CURRENT LITERATURE

RANGE PLANTS: Forage value, chemical composition, ecology, physiology, systematics

BILLINGS, W. D. (Biology Dept., Univ. Nevada, Reno, Nev.). The shadscale vegetation zone of Nevada and eastern California in relation to climate and soils. Amer. Midl. Natur. 42(1): 87-109. July 1949. The shadscale vegetation of Nevada and eastern California lies in a distinct zone between the creosote bush and sagebrush zones and it is associated with a distinct climatic zone and gray desert soils which may or may not possess a degree of salinity in the subsoil.

BLAISDELL, J. P. AND J. F. PECHANEC (Intermt. For. & Range Exp. Sta., Ogden, Utah; Pac. Northw. For. & Range Exp. Sta., Portland, Ore.). Effects of herbage removal at various dates on vigor of bluebunch wheatgrass and arrowleaf balsamroot. Ecology 30(3): 298-305. July 1949. Studies at the U. S. Sheep Exp. Sta. over a 6 yr. period showed that complete herbage removal of bluebunch wheatgrass and arrowleaf balsamroot is most injurious after the date when substantial regrowth is impossible and before maturity. The effect of clipping both species apparently depends upon the amount of herbage present during the storage period which follows cessation of growth.

CORY, V. L. (South. Methodist Univ., Dallas, Tex.). The disappearance of plant species from the range in Texas. Field and Laboratory 17(3): 99-115. June 1949. Descriptions and comments on numerous palatable browse and forb species that have diminished under grazing.

KNOWLES, R. P. AND W. J. WHITE. (Dominion Forage Crops Lab., Saskatoon, Sask.). The performance of southern strains of brome grass in
Western Canada. Sci. Agriculture 29(9): 437–450. Sept. 1949. Forage production of southern strains of smooth brome at 9 stations in western Canada was found to be similar to that of northern commercial bromegrass. Southern strains were 2 to 4 days later in flowering and showed more resistance to spring and fall frosts than northern strains.

Range and Pasture Management: Management plans, surveys, utilization, maintenance

Fuellman, R. F., R. J. Webb, W. G. Kammlade, and W. L. Burlison. (Coll. of Agric., Univ. Illinois, Urbana,

CURRENT LITERATURE

STOESS, A. D. AND H. J. HELM. (Soil
Cons. Serv. Nursery Division, Lin-
coln, Nebr.). Grass—a tool in soil
conservation. Jour. Soil & Water
1948. Conservation and management
practises on the land utilization pro-
jects and soil conservation districts
in the Northern Great Plains.

U. S. FOREST SERVICE. (Washington,
D. C.). Questions and answers about
grazing on national forests. U. S.
Dept. Agr. AFS no. 80, 18 pp. May
1949.

LEMMON, P. E. AND P. W. TAYLOR. (Soil
Cons. Serv. Nursery, San Fernando,
Calif.). Pampas grass in Southern
California. Soil Conservation 14(11):
255-257. June 1949. Suggests the use
of pampas grass in valley bottoms in
s. California for short periods of
green forage during arid summer
months.

HULL, A. C., JR. AND G. STEWART.
(Intermtn. For. & Range Exp. Sta., Ogden,
Utah). Range reseeding by airplane
compared with standard ground methods. Agro-
Results of naked-seed airplane sowing in
the aspen and brush zones in Ephraim.
Canyon, Utah, and on burned sagebrush in the Boise River watershed in Idaho and of pellet seeding in 1947 and 1948 at Gooding, Idaho, and the LaSal X. F. in Utah indicate that airplane seeding shows promise in sites where the seedbed can be covered by natural means such as in burns and in aspen types by fallen leaves. Ground procedures have given more dependable results than airplane seeding in getting stands and in forage yields.

Range Influences: Forests, watershed protection, wildlife, recreation

Duley, F. L. and C. E. Domingo. (Soil Cons. Service Research, Lincoln, Nebr.). Effect of grass on intake of water. Nebr. Agr. Exp. Sta. Res. Bull. 159. 15 pp. Apr. 1949. Infiltration tests with a 16 x 72 in. sprinkler-type infiltrometer on native grass meadow, range land, bluegrass, blue-stem, forest, and sandhill areas and in cultivated soils showed that total cover including live grass and associated litter was more significant in influencing infiltration than the kind of grass or soil type.

Fitch, H. S. and J. R. Bentley. (U. S. Fish & Wildlife Service, Leesville, Louisiana, Calif. For. & Range Exp. Sta., Berkeley, Calif.). Use of California annual-plant forage by range rodents. Ecology 30(3): 306-321, July 1949. Enclosure studies with ground squirrels, pocket gophers, and kangaroo rats showed that selective use of the plant species had only limited effect on the composition of the herbaceous cover. Competition between rodents and livestock for forage was found to be more important during the green forage season than during the season of dry forage.

Osborn, Ben and P. F. Allan. (Soil Conservation Service, Ft. Worth, Tex.). Vegetation of an abandoned prairie dog town in tall grass prairie. Ecology 39(3): 322-332. July 1949. Stages of plant succession were reconstituted from plant cover zones on an abandoned prairie dog site in the Wichita Mtn. Wildlife Refuge in Oklahoma. Prairie dogs are considered "animal weeds" which can not survive as the climax cover is restored.

Range and Livestock Economics: Land utilization, public land administration, cost of production, coordination of range and ranch

Range Livestock Management: Production, feeding, marketing, history

CURRENT LITERATURE

89

to P intake and on calf production under the various treatments.

