The Use of Sesquiterpene Lactones as Taxonomic Markers in the Shrubby Species of Artemisia (Section Tridensatae) in Montana

RICK G. KELSEY, MELVIN S. MORRIS, AND FRED SHAIFIZADEH

Highlight: The aerial parts of sagebrush contain many interesting natural products. The sesquiterpene lactones are a class of compounds that can be easily extracted from these plants and then analyzed by thin-layer chromatography. When used in combination with the morphological characteristics, the sesquiterpene lactones can provide useful taxonomic markers that aid in separating various sagebrush taxa.

In 1965, Young reported the results of his chemical survey of 16 sagebrush taxa from Sublette County, Wyoming. This work led the way to the discovery of a new subspecies within the Artemisia tridentata complex, the subspecies wyomingensis (Beetle and Young, 1965). Since then, there has been a tremendous interest in the chemical makeup of the woody species of sagebrush. In particular, the chemical constituents have been investigated in search of additional characteristics that might be useful in the identification or the classification of these species.

Researchers in other states have conducted surveys similar to Young's. Holbo and Mozingo (1965) and Brunner (1972) examined many species in Nevada, while Winward (1970) studied the A. tridentata complex in Idaho. These studies were very similar in that they all dealt with the ultraviolet fluorescent compounds, now known to be coumarins and flavonoids (Shafizadeh and Melnikoff, 1970; Rodriguez et al., 1972; and Brown et al., 1975), and they all to some degree found these compounds to be useful taxonomic markers. In addition to being useful taxonomic markers, the ultraviolet fluorescent chemicals have been shown to be reliable indicators of palatability differences in sagebrush (Hanks et al., 1971, 1973; Hanks and Jorgensen, 1973; Stevens and McArthur, 1974). Hanks et al. (1973) have also used these compounds as a basis for inferring phylogenetic relationships.

For the last several years, a previously uninvestigated class of compounds, the sesquiterpene lactones, have been the subject of some intense studies in sagebrush (Irwin, 1971; Shafizadeh et al., 1971; Kelsey et al., 1973; Kelsey, 1974). The sesquiterpene lactones have been used to help solve both taxonomic and phylogenetic problems in other genera, particularly members of the Compositae (Payne et al., 1973; Yoshioka et al., 1973). In Montana, we have directed our studies toward determining the systematic usefulness of the sesquiterpene lactones in the sagebrush species described by Beetle (1960). Although the coumarins and flavonoids have been useful taxonomic markers, they have not provided answers for all the systematic questions associated with the woody Artemisias. The sesquiterpene lactones may provide new and independent characteristics that may be used with morphology, ecology, cytology, and the flavonoids and coumarins for solving some of the systematic problems. In this report, we discuss how the sesquiterpene lactones have been useful as taxonomic markers in Montana sagebrush species.

Materials and Methods

To extract the sesquiterpene lactones, cover 10 grams of crushed air-dried leaves with 100 ml of chloroform and let stand for approximately 48 hours; periodic shaking or stirring will enhance the extraction. After two days, filter off the leaves and evaporate the chloroform; this yields a thick green residue. For the best analytical results, it is recommended that this residue be further processed as outlined in Figure 1. However, it is possible to detect many of the sesquiterpene lactones by thin layer chromatography (TLC) without further purification of the initial chloroform extract.

The sesquiterpene lactones are analyzed by TLC on 20 × 20 cm silica gel plates covered with 0.50 mm of silica gel G (Woelm). Commercially prepared plates can also be used. Prior to use all plates are heated for 30 minutes in a 100-110°C oven. Just before applying the sesquiterpene lactones to the TLC plate, add a few drops of chloroform to the extract so that it can be drawn up into a small capillary tube. Two or three drops of the solution should be sufficient for analysis. The samples can then be spotted 2.0 cm from the base of the plate and approximately 1.0 cm apart; this will allow 18-20 samples to be run simultaneously.

