Nitrate-Nitrogen Accumulation in Range Plants after Massive N Fertilization on Shortgrass Plains

W. R. Houston, L. D. Sabatka, and D. N. Hyder

Highlight: Following massive nitrogen (N) fertilization, at rates of 224, 448, and 672 kg N/ha applied in April 1969, nitrate accumulation by species and plant groups on mixed-grass prairie was measured for 3 years. All species and plant groups accumulated Nitrate-N in direct relation to rates of applied N. Two annual forbs accumulated nitrate-N above the 2000 ppm level, which is considered toxic to livestock. In 1970, the first year of residual effect, slimleaf goosefoot contained nitrate-N levels two to three times higher than the potentially toxic level, and in 1971 greenflower pepperweed contained nitrate-N levels slightly above the potentially toxic level. The use of massive rates of N as a range improvement practice should be used with caution unless potentially toxic species are controlled.

The availability of soil moisture and nitrogen limits forage production on rangelands. Only the N supply is readily susceptible to manipulation by man. In recent years, the economic feasibility of fertilizing rangelands has increased.

On most ranges, N fertilizers have been applied in annual increments rarely exceeding 112 kg N/ha (Rauzi et al., 1968; Rogler and Lorenz, 1957). Even at low rates of less than 30 to 40 kg N/ha per year, carryover or residual responses of herbage are not uncommon (Black, 1968; Houston, 1971).

There has been increased interest in the application of massive rates of N on rangelands as a means of eliminating the cost of annual applications. The fertilizer N applied in excess of the N-immobilizing capacity of the range plant-soil ecosystem appears to remain in the soil in mineral form until utilized by the range vegetation (Power, 1967). Consequently, it appears that saturation of the range plant-soil ecosystem with a massive rate of N fertilizer may eliminate N as a limiting factor for range forage production for many years, resulting in maximum production from the available moisture (Power and Alessi, 1971).

There is also evidence that high rates of N fertilizers have other effects on range vegetation. The vegetational responses may include long term changes in botanical composition and increased levels of N in the herbage. In the central Great Plains, Hyder and Bement (1972) found that N fertilization of abandoned cropland greatly reduced the proportion of pioneer perennial grasses, sand dropseed (Sporobolus cryptandrus [Torr.] A. Gray) and red threeawn (Aristida longiseta Steud.), and increased the proportion of annual forbs, slimleaf goosefoot (Chenopodium leptophyllum Nutt.), prairie sunflower (Helianthus petiolaris Nutt.), and Russian thistle (Salsola kali L.). Smith et al. (1968) also found substantial invasion by annual forbs with high rates of N fertilization.

Massive applications of N may increase nitrate-N content of herbage to a point toxic to grazing animals. If this occurs, the increased herbage yields obtained from massive rates of N are of no value. There is an optimum level of nitrate-N in plants which provides maximum yield with probably little or no toxicity (Hylton et al., 1970). However, this optimum level may easily be exceeded by massive-N

The authors are range scientist, Plant Science Research Division, Agricultural Research Service, U. S. Department of Agriculture; research assistant, Colorado State University; and range scientist, Plant Science Research Division, Agr. Res. Serv., U. S. Dep. Agr., Fort Collins, Colo. L. D. Sabatka's present address is Wyoming Game and Fish Commission, Box 887, Dubois, Wyo.


JOURNAL OF RANGE MANAGEMENT 26(1), January 1973

1973 dues—including a subscription to the Journal of Range Management and Rangeman's News—are past due. If you have not yet paid your dues for 1973, please do so as soon as possible.
applications through saturation of the nitrate reducing systems of the plant (Reid, 1966). There is some evidence that at least one species found on many rangelands, lambquarter goosefoot (Chenopodium album L.), may have little or no natural capacity to reduce nitrate-N to plant proteins (Marthaler, 1937). This species may then accumulate nitrate-N to very high levels. For this reason, any study of plant responses to massive rates of N fertilization should include analyses of the nitrate-N content of herbage.

A study of range plant and soil-N responses to massive rates of N was conducted from 1969 to 1971. This paper reports the nitrate-N concentrations of range vegetation found in this study. The responses of herbage yields, protein content, botanical composition, and soil mineral N status are more long-term in nature and will be published later.

