Editorial

INCREASING SOCIETY MEMBERSHIP

Much is said and written each year about the need for more members, especially rancher members, in the American Society of Range Management. Each new Society President and in turn each Section Chairman, appoints a membership committee and instructs it to get new members. These committees dutifully talk to their Society and Section memberships and print written pleas in the Journal of Range Management and Section newsletters for new members. But, nothing ever happens! A significant number of new members just doesn’t materialize. Wonder why?

Since the first big push for members, 1948 through the early 50’s, increases in Society membership have been very small. Annually we pick up the new range graduates after they find employment and a few foreign students who, at best, are only mildly active for a year or two. Total membership was around 3000 five years ago and it is still about the same today.

The membership simply isn’t increasing significantly and I think it is because we do not work hard enough at the job. It doesn’t do any good to talk to the membership because everyone in it already belongs. There are no potential new members there. And the newsletter and Journal articles are read only by members—no potential there either. The fact is we talk and write only to ourselves! So—I’m doing the same thing, but maybe someone who reads this will become unhappy enough to listen to the following suggestions.

Someone has to do a little missionary work—sell the Society—if substantial increases in membership are ever to be realized. Do you ever see anyone get on his feet at a meeting of ranchers and tell of the American Society of Range Management—what it stands for, what it does and what it can do for ranchers and other administrators of range lands? Do you ever hear anyone, any ASRM member, tell ranchers and stockmen that the American Society of Range Management publishes the Journal of Range Management, the only Journal of its kind in the world—the only professional Journal devoted entirely to range management and improvement? Do you ever see an advertisement or announcement in a livestock paper or journal concerning the American Society of Range Management or the Journal of Range Management? Of course not! The only announcement of the Journal of Range Management is in Herbage Abstracts. How many ranchers ever see that?

Members of ASRM, we are talking to ourselves on this membership thing. If we desire new members and we’ve got to have them to keep this thing going, someone is going to have to go out and get them.

We’ve a little money saved — what say we spend some of it for an increase in Society membership? Let’s send the President or the President-elect or the Executive Secretary to the American National Livestock Association Convention and the National Woolgrower’s Convention and perhaps the national meeting of the Soil Conservation Districts Association and the Farm Bureau Federation and have him man a booth in the convention headquarters of each and perhaps even make a speech on the program. These groups will go along — all we have to do is ask them. Let’s tell some of these fellows that we want for members in ASRM something about the outfit — what it has done and what it is going to do. Some of them might join-up! It’s a cinch they won’t as long as they don’t know anything about the American Society of Range Management.
Influence of Supplemental Run-off Water and Fertilizer on Production and Chemical Composition of Native Forage

H. R. COSPER AND J. R. THOMAS

Utilization of run-off water to produce additional forage is essential in a balanced range management program. This is especially true in the northern Great Plains where limited and erratic precipitation results in frequent drought periods. The use of water spreading systems to collect and distribute run-off water over “run-in” range sites has generally resulted in greater forage production (Mooney and Martin, 1956). However, the extra moisture received on several “run-in” range sites on the heavy clay soils of western South Dakota has failed to produce forage in proportion to the amount of moisture available. Poor grazing management and/or low fertility could nullify the benefits expected from the additional moisture.

Increased efficiency of moisture can be obtained by balancing the moisture supply with the soil fertility level. Thomas and Osenbrug (1959) found that yields of crested wheatgrass-brome grass hay increased from 86 pounds per inch of precipitation for non-fertilized grass to 187 pounds per inch of precipitation for grass fertilized with 255 pounds of nitrogen. Moisture use efficiency increased with further additions of nitrogen. The effect of moisture on the use of nitrogen fertilizer by grasses native to central North Dakota was reported by Rogler and Lorenz (1957). Forage yields decreased from 41.0 to 0.7 pounds per pound of nitrogen added as the annual precipitation changed from 21.76 to 10.25 inches, respectively. As the same area was fertilized annually for several years the values included the effects of residual nitrogen.

This study was planned to further investigate the relationships between forage production, soil fertility and moisture. The effects of nitrogen and phosphorus fertilization on the chemical composition of the forage were also investigated.

Experimental Area

The soil in the experimental area was classified as Orman clay loam. It is slightly calcareous having a pH of 7.8, low in available NaHCO₃ soluble phosphorus (6.5 ppm P), relatively high in total nitrogen (0.107 percent) and mineralizable nitrogen (46.2 ppm N), and has a cation exchange capacity of 24.6 me./100 gm, in the surface six inches.

Principal grasses are western wheatgrass (Agropyron smithii), green needle grass (Stipa viridula), and downy brome (Bromis tectorum). These grasses comprised 65 percent of the total plant population. Other plant species present included sunflower (Helianthus spec.), wild carrot (Lepalania multifida), American vetch (Vicia americana)augustifolia), and tansy mustard (Sophia incisa).

The water collecting and spreading systems were constructed in 1944. Water was collected from a watershed of approximately 1400 acres, concentrated in a small reservoir and distributed over a “run-in” range site of approximately 140 acres by means of spreader ditches. In years of normal precipitation the system could be expected to produce one acre foot of water per 35 acres of watershed. Water was spread on the experimental area in 1956. Moisture carried over from the 1956 season influenced yields in 1957.