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runoff and increase the amount 
of available precipitation enter- 
ing the soil for plant use. 

beef cows and calf production on 
mixed prairie vegetation on west- 
ern South Dakota ranges. South 
Dak. Agr. Exp. Sta. Bull. 412. 39 p. 
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HighLight 
This paper presents preliminary 

results of formulating quantitatively 
the influence of site factors on vari- 
ous nutrient production measures 
and using these relationships in 
linear programming models fo defer- 
mine the optimum protein produc- 
tion on a foothill range. Site char- 
acterisfics for optimum protein pro- 
duction were constrained to fall 
within the range of variables mea- 
sured, and were constrained to safis- 
fy certain inherent relationships 
known about these variables. This 
example shows a useful application 
of an operations research technique 
to resource evaluation problems. 
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Large, fast digital computers 
have become available in the last 
15 years and have allowed the 
development of special methods 
of analyzing and studying com- 
plex systems in industry and 
government. Range ecosystems 
are good examples of complex 
systems, and it is inevitable that 
mathematical analysis will be- 
come increasingly important in 
the future in range research and 
range management, as well as in 
many phases of renewable re- 
source management. To take ad- 
vantage of the methodological 
and conceptual advances from 
operations research and systems 
analysis means we will have to 
give increased attention to for- 
mulating and studying range 
problems in mathematical terms. 

This paper reports only an in- 
troductory approach in applying 
and integrating multiple linear 
regression and linear program- 
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ming methods in studying what 
I call the “optimum site prob- 
lem.” The work at present is 
neither exhaustive nor complete 
but will serve to show, with real- 
istic examples, the potential of 
these techniques for learning 
more about range ecosystems. 

The purpose of this paper is 
(i) to show the development of 
the quantitative formulation of 
site relationships to vegetation 
productivity, (ii) to use multiple 
linear regression equations as ob- 
jective functions in, and to de- 
velop constraints for linear pro- 
gramming models, and (iii) to 
show by example and discussion 
where these approaches have ap- 
plication in analysis of renew- 
able resource management prob- 
lems. 

The Range Site 

Foothill ranges are good ex- 
amples 0 f complex and diverse 
environments. A schematic sim- 
plification is given in Fig. 1. Dif- 
ferent geologic formations may 
outcrop at different levels pro- 
viding various parent materials 
for residual soils, and parent ma- 
terials for some soils may be 
transported onto the site. Varia- 
tions in degree of slope and ex- 
posure also are characteristic of 
foothill rangelands. Important 
variable climatic influences in- 
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FIG. 1. A diagrammatic representation of the foothill range site complex showing 
variations in parent materials, soil 
factors. Double-ended arrows show 
discrete. 

elude the angle at which sun- 
light strikes the soil surface and 
the exposure to the prevailing 
winds, which may be especially 
important in drifting snow onto 
leeward slopes. The ultimate re- 
sult is the development, over a 
long period of time, of varying 
soils and topographic features 
which, when considered together 
with precipitation zones, we 
group arbitrarily into range sites, 
and to which we can ascribe a 
characteristic kind and amount 
of vegetation. The boundaries 
of range sites usually are not 
distinct, but they tend to inter- 
grade and overlap in part. The 
range site name as such is of 
value, especially for large-scale 
surveys, but adds little to our 
quantitative knowledge about 
the relationships of the vegeta- 
tion to the site factors. 

Often it is desirable to be able 
to assess or to rank a given en- 
vironmental complex such as a 
range site, a forest area, or some 
other unit according to some 
prescribed scheme of practical or 
theoretical importance. The as- 
sessment or ranking of a site im- 
plies that the various properties 
of this site have a functional re- 
lationship to criteria which are 
being ranked. Means of assess- 
ing the combined effects of site 

depths, elevation, exposure, and climatic 
that boundaries of range sites are not 

variables on some criteria have 
undergone long development 
originating with qualitative 
characterizations, and more re- 
cently turning to quantitative 
assessments. 

