variables was 0.98 (significant, \(P < .01 \)) and with fescue-lespedeza pastures this coefficient was 0.62 (significant, \(P < .05 \)). Compared to the previously observed relationship between NV1 and ADG, the correlation coefficient was increased from 0.90 to 0.98 with orchardgrass-clover and from 0.50 to 0.62 with fescue-lespedeza.

Relationship of ADG and TDN Intake Above Maintenance.—Body maintenance is a requirement that must be satisfied before nutrients are available for body weight gain. Therefore, an attempt was made to arrive at an expression of forage DM intake more closely related to gains than DM intake by including the maintenance and digestibility factors. In fescue-lespedeza pastures, the coefficients of simple correlation between ADG and TDN intake above maintenance shown in Table 2 were increased from 0.62 to 0.70, while in orchardgrass-clover pastures the coefficient was not improved since it was already very high (viz. 0.98) when adjusted dry matter intake only was considered.

Factors Influencing Germination in Beardless Wildrye

R. C. WAGNER AND S. R. CHAPMAN

Student Assistant and Associate Professor of Agronomy and Genetics, Department of Plant and Soil Science, Montana State University, Bozeman.

Highlight

The effects of pretreatment, strains, temperature and germination solutions on germination were studied in beardless wildrye. Rate of imbibition was also studied. Total imbibition was not influenced by either strains or solutions. For the two strains studied optimum conditions appear to be germination in distilled water with alternating temperatures of 15–20 °C preceded by moist prechilling at 1.5 °C.

Optimum conditions for germination in crop species are of interest to the grower because of implications in stand establishment, to the seedsmen for accurate laboratory analyses of seed quality, and to the researcher because of the basic physiological and genetic processes involved. Optimum laboratory germination conditions have been identified for many cultivated crop species; however, there is an apparent lack of such information for many native forage species.

Dewey (1960) studied salt tolerance among 14 *Agropyron* species in field and laboratory tests. He detected wide differences among strains and suggested that differences in salt tolerance are inherited and that relative tolerance can be improved through plant breeding. He also noted a negative relationship between salinity and percent germination and between salinity and rate of germination: as salinity increased, both percent and rate of germination decreased.

The relation between moisture availability and germination varies with species. Ayres (1952) reported a decrease in total germination and reduction in rate of germination with increasing moisture in onions. McGinnies (1960) reported a reduction in rate and total germination with moisture stress in six range grass species. In addition he noted that maximum laboratory germination occurred at 20 °C and that both moisture stress and temperature influenced germination. In other laboratory studies, Ellern and Tadmor (1967) found that low temperatures (4–10 °C range) delayed germination in pasture plants, notably in perennial grasses, and that high temperatures depressed total germination, but had little affect on rate of germination. According to Ellern and Tadmor (1966) speed of germination, not total germination, is influenced by unfavorable alternating regimes in laboratory studies. Palmer, Becker, and Chapman (1968) reported that rate, not total germination, was influenced by salinity.

Materials and Methods

Beardless wildrye (*Elymus triticoides* Buck.) is a native, rhizomorous, perennial grass of significant forage potential in Montana. It is usually found on moist or alkaline soils from Montana and Washington south to Texas and Baja, California (Hitchcock, 1951). To determine optimum germination conditions for this species, four factors and various interactions among them were studied in replicated growth chamber tests: (1) temperature (15 °C constant, 20 °C constant, 15 C–25 C alternating, and 15 C–30 C alternating), (2) pretreat-

Conclusions

The results of this experiment indicated that digestible dry matter intake is a better index to animal gain than dry matter intake alone when steers are grazing orchardgrass-clover and fescue-lespedeza. As postulated initially, the method of expressing forage intake has an effect on the predictive efficiency or the reliability of intake as a predictor of average daily gain. In orchardgrass-clover pastures, the relationships between daily gain and each of the three expressions of forage intake were consistently high. TDN intake above maintenance explained 92 percent of the variation in gains. In fescue-lespedeza pastures, there was more variation in gains which could not be accounted for on the basis of the various indices considered in this study. Nutritive value index explained only one-fourth of the variation in body weight gain of steers grazing FL pastures while adjusted dry matter intake explained 38 percent, and one-half of the variation in gains was explained by TDN intake above maintenance.
obtained from the Soil Conservation Service Plant Materials Center, Bridger, Montana. Germination was scored daily over a 21 day period for four replicates of 50 seeds each of each treatment following the procedures generally used in germination tests of forage grass species by the Montana Grain Inspection Laboratory.

