Juniper Root Competition Reduces Basal Area of Blue Grama

DONALD A. JAMESON
Principal Plant Physiologist, Rocky Mountain Forest and Range Experiment Station, Flagstaff, Arizona.

Highlight

Juniper root competition reduces the basal area of blue grama, but the effect is small enough that careful control of experimental error is necessary to detect the difference.

Juniper and pinyon increases in the Southwest have resulted in declining forage production. The reduction in forage could be caused by (1) shade, (2) rainfall interception, (3) litter, (4) phytotoxic root exudates, and (5) competition for water and nutrients. The influence of canopy and litter on blue grama (Bouteloua gracilis (H. B. K.) Lag.) has been reported earlier (Jameson, 1966). This paper reports additional results on the influence of root competition.

Review of Literature

In an earlier report (Jameson, 1966) multiple regression analyses of data from plots with the vegetation consisting mostly of pinyon-juniper and blue grama showed that tree litter was the major factor associated with reduction of blue grama. Tree cover either did not influence blue grama, or perhaps was beneficial. Other literature reviewed at that time provided background information for and supplemented these results. The study provided no data on the influence of tree root competition on blue grama, but other literature reviewed indicated that it was of minor importance.

Tree canopies influence light and rainfall interception. Juniper trees intercept about 40% of the precipita-

tion that falls on the crown (Skau, 1960) and up to 80% of the direct sunlight (Jameson, 1966). Reflected light, however, can greatly augment the total radiation received under the tree canopy. Although blue grama is sensitive to heavy shade (Benedict, 1941; Johnsen, 1962). Shirley (1945) in a review of the effect of light competition on plants concluded that juniper and pinyon trees rarely cast enough shade to cause any harm to understory vegetation.

O’Rourke (1967) found that in higher precipitation areas there appeared to be a response of blue grama to juniper control, but in lower precipitation areas no response was detectable.

Methods

An area of nearly pure blue grama and associated one-seed juniper (Juniperus monosperma (Engelm.) Sarg.) was selected for study. Forty measurement locations were used in the study area; these were far enough removed from trees to be free of litter and appreciable shade, but close enough to be well within the effective root zone. A 50-point frame 1 m x 1 m with points spaced 1 dm x 2 dm was used to count basal area hits at each of the locations. Stakes were driven into the ground at each corner of the point frame to facilitate relocation. Total basal area hits both of blue grama and other species were recorded at each location.

Treatments were applied as follows:

Major plots:
1. Trees left intact (root activity present) (R). 2. All trees within 50 feet of the measurement locations cut (root activity not present) (R). 3. Artificial tree crown added (C). 4. No artificial crown added (C). 5. Artificial crown added of aluminum channel that carried off 40% of the rainfall and also intercepted 40% of the light. This channel was supplemented by intermediate strips that intercepted an additional 40% of the light (Fig. 1).

Results

Basal area hits from the first year of the study were subtracted from corresponding hits from the second year to represent change in hits on blue grama per 100 points due to root and shade interception effects:

<table>
<thead>
<tr>
<th></th>
<th>No roots</th>
<th>Roots</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R)</td>
<td>(R)</td>
<td>Mean</td>
</tr>
<tr>
<td>No shade or interception (C)</td>
<td>1.0</td>
<td>-6.4</td>
</tr>
<tr>
<td>Shade and interception (C)</td>
<td>4.8</td>
<td>-3.4</td>
</tr>
<tr>
<td>Mean</td>
<td>2.9</td>
<td>-4.9</td>
</tr>
</tbody>
</table>

Because analysis of variance showed no interaction between root activity and artificial canopy treatments, these two treatments could be compared independently. Plots without artificial crown lost an average of 2.7 basal area hits per hundred and plots with an artificial crown gained an average of 0.7 for a treatment effect of 3.4 hits per hundred. Compared to an average of 33.6 basal area hits per hundred before treatment, this represents about a 10% increase due to the artificial canopy. The direction of this treatment was the same as reported earlier (Jameson, 1966), but, as before, the difference was not statistically significant.

Plots with root activity lost an average of 4.9 basal area hits per hundred and plots without root activity gained an average of 2.9. The main effect due to removal of root activity was 7.8 or an average increase of 23% over the pretreatment. This difference was significant (P = 0.01).