Historical Development 
An early qualitative statement, 

pertinent to the range site problem 
and attributed to Darwin, is that a 
particular plant community is se- 
lected from the available flora by 
the environment of a particular lo- 
cale. This statement illustrates the 
early recognition that the various 
environmental factors, acting upon 
an original flora, lead to the devel- 
opment of a particular plant com- 
munity. This notion was developed 
further by Dokuchaev (1898, referred 
to by Jenny, 1961), the Russian soil 
scientist, who formulated the follow- 
ing relationship. 

s = f (Cl, 0, P) (I) 
where S refers to soils, Cl refers to 
macroclimate, 0 to organisms (pre- 
sumably both plants and animals), 
and P to parent material. Later 
Jenny (1941) reformulated this re- 
lationship and added two new inde- 
pendent variables as follows: 

S = f (Cl, 0, R, P, t) (2) 
where Cl, P, and S are defined as 
above, R refers to relief, and t to 
time. Jenny defines 0 as available 
flora and fauna so that it can be 
considered an independent variable 
rather than a dependent variable. 
This equation states that soil prop- 
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erties are dependent upon the in- 
fluences of the climate acting over 
time on the original conditions of 
organisms, relief, and parent mate- 
rial. Similarly, Major (1951) has 
shown that vegetation is a function 
of the same state factors or inde- 
pendent variables. Later Jenny 
(1961) formulated a more general 
set of equations for an open system 
as follows: 

1, s, v, or a = f (L,, P,, t) (3) 
where the dependent variables are 
any property of the total ecosystem 
(l), soils (s), vegetation(v), or animal 
community (a). The independent 
variables here are specified by the 
vector L,, which gives the initial 
stat: conditions, P, which are the 
flux potentials, and t again referring 
to time. In the present sense, flux 
refers to the movement of matter 
and energy to and from contiguous 
ecosystems. 

In all of the above formulations 
the time scale aproximates that of 
primary succession, evolutionary 
time, or geologic time. For a short 
time scale, such as much less than 
the time required for secondary suc- 
cession, and for practical purposes, 
certain of the variables considered 
dependent variables in the above 
formulations may be considered to 
be independent variables. A change 
in terminology is introduced so that 
now independent and dependent are 
used in the conventional statistical 
sense rather than adhering strictly 
to Jenny’s (1941) meanings. The sta- 
tistical usage is denoted by asterisks. 
Thus, a new relationship may be for- 
mulated as follows: 

V” = f (Cl*, R”, S*) (4) 
or 

Y = f (Xi, X2, . . . X,,, lb,, bz, . . . b,,,) 

where V* refers to some property of 
the vegetation which varies widely 
in a short period of time, for exam- 
ple, to the annual yield or composi- 
tion of vegetation on a given site. 
The independent variables essen- 
tially are fixed in a short period of 
time and are Cl*, or macroclimate, 
R*, the relief features which would 
include such factors as elevation, 
slope, and exposure, and S*, the 
physical and chemical characteris- 
tics of the soil. A vegetation variable 
can be defined as a dependent vari- 
able, Y, and the site variables as 
independent variables X,, in a mul- 
tiple regression equation, and the bi 
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are partial regression coefficients. 
The number of independent vari- 
ables on any given range site is 
large, and their measurement be- 
comes subject to practical consider- 
ations. 

The Regression Model 

Y = b,X, + blXl + b2X2 + . . . b,X, 

The relationship of the vege- 
tation variable, i.e., yield or com- 
position, to any given indepen- 
dent variable may be nonlinear, 
and certain independent vari- 
ables may have interacting in- 
fluences. Development of a 
“mechanistic” model for predict- 
ing a vegetation variable, say 
productivity, no matter how in- 
teresting a modelling task, is 
unnecessary for the present pur- 
poses. As a first approximation 
and simplification for illustra- 
tive purposes, an empirical 
model for predicting a vegeta- 
tion variable may be obtained 
by regression analyses. Multiple 
regression analysis techniques 
may be used to derive a first 
order model (linear terms only, 
without interaction) relating the 
independent site variables and 
the dependent vegetation vari- 
able, giving an equation as 
follows: 