Methods and Materials

Study plots 4.5 x 15 m were established on mixed-grass prairie located about 8 kilometers south of Cheyenne, Wyo. The dominant vegetative association is blue grama (Bouteloua gracilis (H.B.K.) Lag. ex Steud.) and western wheatgrass (Agropyron smithii Rydb.). The soil has been classified as either Pachic Argiustoll or Aridic Pachic Argiustoll (Sligo clay loam with gravel in lower layers) depending on the moisture regime. The plot layout was a randomized block in three replications. Three rates of N (224, 448, and 672 kg/ha or 200, 400, and 600 lb./acre) were broadcast on the surface as single applications in April 1969. The nitrogen applied was ammonium-nitrate (33% N).

Individual species and groups of species were harvested by hand in mid-July of 1969, 1970, and 1971. Western wheatgrass was harvested individually all 3 years. Blue grama, needleandthread (Stipa comata Trin. and Rupr.), and slimleaf goosefoot were harvested individually in 1970. Greenflower pepperweed (Lepidium densiflorum Schrad.) was harvested individually in 1970. Greenflower pepperweed was harvested individually in 1970. Other species harvested in 1970 or in 1971 were grouped into grasses, including both western wheatgrass and thickspike wheatgrass (Agropyron dasystachum [Hook.] Scribn.), perennial grasses other than wheatgrasses, perennial forbs, and annual species other than greenflower pepperweed. Samples of total herbage were harvested biweekly in 1970 with a mechanical plot harvester, beginning May 22 and ending July 17, and in mid-July, 1971.

All herbage samples were dried in a forced-air oven at 70°C and ground through a 1 mm screen in a Wiley mill. The 2,6-xylol method described by Sabatka et al. (1972) was used for determining nitrate-N concentrations.

Precipitation was below average during the crop-year of 1969 (Fig. 1), particularly during the critical fall and spring periods. Precipitation was above average in the fall and early spring of both the 1970 and 1971 crop-years, while late spring and summer precipitation was below average.

Results

Nitrate Concentration in Different Species

Massive N fertilization significantly (P > .99) increased nitrate-N concentration in western wheatgrass in mid-July all three years of sampling (Fig. 2). The nitrate-N concentration increased with each increment of N applied in the year of fertilization and in the 2 years of residual effects. The nitrate-N concentration reached a peak in 1970 and then decreased for the control and the 672 kg N/ha treatments. However, for the 224 and 448 kg N/ha treatments, the nitrate-N concentration increased both from 1969 to 1970 and from 1970 to 1971.

The nitrate-N concentrations in the individual species and groups of species harvested in mid-July of 1970 and 1971 also increased significantly (P > .99) with each increment of N applied (Table 1). Blue grama had the lowest concentrations of nitrate-N of any of the species sampled in 1970; slimleaf goosefoot, an annual forb, had the highest concentrations.

In 1971 the lowest concentrations of nitrate-N occurred in either perennial grasses (including blue grama) other than western wheatgrass, or in perennial forbs, depending on the rate of N applied. The perennial forbs had the lowest concentrations of nitrate-N at the higher rates of applied N. Greenflower pepperweed, an annual forb, had the highest concentrations of nitrate-N in 1971.

Seasonal Trends in Nitrate Concentration

Massive N fertilization significantly (P > .99) increased the nitrate-N concentration in total herbage during the late spring and early summer of 1970, regardless of time of harvest (Fig. 3). As with western wheatgrass, the nitrate-N concentration of total herbage increased with
Table 1. Nitrate-N concentrations (ppm) of herbage harvested in mid-July 1970 and 1971, by major species, plant groups, and total herbage.

<table>
<thead>
<tr>
<th>Year of harvest and species</th>
<th>Rate of N applied in 1969 (kg N/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>1970 Wheatgrasses</td>
<td>160</td>
</tr>
<tr>
<td>Blue grama</td>
<td>170</td>
</tr>
<tr>
<td>Needleand thread</td>
<td>240</td>
</tr>
<tr>
<td>Slimleaf goosefoot</td>
<td>1130</td>
</tr>
<tr>
<td>Total herbage</td>
<td>160</td>
</tr>
<tr>
<td>1971 Wheatgrasses</td>
<td>90</td>
</tr>
<tr>
<td>Other perennial grasses</td>
<td>60</td>
</tr>
<tr>
<td>Perennial forbs</td>
<td>100</td>
</tr>
<tr>
<td>Greenflower pepperweed</td>
<td>50</td>
</tr>
<tr>
<td>Other annuals</td>
<td>100</td>
</tr>
<tr>
<td>Total herbage</td>
<td>90</td>
</tr>
</tbody>
</table>

Each increment of N applied. The nitrate-N concentration reached a peak for all rates of applied N in early July and then decreased through mid-July.