Concurrent observations on the litter-covered areas of the cut trees showed no increases in blue grama in juniper litter during the time of the study.

Discussion and Summary

It was hypothesized in an earlier report (Jameson, 1966) that juniper crowns probably had a beneficial effect on growth of blue grama, and that tree litter was the predominant factor responsible for reduction of this species in juniper stands. The lack of response to shade was substantiated in the study reported here. Results reported by other works suggested that root activity probably had little effect. This study, however, indicated that, with no litter present, basal area increased 23% the first year following removal of root activity. With random sampling of a juniper-blue grama community, this effect probably could not be shown, but with careful control of the experimental variance this difference...
in managing pinyon-juniper ranges. Where the litter covers only a small part of the area, the blue grama response expected from juniper control should be about the same magnitude as the effect of root competition shown in this study. Where there is more litter, production of blue grama will be less, and although the increase may eventually be greater, it may be delayed until the litter at least partially decomposes.

Literature Cited

A Field Stereophotographic Technique for Range Vegetation Analysis

William R. Pierce and Lee E. Eddleman

Professor of Forest Management and Assistant Professor of Range Management, School of Forestry, University of Montana, Missoula.

Highlight

Color negative film used in a camera with a lens providing a good depth of field at short focal distances has produced stereo color prints that permit accurate identification and measurement of range vegetation with a pocket stereoscope. This system can overcome many of the problems of inventorying a range.

The many and varied range inventory techniques are the results of a continuing search for better inventory procedures. Major considerations in inventory techniques continue to be time allotted, information desired, accuracy required and qualifications of personnel. The time involved in all of the acceptable procedures severely restricts the size of the samples; the smallness of the samples creates too great a sampling error.

The greatest weakness, however, of these processes lies in the difference between results achieved by different field technicians when they attempt to duplicate a sample. This variation prohibits the accurate recognition of small trends over a period of time even when the best trained men collect the sample information, it makes the results from any one sample suspect.

Most previous attempts to use close-up photography in understory vegetational analysis have proven rather fruitless. Winkworth, Perry and Rosettii (1962) made vertical photographs from a stepladder to facilitate examination of plant cover. Although they did find that the photographs gave an excellent projectional representation of the vegetation, they also concluded that it was impossible to measure areas planimetrically without simplifying the plant outlines quite arbitrarily. Grelen (1959) similarly concluded that vertical photographs have not been successful in measuring basal area because of the confusion with crown cover.

In 1956 the U. S. Forest Service adapted the “Three-Step Method” for documentation of range condition and trend. The relevant step three consisted of two key photographs: a general view of the transect and a close-up of a 3 x 3 foot square plot, taken obliquely from the same point as the general photograph (Parker and Harris, 1959). These photographs were suitable for showing general changes in understory condition, but they offered limited application in interpreting small changes. As such, they can supplement ground surveys, but have not been used to quantify the vegetation.

Wimbush, Barrow and Costin (1967) worked on color stereo-photography in 1966 to measure range vegetation. They took color transparencies with a 35 mm camera, forming a continuous strip 30 x 3 feet with 15 pairs of photographs. Using these stereophotographs required a rather sophisticated stereoscope. They reported success in measuring vegetative trends, but stated that the method is not suitable for multilayered vegetation, except to determine species composition of the dominant and perhaps the subdominant strata.

Claveran (1966) reported the use of Polaroid stereoscopic pairs in charting Arizona range plants. Use of the Polaroid positive/negative AA-type film allowed immediate field check of the photograph quality and field charting on the photographs. He noted that the method is suitable only for low vegetation and especially unsuitable for rhizomatous or dense vegetation. Remenin (1967) discusses requirements for obtaining high quality stereographs.

The authors worked with a sample plot, one meter on a side, subdivided into 25 squares, each 50 centimeters on a side (Fig. 1). The frame delineating the plot was designed to fold in the center and the bars creating the subdivisions were removable. The subdivision bars are laced into position after the frame has been positioned as close to the ground as possible. If the plots are to be used for periodic re-measurement, each corner can be marked with a peg driven flush with the ground.

The camera was a Hasselblad 500C, with a 55 mm, 75 degree lens. It was