n 
or Y = I: (brX1) 

i=O 

(5) 

where Y is the dependent vari- 
able, e.g., yield or composition of 
the vegetation, X0 is assigned the 
value one and the other X’s are 
the independent variables, i.e., 
independent concerning time 
fixed to a narrow range. The 
value of such equations, of 
course, depends upon the sam- 
pling scheme in which the data 
were collected, the inherent 
variability of the population be- 
ing sampled, and many other 
factors whose discussion is be- 
yond the scope of this paper. 
Further information on the de- 
velopment and use of multiple 
regression models, both linear 
and nonlinear, may be found in 
statistical texts such as Ostle 

(1963) Hamilton (1964) and 
Keeping (1962). 

The Linear Programming Model 
The question may be asked, 

allXl + aI2 X2 + . . . + aIn, X, 4 cl 

“How can we select values for 
the site variables which will 
maximize the value of the vege- 
tation property?” The above 
multiple regression equation for 
predicting a vegetation variable 
can be used in a linear program- 
ming model as an objective func- 
tion. Then we are interested in 
learning the values of the X’s 
which would give us the maxi- 
mum or minimum value, de- 
pending on which is desired, of 
the vegetation variable. If there 
were no constraints on selecting 
the values for the X’s and we de- 
sired to maximize our vegeta- 
tion variable, one could simply 
take an extremely large value 
for each site factor which has a 
positive partial regression coef- 
ficient and an extremely small 
value for those with negative co: 
efficients. However, in real life 
this is not possible. Often there 
is a functional relationship be- 
tween the variables which can 
be shown by a set of inequalities 
as follows: 

allX1+a,2X2...a,~X~...al,IX, 4 Ci 

(6) 

a,,, X1 $- a,,2 X2 + . . . + anm X,,, 6 cl, 
where the alj and cl are con- 
stants. In these inequalities the 
coefficients ai] may be zero for 
many of the terms providing 
that at least one aij is greater 
than zero. An additional set of 
constraints in the linear pro- 
gramming model is that Xi 1 0 
for all i. Further background on 
linear programming models and 
applications may be found in 
such texts as Spivey (1963) for 
introductory treatment and Had- 
ley (1962) for more advanced 
treatment. Further considera- 
tions about constraints pertinent 
to the optimum site problem 
follow. 

Constraints on fhe Solution 
There are three general types 

of constraints: (a) inherent rela- 
tions, (b) those constraints to 
make the solution realistic, and 
(c) those imposed to evaluate 
economical or biological factors. 

Constraints which are inher- 
ent in the nature of the inde- 
pendent variables include the 
following examples: (i) sand + 
silt + clay = 100, where me- 
chanical composition data are 
expressed in percent; (ii) A hori- 
zon depth + B horizon depth = 
depth to C horizon; and (iii) 
depth to B horizon 4 depth to C 
horizon. Here, for example, 
depths of the horizons have func- 
tional or predictable relation- 
ships following from their defi- 
nitions. 

Certain constraints are im- 
posed upon the selection of val- 
ues for the site factors in order 
to keep the solution realistic. 
Thus, for example, the follow- 
ing conditions represent a first 
approximation of some boundary 
conditions for the selection of 
each site variable in the solution 
vector: 

min. site max. 

f;sd 
L variablej I in (7) 

field 
Constraints may be imposed 

when certain economical or bio- 
logical factors are to be con- 
sidered and which have a func- 
tional relationship to the de- 
pendent variable which is being 
maximized or minimized. In 
general, 

X*am B*mxt S Y” 1x1 (8) 
where X”, B”, and Y” are com- 
ponents of regression functions 
for other dependent variables, 
whose minimum or maximum 
values are being set according 
to some heuristic decision about 
the nature of the solution. An 
example of such an imposed con- 
straint follows. 