The rapid increase in nitrate-N concentration in late June corresponded well with rapid growth of slimleaf goosefoot during this period.

Fig. 3. Nitrate-nitrogen concentrations (ppm) in total herbage harvested from late May to mid-July 1970, after applying massive amounts of nitrogen fertilizer in April 1969.

Fig. 4. Composition by weight (% oven-dry) of herbage harvested in mid-July 1970 and 1971, after applying massive amounts of nitrogen fertilizer in April 1969.

Discussion and Conclusion

Minimum toxic levels of nitrate in forage for cattle vary from less than 0.20% (2000 ppm) to 0.35% nitrate-N (dry weight) (Lawrence et al., 1968). Bradley et al. (1940) placed the lower limit of toxicity in hay at 0.21% nitrate-N and stated that ingestion of 2.5 kg (5.5 lb.) of hay containing 0.69% nitrate-N would cause fatal poisoning of a 227 kg (500 lb.) animal.

Western wheatgrass, the wheatgrasses as a group, blue grama, needleand thread, other perennial grasses, and perennial forb components never exhibited potentially toxic levels of nitrate-N (2000 ppm) during the course of the study. The nitrate-N concentrations in slimleaf goosefoot in 1970 were two to three times the potentially toxic level. Nitrate-N concentrations in total herbage also reached potentially toxic levels in 1970. There seems little doubt that the high levels of nitrate-N in total herbage in 1970 were due almost entirely to the very high concentration in slimleaf goosefoot.

Nitrate concentration in greenflower pepperweed reached the potentially toxic level in 1971, but only at the highest rate of applied N (672 kg/ha).

The year to year variations in nitrate-N concentration may be influenced by moisture level as well as by the rates of applied N. The first year, 1969, was below average in precipitation, while 1970 and 1971 were essentially average. Nitrate-N concentrations in western wheatgrass were lower in 1969 than in 1970 or in 1971. This may be due to the low late winter and early spring precipitation in 1969, which could have limited availability of the applied N. The above average moisture in late winter-early spring of both 1970 and 1971 probably increased availability of soil-N for uptake by the vegetation. Power's (1967) findings in North Dakota tend to support this conclusion. The high fall and spring moisture of 1970 also could have influenced the drastic increase in abundance of slimleaf goosefoot in 1970, in addition to the stimulating effect of the applied N.

It is clear from the results of this study that massive rates of nitrogen of 225 kg/ha or more on rangelands can cause potentially toxic levels of nitrate-N in some species for 2 to 3 years. The potentially toxic concentrations were found only in annual forbs, which are not grazed readily by cattle but may be by sheep. The abundance of the toxic species present varies...
Gambel Oak Control Studies in Southwestern Colorado

ROBERT W. MARQUISS

Highlight: Gambel oak (Quercus gambelii) was treated with several brush-killing herbicides in southwestern Colorado. Tordon, alone or in a mixture, as a foliar spray increased the percentage of dead stems and reduced the occurrence of root sprouts when compared to other herbicides tested. One-half pound of Tordon 22K mixed with 2,4,5-TP at the 1/2 and 2-pound rates (a/acre) and Tordon 22K at the 2-pound rate have resulted in the best herbicide treatments for controlling Gambel oak in southwestern Colorado.

Gambel oak (Quercus gambelii) is a major component of several million acres of rangeland in Colorado, Arizona, Nevada, New Mexico, and Utah (Brown, 1958). Gambel oak is tolerant to a variety of climatic and soil conditions. This browse species is found throughout the ponderosa pine zone. It extends into the aspen and spruce-fir zones at the higher elevations, and into pinyon pine and juniper types at lower elevations (Brown, 1958; Christensen, 1949; and Price, 1938). Dense stands of oak on rangelands present many management problems. Livestock tend to overgraze open parks and graze only lightly under the brush (Jeffries and Norris, 1965). Many methods of controlling Gambel oak have been tried but the results generally have been disappointing. A few treatments have provided rather successful control of oak but they have not been consistent (Marquiss and Norris, 1968; Heikes, 1964; Pearl, 1965; and Johnson et al., 1969).