After all the samples have been applied, place the plate in the solvent chamber. Our major solvent system is chloroform:petroleum ether:ethyl acetate (2:2:1, V/V/V); however, this separates only the nonpolar compounds. More polar compounds can be detected by using

1Manufactured by M. Woelm, Eschwege, Germany. Exclusively distributed by ICN Pharmaceuticals, Inc., Cleveland, Ohio. Other brands of silica gel G are satisfactory.

The authors are, respectively, research associate with the Wood Chemistry Laboratory, professor emeritus of range management, School of Forestry, and director of the Wood Chemistry Laboratory, University of Montana, Missoula, 59801.
Analyze by thin-layer chromatography (TLC)

Fig. 1. The procedure for extracting sesquiterpene lactones from sagebrush.

chloroform:petroleum ether:ethanol (5:4:1). The results of this paper are based entirely on the first solvent system. The plate should remain in the chamber until the solvent front has moved approximately 15.0 cm beyond the point of sample application. Mark the solvent front; remove the plate from the chamber and allow it to air-dry. Sesquiterpene lactones are not detectable in visible light. For compounds to be visible, the surface of the plate must be sprayed with a fine mist of concentrated sulfuric acid and heated in an oven set at 100–110°C for 3–5 minutes. The sesquiterpene lactones can exhibit a variety of colors (green, blue, red, yellow, brown, purple, etc.) and the length of the heating period required to make each compound visible may vary. Some sesquiterpene lactones will become visible immediately upon spraying with sulfuric acid. Others show up after 1–5 minutes of heating, and there are a few that require extensive heating in excess of 5 minutes. Long heating periods, however, will result in the charring and loss of color for most compounds. The best way to prevent overheating compounds due to insufficient heating is to place the plate back into the oven after recording.

Plates should be removed from the oven when the colors are very bright, as stated above, usually with in 1–5 minutes, depending on the samples. The colors produced by the sesquiterpene lactones are stable for an hour or so; thereafter, they begin to fade slowly. The intense colors observed immediately after heating can be maintained for longer periods by covering the surface of the chromatogram with a glass plate. The Rf values (distance moved by compound/distance beyond the point of sample application) and the colors of each spot should be recorded soon after removing the chromatogram from the oven. We have noted that colors develop more rapidly on commercially prepared plates, so they must be watched very closely while heating at 100–110°C, or the temperatures should be turned down.

Results and Discussion for Montana

The diagnostic TLC patterns for the species and subspecies of sagebrush common in Montana are illustrated in Figures 2, 3, and 4. It is important to realize that only the most diagnostic spots, those with a frequency of 29% and greater (frequency = number of samples of one species in which the spot was recorded in greater than trace amounts/total number of samples of that species or chemical type examined), have been diagramed. Most chromatograms will have more spots, particularly at the higher Rf values. However, these are usually extremely variable and of little use. Frequently, a single compound on the chromatogram will exhibit slightly different shades of color, such as light purple or brown; consequently, the large number of spots marked as both purple or brown. However, in rare taxa, more than one compound, each with a different color, occur at approximately the same Rf, resulting in a variety of colors being recorded. This is illustrated by the lowest spot in *A. tridentata* ssp. *vaseyana* and *A. tridentata* ssp. *wyomingensis*.

Sesquiterpene lactones can be extracted from sagebrush plants at any time of the year, although samples collected during the summer months, particularly August and September, provide the best results. Our studies have shown that the young branches, fluorescence, and seeds contain the same sesquiterpene lactones as the leaves, although leaves are the easiest to handle. The biological production of the sesquiterpene lactones in sagebrush appear to be genetically controlled and not random or haphazard (Kelsey, 1974). Their consistency and reproducibility have demonstrated that these compounds are significant characteristics for use in sagebrush systematics. The fact that the sesquiterpene lactones vary quantitatively does not refute genetic control or eliminate their systematic usefulness because quantity like quality may also be genetically controlled.