Assume heights and ages of 
two species of trees are mea- 
sured in plots along with site 
variables. Multiple regression 



equations are developed to pre- 
dict height of each tree species 
from the set of site variables. Let 
the regression equation for spe- 
cies 1 be used as the objective 
function in the linear program- 
ming model. Assume we would 
like to find the site conditions to 
maximize height of species 1, 
yet we want these site conditions 
to provide at least better than 
average height for species 2. 
This can be accomplished by us- 
ing the regression equation for 
species 2 as an inequality to be 
greater than or equal to the 
mean height of species 2. Four 
constraints of this type, devel- 
oped from regression equations 
for dependent variables other 
than protein yield, were in- 
cluded in this problem and are 
discussed in more detail in the 
section on the optimum site. 

Another realistic considera- 
tion concerning constraints is 
that all of the variables in 
the regression function, i.e., the 
objective function, are not 
equally important. Site factors 
having highly significant rela- 
tionships with the vegetation 
parameter could be given addi- 
tional consideration in the solu- 
tion, i.e., the solution can be 
weighted for these variables. A 
preliminary suggestion on a 
method to accomplish this would 
be to use factor or principle com- 
ponent analyses to get an equa- 
tion which would be a new linear 
combination of the more impor- 
tant independent variables. 
Such an equation could be used 
as a constraint to be satisfied in 
the linear programming solu- 
tion. 

From Dafa fo Models 
The above equations show how 

a property of the vegetation may 
be related quantitatively to mea- 
surable site factors, and they 
show how these relationships 
can be used to formulate an ob- 
jective function and constraints 
in a linear programming model. 
The regression model is based on 
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experimental data for the de- 
pendent vegetation parameters 
and the independent site factors 
collected under an appropriate 
experimental design or sampling 
plan. To provide a realistic ex- 
ample, site data and nutrient 
production data, collected from 
plots located by multistage ran- 
domization, are taken from 
range experiments of Van Dyne 
and Kittams (1960) and the fol- 
lowing matrices are defined: 

Y = =d 

‘Y 11 y12 l ** ‘lj 

‘21 ‘22 l *’ '2j 
. 
. 

id y n2 l *’ 
Y nj 

xNa, 
= x21X*2 l *. X2j 

. . . 
x xn2...x nl n j ! I 

(9) 
‘11 ‘12 l ** ‘lj 

In both Y and X, n = 1,2 . . . 
66 plots in one year and 151 plots 
in another. Each plot or location 
is considered a site and indepen- 
dent and dependent variables 
were measured at each. In Y, j = 
1,2, . . . 5 dependent variables: 
protein yield, grass and sedge 
composition, perennial grass 
yield, phosphorus yield, and lig- 

nin composition. In X, m = 1,2, 
. . . 11 topographic and edaphic 
variables: elevation, exposure, 
and slope and the soil variables 
of concentration or content of 
sand, rock, clay, phosphorus, or- 
ganic matter, conductivity, and 
pH (Table 1). Many other vari- 
ables could have been measured 
in the field, such as microcli- 
matic variables, if unlimited 
funds were available. Many ad- 
ditional variables could be gen- 
erated from powers and products 
of the existing 11 variables, 
however, for purposes of illus- 
tration only these 11 variables 
will be considered in this intro- 
ductory study. 

In the multiple linear regres- 
sion analyses the Y matrix was 
considered columnwise so that in 
each univariate multiple regres- 
sion analysis a vector, B, of re- 
gression coefficients was se- 
lected so as to minimize the 
function 

Q = (Y - XBP (Y - XB), (10) 
and was accomplished for each 
column vector by finding 

B = (XT X1-l XT Y. (11) 
For the following discussion, 
each dependent variable is con- 
sidered separately. 

The relationship between the 
linear regression model and the 
linear programming model is as 
follows. The regression equa- 
tion (5), 

Y 1x1 z X Ilrn B mxl , (12) 

Table 1. Dependeni and independent variables measured in individual 
plots on foothill range and used in regression and linear programming 
analyses. 