Tests Made

During a 7-year period from 1962 to 1969 in the San Juan Basin of southwestern Colorado, many tests to control Gambel oak were attempted. These studies included four herbicides (2,4,5-T amine, 2,4,5-T ester, 2,4,5-DP, and 2,4,5-TP), applied at three initial rates (1-, 2- and 3-lb. a/acre) with repeated treatments during successive years. Three dates of application (mid-June, early July and mid-July) were tested. In other trials liquid Tordon 22K and Tordon mixes 212 and 225 were compared to mixtures of Tordon 22K-2,4,5-TP, and with Tordon beads, Tordon pellets and Fenuron pellets. Tordon 212 is a mixture of 1-lb. of Tordon 22K and 2-lb. of 2,4-D per gallon and Tordon 225 is a mixture of 1-lb. Tordon 22K and 1 lb. of 2,4,5-T per gallon.

Results

Climatic variation no doubt played an important role in the effectiveness of the herbicides, since results with the same herbicide treatment applied over a period of years gave highly variable results from year to year.

All treatments produced partial kill of mature stems and a substantial reduction in canopy cover. Three successive years of treatment produced a substantial increase in percentage defoliation and percentage of dead mature stems over a single initial treatment or even two successive years of treatment. From 15 to 47% of the mature stems were killed by the 2,4,5-TP, 2,4,5-DP, and 2,4,5-T ester when treated 3 consecutive years. Mature stems killed

The author was assistant professor of range science, Colorado State University, stationed at the San Juan Basin Branch Station, Hesperus, Colorado. He is at present assistant professor of biology at Fort Lewis College, Durango, Colo.

The paper is published with the approval of the director of the Colorado State University Experiment Station as Scientific Series Paper No. 1650.

Manuscript received May 29, 1971.

Gambel Oak Control Studies in Southwestern Colorado

ROBERT W. MARQUISS

Highlight: Gambel oak (Quercus gambelii) was treated with several brush-killing herbicides in southwestern Colorado. Tordon, alone or in a mixture, as a foliar spray increased the percentage of dead stems and reduced the occurrence of root sprouts when compared to other herbicides tested. One-half pound of Tordon 22K mixed with 2,4,5-TP at the 1/2 and 2-pound rates (a/acre) and Tordon 22K at the 2-pound rate have resulted in the best herbicide treatments for controlling Gambel oak in southwestern Colorado.

Gambel oak (Quercus gambelii) is a major component of several million acres of rangeland in Colorado, Arizona, Nevada, New Mexico, and Utah (Brown, 1958). Gambel oak is tolerant to a variety of climatic and soil conditions. This browse species is found throughout the ponderosa pine zone. It extends into the aspen and spruce-fir zones at the higher elevations, and into pinyon pine and juniper types at lower elevations (Brown, 1958; Christensen, 1949; and Price, 1938). Dense stands of oak on rangelands present many management problems. Livestock tend to overgraze open parks and graze only lightly under the brush (Jeffries and Norris, 1965). Many methods of controlling Gambel oak have been tried but the results generally have been disappointing. A few treatments have provided rather successful control of oak but they have not been consistent (Marquiss and Norris, 1968; Heikes, 1964; Pearl, 1965; and Johnson et al., 1969).

Tests Made

During a 7-year period from 1962 to 1969 in the San Juan Basin of southwestern Colorado, many tests to control Gambel oak were attempted. These studies included four herbicides (2,4,5-T amine, 2,4,5-T ester, 2,4,5-DP, and 2,4,5-TP), applied at three initial rates (1-, 2- and 3-lb. a/acre) with repeated treatments during successive years. Three dates of application (mid-June, early July and mid-July) were tested. In other trials liquid Tordon 22K and Tordon mixes 212 and 225 were compared to mixtures of Tordon 22K-2,4,5-TP, and with Tordon beads, Tordon pellets and Fenuron pellets. Tordon 212 is a mixture of 1-lb. of Tordon 22K and 2-lb. of 2,4-D per gallon and Tordon 225 is a mixture of 1-lb. Tordon 22K and 1 lb. of 2,4,5-T per gallon.

Results

Climatic variation no doubt played an important role in the effectiveness of the herbicides, since results with the same herbicide treatment applied over a period of years gave highly variable results from year to year.

All treatments produced partial kill of mature stems and a substantial reduction in canopy cover. Three successive years of treatment produced a substantial increase in percentage defoliation and percentage of dead mature stems over a single initial treatment or even two successive years of treatment. From 15 to 47% of the mature stems were killed by the 2,4,5-TP, 2,4,5-DP, and 2,4,5-T ester when treated 3 consecutive years. Mature stems killed