Editorial

Where Do We Stand Internationally?

The 8th International Grassland Congress was held on the campus of the University of Reading, Reading, England, July 11 to 21. The main objective of the Congress was to encourage worldwide exchange of grassland information. Previous congresses have been held in different countries but this was a return engagement in the British Isles. A unique aspect of the Congress until this year was that no international continuing organization existed to carry on its affairs. Members were those in attendance at the business meeting. They voted to decide the next host country. That country, or rather the host agencies therein, was given the reins completely for programs, arrangements and publications. For the 8th Congress, the British Grassland Society was in charge and did a masterful job with some 20 committees taking active part. For the 9th, the host country will be Brazil.

Success of the 1960 Congress may be measured in several ways. Full and associate members numbered 697 and they represented 53 countries. Day members and visitors probably increased the number to 1,000. The University of Reading believed in and supported the Congress to an extent beyond providing facilities. They staged an honorary degree granting ceremony which included His Royal Highness, The Prince Phillip, who was President of the Congress. His presence and remarks were mentioned in Time magazine. The Congress heard 188 papers, including 7 plenary addresses. Even though 52 papers were by people working in Britain, the program was truly international as 34 other countries were represented. The U.S.A. was responsible for 31 papers and the U.S.S.R. for 13.

The 32 sessional meetings were arranged in two main groups, one dealing with animals and the other with plants. There were seven days of technical papers with three given each morning and two each afternoon. Four pre-congress tours of about 10 days gave 150 visitors a chance to see the technical and practical sides of agriculture in England, Scotland and Northern Ireland. In addition the delegates had opportunities to visit many of the 20-some research establishments located within 25 miles of Reading. Entertainment included exhibits, numerous and well attended receptions, a dance program, and other features. For many, a highlight in enjoyment was an evening at the Shakespeare Memorial Theater at Stratford-on-Avon.

The handling of papers deserves special comment. Each person was given a printed copy of all the technical papers at registration. Some authors read their papers, but most used the opportunity to show slides and to elaborate upon the printed word. Each session included about an hour for discussion. At times these were lively. The
forage production, long season of growth, a degree of permanency and also flexibility in crop-grass rotations. In spite of diligent work by many people much remains unknown in the management and use of pastures.

The problem of measuring animal intake is far from being solved and correlations are often small between pasture yields, grazing days and animal outputs. Conflicting results were heard in the evaluation of management systems with the extremes of continuous grazing and zero grazing (green feed cut and hauled to the animals each day) as well as various rotations turning out best in different studies. It was not always clear whether the grass, the animal or the management was being evaluated.

The importance of stocking rates in grazing trials became increasingly evident as the Congress progressed. We were told that not until the animal potential to produce has been surpassed will differences in the pastures be measured in animal products. As long as the limiting factor is inherent in the animal, they determine production rather than the grass. This consideration applies to range grazing trials as well and I wonder if it is not time for some re-examination of conflicting results from our own experiments with grazing animals. Certainly, specialists on the plant and animal sides of this problem should be working together more closely.

Another area of conflicting results was in the testing of forage species and varieties, which were frequently called cultivars. A common test procedure was to measure plant development and production on spaced plants. At one time we were told that the ranking so determined was considerably different from one found with plants in close competition, even without grazing. Furthermore, grazing comparisons with long recommended varieties of ryegrass did not show significant differences in animal products. It was not always clear whether “late” and “early” referred to beginning of growth, peak of growth or time of maturity. My impression was that new plant varieties were being recommended before adequate tests were made with the grazing animal.

The bodies of knowledge about forage and about animals are large but still incomplete. The known forage-animal and vegetation-animal relationships are scanty and many interactions are little understood. Heritage comparisons but not feed comparisons are accomplished with botanical and chemical means. The animal influences his own feed through selection, trampling and a haphazard return of plant nutrients to the land. A need is indicated for new techniques, more precision and teamwork with peoples of different disciplines working together. But most of all, the need for more creative thinking is underlined.

There is little comfort in the fact that pasture workers have many of the same problems as those in range. There is reason for hope that the large number of grassland workers will find answers more widely applicable than in either pasture or range alone. It behooves range workers to foster and to become more active in international discussions of this type. Perhaps that can come about at the next Congress in Brazil. Perhaps our Society should make an effort to organize an International Range Management Congress. Arid and semi-arid grazing areas throughout the world have many prob-
EDITORIAL
lems in common. Outside the U.S. they have hardly been touched with research programs. The few workers in other countries know more of our efforts than we know of theirs. The notice in the September Journal that the Council had rescinded the authority for the Middle East Section of the Society came as a jolt to those interested in promoting range management in other parts of the world. Isn't the Society missing an opportunity for International good will, exchange of information and improvement of human needs?—Harold F. Heady, Associate Professor, School of Forestry, University of California, Berkeley, Calif.

Range Management As a Profession

At present, many members of the American Society of Range Management are concerned about the professional status of range managers. Civil Service requirements for range management positions appear to be somewhat less than desired. Individuals with a wide variety of educational backgrounds have responsibility for administration of range lands or lands having several uses including grazing. The pressure for securing more satisfactory levels of management of public lands has been viewed apprehensively by stockmen. The professional competence of range managers has been questioned recently. It is, therefore, timely that the Society review the characteristics of the profession, perhaps give some direction to current thinking, and clarify, if possible, the profession as to definition. This can lead to better educational standards and internship for development of qualified range managers. This article attempts to present a viewpoint on the matter.

It is first necessary to characterize the training of a professional man regardless of the particular field involved. Professional training must have both breadth and depth, it should include a code of conduct defining limits of individual behavior and responsibility relative to others in the profession and to society. The three main elements involved are:

1. A satisfactory intellectual background.
2. Specialized skills and ability to use them.
3. An ethical basis for association with people.

A satisfactory intellectual background is fundamental. Biological and physical principles and laws must be known and understood. Economics and political ideas and concepts are also elements of knowledge which must be related to phenomena in nature before satisfactory conclusions may be drawn. Analysis, synthesis, and ultimately proper generalization to practical situations must be part of the intellectual equipment of well-educated individuals. At the professional level of competence, the best of a variety of possible solutions, is the goal. The professional individual must be competent to work under a variety of conditions. A facility for communication through skill in speaking and writing is desirable and will enhance his effectiveness.

Next in importance is an understanding of the principles and the acquisition of the techniques and skills used in the specialized field. This includes both the unique and those developed in related areas which have application to the particular field. The essential elements are an understanding and recognition of biotic successions, knowledge of food habits and requirements of herbivores, the measurement of herbage production and utilization, the seasonal manipulation of herbage in various vegetative types as well as the control measures needed to fit grazing habits of animals to the particular local conditions. Furthermore, maximum professional competence is manifest when the technician can interpret principles and develop practices to fit local conditions which will result in sound economic objectives.

Also, professional training should be identified with a