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Abstract

The Drought Calculator (DC), a spreadsheet-based decision support tool, was developed to help ranchers and range
managers predict reductions in forage production due to drought. Forage growth potential (FGP), the fraction of historical
average production, is predicted as a weighted average of monthly precipitation from January through June. We calibrated
and evaluated the DC tool in the Great Plains of the United States, using FGP and precipitation data from Colorado (CO),
North Dakota (ND), and Wyoming (WY). In CO, FGP was most sensitive to precipitation in April and May, in ND to
precipitation in April and June, and in WY to precipitation in April, May, and June. Weights in these months ranged from
0.16 to 0.52. Prediction was better for CO and WY than for ND. When January–June precipitation was used, the tool
correctly predicted 83% of the years with FGP reduced by drought for CO, 82% for WY, and only 67% for ND. Positive
values of the True Skill Statistic (0.53 for CO, 0.42 for WY, and 0.17 for ND) indicate that FGP was classified as above or
below average better than random selection. Predicting FGP earlier than April in CO and WY will require accurate forecasts
of April–June precipitation. Use of the DC is most limited by insufficient forage data to determine the site-specific
relationships between FGP and monthly precipitation. Even so, the decision tool is useful for discriminating drought effects
on FGP classification being above or below the long-term average, and it provides a quantitative prediction to producers for
their destocking decisions in drought years.
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INTRODUCTION

Ranchers and range managers on the arid central Great Plains

regularly experience periods of drought that range from mild

to severe and last for a single season to multiple years (Dahl

1963). These drought periods can substantially reduce the

amount of native range forage available for livestock.

Consequently, ranchers and range managers would benefit

from a decision support tool that estimated coming season

forage growth potential (Smoliak 1986; Andales et al. 2006;

Smart et al. 2007). When it is apparent to all ranchers that

forage is insufficient, selling off livestock generally results in

lower prices at the stockyard (Eckblad 2012). Managers

could potentially sell stock earlier when prices are higher.

Supplementing feed to get through to an autumn sell date is
another option during drought, but this is expensive (Eckblad
2012). Doing nothing can be detrimental to livestock weight
gains and hence profit and can also lead to serious
environmental degradation of the range (Thurow and Taylor
1999).

A functional decision support tool must be simple to use and
require only readily available information (Parker and Campi-
on 1997). Greater accuracy might be possible with less readily
available information or a complicated model, but users may
grow frustrated and decide not to use it if it is time consuming
to acquire and enter the required information. Further, many
users will not trust a model enough to modify management
unless they understand and agree with the logic that drives the
predictions (Wilkerson et al. 2002). Accuracy of a decision tool
is best judged by whether a user will make better decisions with
the tool than without it. The user must consider the
improvement in decision worth the effort of collecting inputs
and entering these in the tool.

Our goal was to develop a decision support tool that is
simple and easy to use and predicts coming-season forage
growth potential (FGP) accurately enough to help ranchers and
range managers make stocking decisions early in the season
during drought years. The tool we developed, the Drought
Calculator (DC),1 is spreadsheet based, and the main objective
of this research was to evaluate its accuracy. In this study, FGP
represents the maximum aboveground biomass (forage) during
the growing season. Observed data from three sites were the
peak standing crop (PSC), or the peak value of aboveground

Research was funded in part by the USDA-Risk Management Agency.

Data sets for Colorado site were provided by the Shortgrass Steppe Long Term

Ecological Research group, a partnership between Colorado State University, the US

Department of Agriculture, the Agricultural Research Service, and the U.S. Forest

Service Pawnee National Grassland. Significant funding for these data was provided

by the National Science Foundation Long Term Ecological Research program (NSF

Grant DEB-0823405).

The authors appreciate the many helpful comments from anonymous reviewers and

editors.
Mention of a proprietary product does not constitute an endorsement, a guarantee, or

warranty of the product by the USDA.
†Dr. Gale Dunn led the project, developed the Drought Calculator, and guided this paper

to submission. Gale passed away on 3 May 2012 after a long bout with cancer.

Correspondence: Timothy Green, USDA-ARS, Fort Collins, CO 80526, USA. Email: Tim.

Green@ars.usda.gov

Manuscript received 16 July 2012; manuscript accepted 10 July 2013.

ª 2013 The Society for Range Management 1Available at http://arsagsoftware.ars.usda.gov.

570 RANGELAND ECOLOGY & MANAGEMENT 66(5) September 2013



biomass at a point in the growing season. In developing our
model for predicting FGP in the DC, we began with a simple
concept: average precipitation in key months results in average
production. Further, we assumed that any deviation from
average precipitation will result in a deviation of FGP from the
average.