In a second study, the effects of strains and solutions on rate of water uptake (imbibition) and their interaction were studied. Replicated lots of 50 seeds each of each treatment were placed on blotters moistened with either distilled water or Na$_2$SO$_4$ solution at 7.2 atm. and Na$_2$SO$_4$ solution adjusted to 7.2 atm., respectively. Apparent, there were a few seeds which germinated early in the test period. These were insensitive to variation in temperature; however, seeds which germinate later were sensitive to variation in temperature. From the 14th day to the end of the test, response to the four temperature regimes can be grouped in two classes: 15-25 C alternating and 20 C constant vs 15-30 C alternating and 15 C constant. The difference between these classes accounts for the majority of the significant variation among temperature means (Fig. 1). The strain x temperature interaction is significant for days 14-20. There is no apparent reason for the pattern of significance of this effect.

The effect of pretreatment is significant only for days 17-21. Like temperature, apparently pretreatment is relatively unimportant in early germination, but plays a significant role in germination at the end of 21 days. Pretreatment becomes increasingly important from the 17th to the last day of the test (Fig. 2). The temperature x pretreatment interaction is significant for days 19-21.

Optimum germination conditions have been specified for total germination over a defined test period for many crop species. Our results indicate that factors which significantly influence total germination over a 21 day period, pretreatment and temperature, are non-significant during the early days of the test. We suggest this pattern may reflect an adaptive mechanism which allows some seed to germinate under a wide array of environmental conditions and other seed to germinate under more strictly defined conditions. Thus, in nature, this type of variation enhances the chance of successful seedling establishment. Patterns of genetic variation in annual fescue reported by Chapman (1967) tend to support this contention.

From an agronomic point of view, this type of variation may explain the improvement in stand of many forage species in the months after seeding; it may also explain the occurrence of weeds in what appear to be "clean fields."

The highest total germination for both strains was obtained by prechilling seed at 1.5 C for 5 days followed by germination in distilled water at 15-25 C alternating temperature. This is the best combination for total germination and compares favorably with all other treatments at all stages in the test.

The strains were not significantly different in dry seed weights. Based on eight samples of 50 random seeds each, the mean weight of strain '93 was .122 grams and of strain '94', .115 grams. One measurable effect of prechilling was a significant increase in seed weight due to water uptake; mean weight of prechilled seed was .203 grams compared to mean dry weight of .119 grams.

Prechilling significantly influenced seed weight. Water uptake was significantly influenced by strains and germination solution only on the third day.
of the study. The strains were quite similar in response to both Na₂SO₄ and distilled water; increase in weight in water appears to be linear; in salt it is apparently curvilinear (Fig. 3).

The biological effect of prechilling cannot be fully explained. The two studies, rate of water uptake and rate of germination, cannot be compared directly; in the water uptake study, the effect of solutions (distilled water vs Na₂SO₄ solution) is significant only for the third day. In the germination study this effect is significant throughout the experiment. We suggest if the effect of prechilling is water uptake alone, the response to solutions should be parallel in the two experiments. Since it is not, we conclude prechilling must influence both water uptake and enzymatic activity not associated with water uptake, but necessary for germination.

Literature Cited

Another Champion\(^1\)

SYRIL N. ZUFELT

Range Conservationist, Inyo National Forest, Bishop, California.

Highlight

A large silverleaf buffaloberry has been found growing in western Nevada. The plant is over 20 ft tall, has an average crown spread of 18 ft, with a circumference of over 5 ft at breast height.

The western edge of the Great Basin located in eastern California and western Nevada appears to be conducive for growing unusually large plants. Besides having the largest big sagebrush (*Artemisia tridentata*) (Schneegas and Nord, 1967), bristlecone pine (*Pinus aristata*) (Dixson, 1961), single-leaf pinon\(^2\) (*Pinus monophylla*) and Utah juniper\(^2\) (*Juniperus osteosperma*), the area can now lay claim to the largest silver buffaloberry (*Shepherdia argentea*).

The shrub, one of about 25 large specimens, was found growing at Truman Meadows on the Inyo National Forest by Nick Zufelt and Dave Dunaway, Wildlife Biologist for the forest. Truman Meadows, 50 miles north of Bishop and just over the California border into Nevada, is located at 7,200 feet elevation and is surrounded by pinon pine and Utah juniper.

The plant is 20 feet six inches tall, has a stem circumference of five feet six inches at breast height and an average crown spread of 18 feet. Using the formula developed by Dixson (1961), the aggregate value is 91.0 easily surpassing the value of the largest previously buffaloberry's score of 53.5 located in Oregon.\(^2\)

The plant has more characteristics of a tree than is usually associated with

\(^1\)Received May 25, 1970; accepted for publication June 11, 1970.

\(^2\)Personal communication with Mrs. Carol Ronka, Assistant to Chief For-ester, the American Forestry Association, Washington, D.C.