With few exceptions, in order for the chromatography of the sesquiterpene lactones to be used as an effective taxonomic tool, it must be used in conjunction with the morphological characteristics. The best technique is to identify the specimens in the field using as many morphological and ecological criteria as possible and then using the chemical analysis as an additional check or
confirming characteristic. Because of the similarity of chromatographic patterns between some taxa, the sesquiterpene lactones cannot separate all species of Montana sagebrush. However, if the species are separated initially by morphology into one of the following groups: (1) *A. tridentata*, (2) *A. cana*, (3) *A. tripartita*, or (4) others (containing *A. nova*, *A. longiloba*, and *A. arbuscua*), the sesquiterpene lactones can separate the species and subspecies within each category.

The sesquiterpene lactones have been extremely beneficial in separating the three subspecies within the big sagebrush (*Artemisia tridentata*) complex (Fig. 2). *Artemisia tridentata* ssp. *vaseyana* has been found to maintain three distinct sesquiterpene lactone races in western Montana (Shafizadeh et al., 1971; Kelsey et al., 1973). Two of these chemical races exhibited interesting topographic distributions and are probably ecotypes; they deserve further consideration ecologically. The third sesquiterpene lactone race of the ssp. *vaseyana* is referred to as the Hot Springs race (pattern 3, Fig. 2) because its geographic distribution is restricted to the isolated Hot Springs Valley in northwestern Montana. *Artemisia tridentata* ssp. *vaseyana* f. *spiciformis* (pattern 4, Fig. 2) produces a distinct set of sesquiterpene lactones which make it easy to separate from the above three chemical races in the ssp. *vaseyana*.

Artemisia tridentata ssp. *wyomingensis* has two TLC patterns, although 90% of the plants examined possessed pattern 5 in Figure 2, which could be easily distinguished from all the other TLC patterns in this species. The second pattern in the ssp. *wyomingensis* was not diagramed because of its low frequency of occurrence. *Artemisia tridentata* ssp. *tridentata* had one TLC pattern (pattern 6, Fig. 2) that could be used to separate it from the other two subspecies.

We would like to stress the importance of distinguishing big sagebrush at the subspecific level. It is apparent from our observations, as well as others (Winward, 1970; McDonough and Harniss, 1974, 1975) that the three subspecies, *vaseyana*, *tridentata*, and *wyomingensis*, differ enough ecologically to warrant subspecific identification.

In 1970, Beetle emphasized the distinctness among the three species, *A. longiloba*, *A. arbuscua*, and *A. nova*. The sesquiterpene lactones add support to the individuality of these three species. *Artemisia nova* had one diagnostic TLC pattern not found in any other species (pattern 7, Fig. 3). *Artemisia longiloba* had two patterns, one of which (pattern 8, Fig. 3) was difficult to separate from other species (*A. tridentata* ssp. *tridentata*, pattern 6, Fig. 2; *A. cana* ssp. *cana*, pattern 13, Fig. 4; *A. tripartita* ssp. *tripartita*, patterns 14, 15, Fig. 4). The second one, however, was species specific (pattern 9, Fig. 3) (Shafizadeh and Bhadane, 1973a). *Artemisia arbuscua* ssp. *arbuscua* had one pattern (pattern 10, Fig. 3) that was easily differentiated from those in *A. longiloba* and *A. nova*, but it was identical to the pattern in *A. tridentata* ssp. *vaseyana* f. *spiciformis* (pattern 4, Fig. 2) (Shafizadeh and Bhadane, 1972a,

Fig. 3. The diagnostic sesquiterpene lactone TLC patterns for *A. nova*, *A. longiloba*, and *A. arbuscua*.**

Color Code—See Fig. 2.

Fig. 4. The diagnostic sesquiterpene lactone TLC patterns for *A. cana* and *A. tripartita*.**

Color Code—See Fig. 2.
A. urbuscula
A. tridentata
A. longiloba
Artemisia cana
moving solvent systems. Second, many of the sesquiterpene
can provide very useful taxonomic characteristics to supplement
characteristics make the chromatography of the sesquiterpene
JOURNAL OF RANGE MANAGEMENT 29(6), November 1976 505
analyzed by one dimensional chromatography in rapidly
spraying a TLC plate, the length of the heating period required
reflect structural differences in the compounds. Third, after
lactones a very attractive technique for obtaining chemical
for the work of Irwin (1971) and Asplund et al. (1972), very
species from other areas. Any general conclusions regarding the
structural usefulness of these compounds must await a larger
work on sagebrush species over their entire ranges.