Native range forage production is influenced by many
environmental factors (Briggs and Knapp 1995), including
climatic variability, aspect (Gillen and Sims 2006), soil type,
landscape, soil fertility, and temperature. However, many
scientists agree that the single most limiting environmental
factor on the Great Plains is soil moisture, which is directly
related to precipitation (Currie and Peterson 1966; Lauenroth
and Sala 1992; Biondini and Manske 1996; Frank et al. 1996;
Schwinning et al. 2005). It would follow then, that precipita-
tion is a good environmental factor for predicting FGP. In
addition, several researchers have shown that certain months
prior to PSC have greater influence on PSC than other months
(Currie and Peterson 1966; Smoliak 1956, 1986; Frank et al.
1996; Heitschmidt et al. 2005; Derner and Hart 2007; Smart et
al. 2007). Relationships between spring precipitation and FGP
are typically nonlinear with a weak linear relationship between
FGP and low precipitation (Milchunas et al. 1994). Conversely,
large percentages of the interannual variability in FGP (e.g.,
55–97% for crested wheatgrass) may be explained using linear
regression with April and/or May precipitation (Currie and
Peterson 1966).

Based on these findings and our own analyses of PSC
compared to precipitation over the whole year, the growing
season, and months prior to PSC (Wiles et al. 2011), we
developed a model that predicts forage growth in the coming
season months in advance. Our goal was to develop a linear
decision tool to help ranchers cope with drought by predicting
if FGP will be reduced due to limited precipitation and, if so, by
how much. For this reason, forage production and monthly
precipitation were standardized with respect to average forage
production and average monthly precipitation, respectively,
with a value of 1.0 equaling average conditions for each
location over the period of record. The model predicts
deviation of FGP from the long-term average based on
deviations from long-term average precipitation for spring
months. The significance of deviations can vary by month.
Since we are predicting FGP during drought when it is
necessary for managers to make difficult decisions regarding
stocking rates, we concentrate on predicting FGP only if less-
than-average production is expected.

Although our hypothesis that springtime precipitation
influences growing season forage production may apply
across the northern Great Plains, the significance of precip-
itation during spring months varies among locations. Conse-
quently, in addition to developing the DC, we developed a
spreadsheet tool that selects parameters for the model that
predicts forage production. Parameters are selected using
historical forage production and precipitation data at a
location. In this article, we describe the predictive model of
the DC and our method of selecting parameters. We also use
data from three research stations (see Methods) to evaluate
the accuracy of predictions with the DC model and our
calibration method.

METHODS

Data for Evaluation
Predictive accuracy of the model and the parameters selected
with our optimization algorithm, both described below, were
evaluated using data from three rangeland research stations: 1)
the Central Plains Experimental Range near Nunn, Colorado
(CO), 2) the Central Grasslands Research Extension Center
near Streeter, North Dakota (ND), and 3) the High Plains
Grassland Research Station near Cheyenne, Wyoming (WY).
Precipitation and forage data were collected at each of these
sites. Forage production data were averaged each year over all
plots within a station to remove individual grazing treatment
effects. In this way, the annual FGP values used in our analyses
represent average conditions for each station, and variations in
treatments across sites (lightly, moderately, and heavily grazed
or ungrazed) were reduced. Since the relationship between
monthly precipitation and forage production varies between
these locations, the model was calibrated and evaluated
separately for each location.

The Central Grasslands Extension Research Center is at a
mean elevation of 607 m and has an average annual
precipitation of 434 mm, 80% of which falls between 1 April
and 30 September (North Dakota Agricultural Weather
Network 2008). Biondini et al. (1998) provided a detailed
description of the topography, soil morphology, climate, and
range. The current native range at the Research Center is
described as a mixed-grass prairie. Kentucky bluegrass (Poa
pratensis L.), western wheatgrass (Agropyron smithii Rydb.),
green needlegrass (Stipa viridula Trin.), sun sedge (Carex
heliophia Mack.), and obtuse sedge (Carex obtusata Lilj.) are
the dominant plants (Biondini et al. 1998). Data on PSC of
grazed and ungrazed treatments from 1989 through 2007 were
used for this study (B. Patton, personal communication,
November 2012). PSC, averaged over the two treatments,
was 2 438 6 504 kg � ha�1.

The High Plains Grassland Research Station is at an
elevation of 1 850 m, and the long-term average annual
precipitation is 381 mm, 80% of which falls between 1 April
and 30 September (Western Regional Climate Center 2008).
According to Derner and Hart (2007), the dominant native
grasses on this mixed-grass prairie are western wheatgrass
(Agropyron smitii), needle-and-thread (Stipa comata), prairie
junegrass (Koeleria macranatha [Ledeb.] J.A. Schultes), and
blue grama (Bouteloua gracilis [H.B.K.] Lag. Ex Griffiths).
Derner and Hart (2007) provided a detailed description of the
study site, including experimental design of the research site,
soils, and climate. Data on PSC with two different levels of
grazing from 1991 through 1999 and 2001 through 2012 were
used for this study. Average production was 1 429 6 628
kg � ha�1. We calculated the observed PSC separately for the
lightly grazed and moderately grazed treatments at the station
and used the average value for each year.

