Cattle Grazing Management on Pine-Wiregrass Range

RALPH H. HUGHES
Range Scientist, Southeastern Forest Experiment Station, Forest Service, USDA, Lehigh Acres, Florida.

Highlight
Wiregrass forage growing in developing pine stands may be grazed by cattle if certain precautions are taken to prevent trampling and browsing of the trees. Grazing pressure on pine seedlings may be reduced by providing adequate amounts of native and improved forage during the summer and by wintering cattle off the range. With combinations involving unburned range and young pine, cows averaged 84% calf crops with calves weighing 435 lb at 8 months old. Beneath older trees on burned range, calf crops were 86% with calves weighing 465 lb.

As a result of a 6-year pilot test conducted by the Coastal Plain Experiment Station and the Southeastern Forest Experiment Station at Alapaha, Georgia, the following management guides can be drawn. In the best interest of total resource management, the goal of these management guides is to combine the production of cattle and timber on a basis that will result in utilizing the native forage resource while maintaining optimum growth of timber.

Pine-wiregrass ranges and plantation areas in the southeastern United States may be grazed continuously during the period of pine establishment if certain precautions are taken to protect the young pine. Grazing pressures on areas of young seedlings can be reduced by planting 1 year after burning and by providing a wide variety of forage including a limited amount of improved pasture. The operator should provide ample forage for the cattle, remove animals from the range in the fall before grass becomes dry and unpalatable, and start grazing in the spring when ample forage is available.

Unburned native forage beneath young regenerating pine stands is a source of much useful feed. Given ample range and limited pasture, a cow will consume both native and improved forage in sizable amounts. With the 0.6-acre of improved pasture provided in the test, cows spent about one-third of their grazing time on the range, whether or not it had previously been burned. Production of native herbage, measured only on the unburned range, was 2,200 lb per acre. On pasture, yield was 9,000 lb per acre. About one-fourth of the range herbage and over 95% of the pasture were utilized.

Burning improves the range forage, and, in areas where prescribed burning is compatible with good timber management, fire can be introduced as soon as trees are 8 to 10 ft tall. Even with supplemental pasture, annual calf production per cow averaged 26 lb greater on burned than on unburned range. Average gain of cows during the spring-summer period was 100 lb on burned range and 72 lb on unburned range.

Reasonably good beef production was obtained from all range-pasture combinations in the pilot test. Cows on unburned range averaged 84% calf crops with calves weighing 435 lb at 8 months old. Production was somewhat greater on burned range—86% calf crops with calves averaging 465 lb. Figure 1 shows cattle typical of beef produced on combinations of improved pasture and pine-wiregrass range.

During the spring and summer, cattle grazed combinations of burned and unburned range, improved pasture, and areas of natural and planted

pine. During the rest of the year, from about October 1 to April 1, all cows gleaned hayfields or were fed high quality Coastal Bermuda hay. Important forage species in the native range were pineland threeawn (*Aristida stricta* Michx.), Curtiss dropseed (*Sporobolus curtissii* (Vasey) Small ex Scribn.), and creeping bluestem (*Andropogon stolonifer* (Nash) Hitchc.). Trees comprising the forest type were slash pine (*Pinus elliottii* Engelm.) and longleaf pine (*P. palustris* Mill.).

We knew that cattle damage trees in a variety of ways. They may actually eat the foliage or buds of trees, or they may bruise or break the stem branches or new shoots by trampling or rubbing on trees.

In considering gains made by cattle, we took into account that the forage was an additional product recovered from an area devoted chiefly to the production of trees. Seedling pine was planted on “fresh” burns in January and February, and cattle were turned into the plantation areas in late March. In this situation some trampling losses were inevitable. Losses were rather heavy in isolated areas where cattle concentrated. Most of these trampling losses occurred the year the seedlings were planted. A few trees 2 to 4 ft tall were damaged by rubbing. Damage by browsing was negligible.

Total losses, however, were not serious. Several factors prevented excessive cattle damage and at the same time had a favorable bearing on production and use of native forage in pine plantations. Cattle had access to a wide variety of forage: wiregrass range, cypress-hardwood swamps, swamp margins, old field carpetgrass, and a limited amount of improved pasture. The improved pasture, where cattle spent 60% of their grazing time, tended to draw cattle away from the pine plantings. Overall grazing intensity of the range varied from very light to moderate. In the naturally regenerating pine stands, most trees were more than 1 year old, and damage by cattle was negligible.

Partial Budgeting for a Range Man

NED W. JEFFERIES, M. F. QUENFMoen, AND ROBERT F. BUCHER

Extension Range Management Specialist and Farm Management Specialists, Cooperative Extension Service, Montana State University, Bozeman.

Highlight

The information for making economic evaluations of range practices often is available but is seldom used. Partial budgeting is a brief method for analyzing the potential economic returns of alternative range practices. This procedure is suitable for field use by ranchers or range technicians.

Technical range men who work with ranchers on private land should ask themselves “Will the improvement techniques that I suggest be good investments for the rancher?” The rancher often depends upon his technical advisor to help him make such decisions. The technician should be able to assist the rancher in making decisions which are economically sound.

Returns from range improvement practices can come in several forms: (a) additional productive capacity of the range which can be converted into marketable products, (b) reduced operating costs for the rancher, (c) improved conservation of the natural resource. The rancher can usually recover some or all of the returns in (a) and (b). However, he may not be able to directly receive economic gain from (c).

Improvements and management practices are sometimes recommended which do not offer adequate returns to compensate the rancher for his investment. Additional fencing or water developments will not increase grazing capacity if a range is already fully stocked. More uniform grazing will occur, thus saving soil. However, this benefit may have little economic significance to the rancher in the short run. Unless gains are increased sufficiently to cover all of the increased costs, the improvements are a poor bargain.

When increases in livestock production or reduced ranch costs are used to justify a range improvement, they should be carefully identified and evaluated. Difficulty in ascertaining costs is no justification for ignoring them. Nor is difficulty in determining economic benefits an excuse for making exaggerated claims for them.

An economic evaluation of any range improvement practice can be made with a partial budget (Fig. 1). Two types of data are needed: (1) good estimates of the physical responses of livestock and range to the improvement practice and (2) good estimates of the costs involved in applying the practice.

With these data the budgeting procedure is accomplished by totaling costs and returns. Increased returns and reduced costs are added together, since both have a positive effect on income. Likewise, reduced returns and increased costs are