Conclusion

Our work has demonstrated that the sesquiterpene lactones
can provide very useful taxonomic characteristics to supplement
the morphology and ecology for identifying and separating
sagebrush taxa within the state of Montana. However, except
for the work of Irwin (1971) and Asplund et al. (1972), very
little is known about the sesquiterpene lactones in sagebrush
species from other areas. Any general conclusions regarding the
systematic usefulness of these compounds must await a larger
work on sagebrush species over their entire ranges.

Literature Cited

new sesquiterpene lactone from Artemisia tridentata. Phytochemistry 11:
3542:3544.

Mandrono 20:385-386.

Beetle, A. A., and A. Young. 1965. A third subspecies in the Artemisia tri-

Bhadane, N. R., and F. Shafizadeh. 1975. Sesquiterpene lactones of sage-

Brown, D., R. O. Asplund, and V. A. McMahon. 1975. Phenolic con-
stituents of Artemisia tridentata ssp. vaseyana. Phytochemistry 14:
1083-1084.

Paper chromatography for determining palatability differences in various

of big sagebrush seed. J. Range Manage. 26:304.

Chromatographic characteristics and phylogenetic relationships of Artemisia,
section Tridensatae. U.S. Dep. Agr., Forest Serv., Intermountain Forest and

Holbo, H. R., and H. N. Moxing. 1965. The chromatographic characteri-

California, Los Angeles.

Kelsey, R. G. 1974. The systematic usefulness of the sesquiterpene lactones
in the genus Artemisia, section Tridensatae, (sagebrush) of Montana. PhD Diss.
Univ. of Montana, Missoula.

Sesquiterpene lactones of Artemisia: TLC analysis and taxonomic signifi-

McDonough, W. T., and R. O. Harniss. 1974. Effects of temperature on
germination in three subspecies of big sagebrush. J. Range Manage. 27:204-205.

McDonough, W. T., and R. O. Harniss. 1975. Know your sagebrush—and

systematics and taxonomy of Ambrosia chamaissonis. Biochemical Systematics
1:21-33.

Mahbry, M. A. Irwin, and T. A. Geissman. 1972. Methoxylated flavonoids
from Artemisia. Phytochemistry 11: 3509-3514.

Shafizadeh, F., and N. R. Bhadane. 1972a. Badgerin, a new germacrano-

Shafizadeh, F., and N. R. Bhadane. 1972b. Sesquiterpene lactones of sage-
37:3168-3173.

Shafizadeh, F., and N. R. Bhadane. 1973a. Longiloba, a new sesquiterpene
24: p. 2171-2174.

Shafizadeh, F., and N. R. Bhadane. 1973b. Sesquiterpene lactones of Ar-

Shafizadeh, F., N. R. Bhadane, and R. G. Kelsey. 1974. Sesquiterpene lac-
tones of sagebrush: constituents of Artemisia tridentata. Phytochemistry

Shafizadeh, F., N. R. Bhadane, M. S. Morris, R. G. Kelsey, and S. N.
10:2745-2754.

Shafizadeh, F., and A. B. Melnikoff. 1970. Coumarins of Artemisia tri-

Stevens, R., and E. D. McArthur. 1974. A simple field technique for identifi-
cation of some sagebrush taxa. J. Range Manage. 27:325-326.

Winward, A. H. 1970. Taxonomic and ecological relationships of the big sage-
brush complex in Idaho. PhD Diss. Univ. of Idaho, Moscow.

lactones. Univ. of Tokyo Press, p. 85-114.

Young, A. L. 1965. A chemical study of the taxonomy of the section Triden-