The Central Plains Experimental Range is at an elevation of
1 650 m, with a mean annual precipitation of 320 mm, the
majority of which occurs during the April to September
growing season. Blue grama (B. gracilis [H.B.K.] Lag. Ex
Griffiths) is the dominant native vegetation on this shortgrass
steppe site (Lauenroth and Sala 1992). Detailed descriptions of
the site and experimental design are provided in the data set
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summary on the Shortgrass Steppe Long Term Ecological
Research website (Colorado State University 2013). The
average production was 823 6 303 kg � ha�1.

Model
The model theory for predicting forage production in the DC
was based on a linear relationship between variation in
standardized PSC (kg � ha�1) and the variation in standardized
precipitation when precipitation limits forage growth. The
predicted variable was FGP, or forage production standardized
to a value of one for average production at a location. Below-
average FGP then was indicated by a value less than one, with
the value representing the proportion of average production.
Predictor variables were the total precipitation (mm) during
each month (Pmonth) standardized to a value of one for the
average over the period of record (Pmeanmonth). FGP was
predicted as a weighted average of standardized precipitation
by month from January to June for all years:

FGP ¼
XJune

month¼January

wmonth �
Pmonth

Pmeanmonth
½1a�

Equation 1a was used for quantification of model errors over
all years (‘‘all data’’ reported below). However, since the model
was intended primarily for predicting FGP during drought, if
the weighted average of precipitation was greater than one,
FGP was set equal to one in the DC:

FGP ¼
XJune

month¼January

wmonth �
Pmonth

Pmeanmonth

if
XJune

month¼January

wmonth �
Pmonth

Pmeanmonth

� 1

FGP ¼ 1 if
XJune

month¼January

wmonth �
Pmonth

Pmeanmonth

.1 ½1b�

with

wmonth � 0 for all months

and

XJune

month¼January

wmonth ¼ 1

Calibration
We developed an optimization algorithm to determine the
weights for each month (wmonth) based on a set of observed
precipitation and forage production data for a location (see Eq.
2). The algorithm minimizes the sum of squared errors between
the predicted and observed values of FGP subject to the
constraint that below-average FGP had to be predicted for more
than 50% of the years that observed FGP was below average:

Minimize

Xn

i¼1

ðFGPpredi � FGPobsiÞ2

with

1

n

Xn

i¼1

nbelowi . 0:50

where

nbelowi ¼
1 if FGPpredi , 1 and FGPobsi , 1

0 otherwise

� �
½2�

where n¼number of years of observations FGPobsi¼observed
FGP in year i, and FGPpredi¼predicted FGP for year i as a
function of wmonth.

Optimization was implemented with the nonlinear solver
engine in Microsoft Excel using the Generalized Reduced
Gradient algorithm, automatic scaling, and a multistart search.
Initial values must be specified for each monthly weight
(wmonth). The default values were 0.33 for April, May, and
June and zero for all other months.

Evaluation
Ideally, a model is calibrated with one set of data and evaluated
with an independent data set (Hawkins et al. 2003). With our
limited data, however, predictive accuracy was evaluated with
cross validation. With this method, the model is calibrated many
times using different portions of the observations in the full data
set and evaluated using the remaining portions. Cross validation
gives a better estimate of how the model will predict in practice
than of how well the model fits the original data set. We used
leave-one-out cross validation, the best method of cross
validation when data are very limited (Hawkins et al. 2003). In
this case, the model is calibrated with one observation omitted,
and then the omitted observation is predicted. This procedure is
repeated until all observations in the data set have been predicted
and the accuracy of those predictions is evaluated.

Besides evaluating the accuracy of FGP predictions in July
(predictions made using actual precipitation in each month from
January through June), we evaluated predictions throughout the
season. We did this by replacing actual precipitation with average
precipitation (Pmonth/Pmeanmonth¼1) for unknown precipitation
of future months. For example, we predicted FGP in April using
actual precipitation for January, February, and March and
average precipitation for April (PApril/PmeanApril¼1), May
(PMay/PmeanMay¼1), and June (PJune/PmeanJune¼1). Accuracy
of predictions throughout the season were evaluated with cross
validation used for predictions with all months.