Dependent 

Y1 Protein yield 
Y2 Grass + sedge composition 
Ys Perennial grass yield 
Yq Phosphorus yield 
Y5 Lignin composition 

Independent 

X1 Elevation 
X2 Exposure 
Xs Sand content of soil 
X4 Clay content of soil 
X5 Rock content 
XS Phosphorus in soil 
XT Organic matter in soil 
Xs pH of soil 
XQ Conductivity of soil 
Xl0 Slope 
X11 Soil depth 
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Table 2. The objective function and constraints of fhe linear programming 
model for determination of site characteristics (Xi) for optimum crude 
protein yield (Y 1. 

becomes the objective function, 
f Z.Z X ,s,,, B n,yl, (13) 

which is to be maximized ac- 
cording to the constraints (6), 

A X llYlll 1,111 _L c l,Yl (14) 
where A and C respectivkly are 
a matrix and a column vector. 

Also, the linear programming 
model requires the following 
constraints which are consistent 
with the values of variables 
measured in real life, 

x 1sm L 0 IXlI, . (15) 
The multiple linear regression 

model (Table 2) shows the rela- 
tionship between protein pro- 
duction and 11 topographic and 
edaphic site variables. This 
equation, less the constant term, 
becomes the objective function 
for the linear programming 
model. Values for the site vari- 
ables are selected to maximize 
this function subject to the con- 
straints that the variables for 
each site are within the limits 
found in the field for that site 
(22 constraints), that inherent re- 
lationships among these site 
variables are satisfied (1 con- 
straint), and that additional in- 
equalities (described below) are 
satisfied so that certain nutri- 
tional and management criteria 
are met (4 constraints). 

The Optimum Site 

He have used an optimization 
technique to determine maxi- 
mum protein yields under a 
given set of conditions. Specifi- 
cally, the objective in this prob- 
lem was to produce protein for 
utilization by cattle and sheep 
during the nonwinter period i.e., 
to maximize YI (Table 1) subject 
to various constraints. Important 
economical and biological con- 
straints were: (1) Sites having a 
higher than average grass and 
sedge composition in the herb- 
age were being sought in con- 
trast to those having a large per- 
centage of woody vegetation. (2) 
A higher than average percent- 
age of grass and sedge alone is 
inadequate for the selection of a 
site; an additional constraint was 
imposed that the site must have 
better than average grass and 
sedge yield. (3-4) Other con- 
straints, based on nutritional cri- 
teria, were that the site must 
have better than average phos- 
phorus yield as well as having 
herbage with less than average 
lignin concentration. The four 
multiple linear regression equa- 
tions relating site factors to grass 
and sedge composition and phos- 

phorus yield, and lignin concen- 
tration were used to derive these 
inequality constraints. This was 
accomplished by using the ap- 
propriate mean value of the 
parameter as the Y term in the 
regression function, and then the 
constant term was subtracted 
from both sides of the inequality. 

Although highly simplified 
models were used in this illustra- 
tive example, the value of these 
methods of analysis is illustrated 
when comparing the predicted 
optimum protein yield with the 
average yield which was mea- 
sured. The value of the objec- 
tive function for the optimum 
solution was a protein yield of 
129 lb/acre. This compares to 
the measured range of protein 
yield from 24 to 211 lb/acre, with 
a mean of 77 lb/acre. 

Because important powers 
and products of independent 
variables were omitted from the 
regression functions, the values 
for the site factors of the opti- 
mum site may or may not be en- 
tirely realistic. The values for 
site factors for the “optimum 
site” for protein production were 
at or near the maximum values 
found in the field for soil phos- 
phorus content, pH, and soil 
depth. The optimum site values 
were at or near the minimum 
field values for elevation, soil 
organic matter, and sand and 
clay (implying a relatively high 
silt content). The optimum site 
would be nearly level and would 
be on north to east exposures. 
Values for soil conductivity and 
rock content for the optimum 
site would be intermediate to the 
extremes measured in the field. 

The above conditions apply, of 
course, to the constraints used in 
this particular model. Altering 
the constraints, even though us- 
ing the same objective function, 
would lead to a different set of 
values for site factors. The im- 
pact of each constraint on the so- 
lution could be evaluated by add- 
ing one constraint at a time in 


