probably advanced physiologically with an increase in water content. Seeds which imbibed for more than 24 hours may have advanced physiologically to a stage that did not allow a response to oven drying like that

Table 1. The effect of various presowing seed treatments on germination percentage of seeds imbibed with adequate water for 24 and 48 hours at 24°C.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Period of imbibition</th>
<th>24 hours</th>
<th>48 hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>4</td>
<td>36^a</td>
<td></td>
</tr>
<tr>
<td>Scarified</td>
<td>42</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>OD</td>
<td>58</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>24v for 72 hours</td>
<td>30</td>
<td>68</td>
<td></td>
</tr>
<tr>
<td>24v for 48 hours</td>
<td>14</td>
<td>59</td>
<td></td>
</tr>
<tr>
<td>24v for 24 hours</td>
<td>15</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>24v for 72 hours + OD</td>
<td>38</td>
<td>89</td>
<td></td>
</tr>
<tr>
<td>24v for 48 hours + OD</td>
<td>33</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>24v for 24 hours + OD</td>
<td>47</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>10w for 72 hours</td>
<td>32</td>
<td>86</td>
<td></td>
</tr>
<tr>
<td>10w for 48 hours</td>
<td>21</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>10w for 24 hours</td>
<td>14</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>10w for 72 hours + OD</td>
<td>39</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>10w for 48 hours + OD</td>
<td>33</td>
<td>81</td>
<td></td>
</tr>
<tr>
<td>10w for 24 hours + OD</td>
<td>47</td>
<td>85</td>
<td></td>
</tr>
</tbody>
</table>

^a LSD p = .05, 15.1.

^b LSD p = .05, 11.4.

^c Data are averages of six replications.

Fig. 1. Metabolic shaker and set of flasks used for germination of treated seeds, as described in the text.
obtained after 24 hours of imbibition. However, if advanced
physiologically, it appears some of the advancement may have
been maintained even with oven drying. In order to test the
possibility that presowing seed treatments affect metabolism
and seed coat permeability, additional studies were initiated
(Haferkamp 1975).

Literature Cited

Bleak, A. T., and W. Keller. 1972. Germination and emergence of selected

Brauen, S. E. 1967. Seed coat histology, germination, dormancy and seedling
drought tolerance of Lehmann lovegrass (Eragrostis lehmanniana Nees.).

Cable, D. R. 1971. Lehmann lovegrass on the Santa Rita experimental range,

Assoc. 68:66-74.

Carmer, S. G., and M. R. Swanson. 1968. Detection of differences between
means: A Monte Carlo study of five pairwise multiple comparison pro-

Haferkamp, M. R. 1975. Some physiological and physical changes exhibited
by seeds of Lehmann lovegrass (Eragrostis lehmanniana Nees.) with pre-
sowing seed treatments of moistening and drying. PhD Diss. Univ. of
Arizona Library. 114 p.

1973. Root plowing and seeding arid rangelands in the southwest. J. Range
Manage. 26:193-197.

Revegetation. Progressive Agriculture. College of Agriculture. Univ. of
Arizona. 22:4-7.

Wilhelm, M. J. 1969. Germination and seedling growth as affected by alternate
wetting and drying of seeds of Eragrostis lehmanniana Nees. MS Thesis,
Univ. of Arizona, Tucson. 55 p.

Wright, L. N. 1974. Seed dormancy, germination environment, and seed

Call for Papers

31st Annual SRM Meeting, February 6-10, 1978, San Antonio, Texas

The program committee for the 1978 Annual Meeting is issuing a call for
volunteer papers. It is the desire of the program committee to develop a meeting
which will serve as a forum for interaction and exchange of information among scientists, educators, administrators and managers who are concerned with the
many aspects of range management. Papers which present new knowledge and ideas will be given special consideration. An attempt will be made to accommodate papers on any subject matter relevant to range management. All volunteer
papers will be screened and those that provide reasonable assurance of meeting the standards of high quality that the Society expects will be accepted. Concurrent
sessions will be developed based upon the response received. Authors of volunteer
papers should indicate the subject matter area(s) which is most appropriate for this
paper.

I. Range Management in Practice
II. Grazing Management
III. Range Improvements
IV. Economics
V. Ecology
VI. Plant Physiology and Morphology
VII. Education and Administration
VIII. Resource Inventory and Analysis
IX. Range Resources and Products
1. Plants
2. Livestock
3. Wildlife
4. Insects
5. Watershed
6. Recreation
X. Other Special Topics (Anyone wishing to develop special sessions should
contact program chairman before June 15, 1977.)

Procedure for submitting papers: (1) Submit title of proposed paper by June 15,
1977, on a separate sheet giving the title of the paper, author(s) mailing address of
the author to whom correspondence is to be sent, subject matter area which is most
appropriate (1st and 2nd choice), and a brief supporting statement indicating
significance of the proposed paper. (2) Submit abstract of paper complete with
title, and author(s) and author affiliations by September 15, 1977. Authors will be
sent information packet on preparation of abstracts after receipt of title so that all
abstracts can be prepared uniformly for publication in Abstracts of Papers.
Abstracts will be limited to 250 words or less.

Deadlines: Deadline for titles is June 15, 1977; deadline for abstracts will be
September 15, 1977. Authors will be notified of acceptance of their paper by
October 15. Deadline for undergraduate university students submitting papers for
student conclave is October 15. Papers should be designated for student conclave.

Send titles, abstracts, and correspondence concerning the 1978 program to Dr.
J. L. Schuster, Chairman, 1978 SRM Program Committee, Dept. of Range
Science, Texas A&M University, College Station, Texas TX 77843.