Cross-validation results were evaluated with measures that
reflect the intended use of the model as a decision model and
specifically a decision model that first classifies FGP as above or
below average and then predicts a value only if FGP is expected
to be below average. The measure of classification accuracy is
the true skill statistic (TSS):

TSS ¼ a

ðaþ cÞ þ
d

ðbþ dÞ � 1 ½3�

This is the overall accuracy of classification corrected for
success in guessing the correct classification (Allouche et al.
2006) and is calculated from an error matrix. The error matrix
is the number of years (a, b, c, and d) of each possible
classification of a prediction based on the observed and
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predicted FGP. The letter ‘‘a’’ indicates both observed and
predicted FGP , 1, ‘‘b’’ is observed FGP�1 but predicted
FGP , 1, ‘‘c’’ is observed FGP , 1 but predicted FGP� 1, and
‘‘d’’ indicates both observed and predicted FGP�1. The TSS
ranges from�1 to 1 with a value of one if all observations are
correctly classified. Values of less than zero indicate classifica-
tion is not better than guessing.

We also calculated the producer’s and user’s accuracies of
observed and predicted classes of FGP (Congalton 1991). The
producer’s accuracies are the first two components of the TSS
(Eq. 3). The first component is the producer’s accuracy for
observed FGP , 1, the accuracy of predicting the number of
years with below-average FGP, and the second component is
the producer’s accuracy for observed FGP�1. User’s accuracies
are the accuracy of the predicted rather than the observed class
of FGP. For example, for predicted FGP , 1, the user’s accuracy
is a/(aþb).

Agreement between observed and predicted values of FGP
was quantified by calculating the mean bias,

MB ¼ 1

n

Xnyrs

i¼1

ðFGPpredi � FGPobsiÞ ½4�

and root mean squared error (RMSE),

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xnyrs

i¼1

ðFGPpredi � FGPobsiÞ2

vuuut ½5�

where terms were defined above (Eq. 2).
Mean bias (Eq. 4) is the average difference between predicted

and observed values of FGP. RMSE (Eq. 5) indicates the size of
the error relative to the mean of the observed values , 1.

RESULTS

Variability in Monthly Precipitation and Forage Production
This model depends on the deviation of precipitation and FGP
data from long-term historical averages. Monthly precipitation
in all locations was skewed, that is, more frequently below than
above the long-term historical average with a few years of very
high precipitation (Fig. 1).

The distributions of FGPobs generally differ from the
distributions of monthly precipitation (Fig. 2). Note that the
maximum FGPobs is approximately 2.1 (Fig. 2), compared with
a maximum standardized monthly precipitation of more than 4
(Fig. 1). Forage production is clearly limited by factors other
than precipitation. FGP was less variable for ND than WY or
CO. Production was below average for 9 yr in ND, 11 yr in
WY, and 12 yr in CO. Below-average production in WY ranged
from 0.09 to 0.98 with production less than 0.80 for eight of
those years. For ND, below-average production ranged from
0.55 to 0.99 but was less than 0.80 for only 3 yr. In CO, below-

Figure 1. Variability in monthly precipitation (standardized by the long-term
monthly mean) from January to July at the ND, WY, and CO locations used
to test the accuracy of a model for predicting forage growth potential.

 
Boxes show 25th, 50th (median), and 75th percentiles of the distributions,
with whiskers extending to the maxima/minima or 1.5 times the interquartile
ranges. Dots represent extreme values beyond the whiskers, if any. ND
indicates North Dakota; WY, Wyoming; CO, Colorado.
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average production ranged from 0.20 to 0.91, with 7 yr less

than 0.80.

Significance of Monthly Precipitation
Parameters for our calibration model indicate the sensitivity of

FGP to precipitation that month. Variability in spring

precipitation contributed the most to the variability in FGP.

In fact, FGP in WY varied with precipitation only in April, May

and June (Table 1). Weights were less than 0.03 for January,

February, and March. June precipitation had less influence on

FGP (wJune¼0.26) than April (wApril¼0.36) and May

(wMay¼0.34).

More months of precipitation affected FGP in ND than in

WY. Precipitation in April (wApril¼0.16) and June

(wJune¼0.52) contributed the most to the variability in FGP.

For ND, in contrast to WY, the weight for March

(wMarch¼0.13) was larger than the weight for May

(wMay¼0.08), and January and February had a small contri-

bution to the variability in FGP.

In CO, all months except for February contributed some-

what to the variability in FGP. April (WApril¼0.40) and May

(WMay¼0.21) were weighted the highest, with January also

showing significant contribution (WJan¼0.16).

Cross validation generates as many sets of parameters as

the number of observations, and similarity of the weights

from model calibration and cross validation is one indication

of how well the model will predict in practice. The mean of

the parameters generated in the cross-validation study for

WY matched the values generated with the model fit to the

entire data set, or the calibration (Table 1). The largest

standard deviation was consistently 0.01. Mean weights from

the cross validation for ND were within 0.01 of the values

generated with the entire data set. The largest standard

deviation was 0.05 for June. Mean weights from the CO

cross validation were also within 0.01 of the calibration

values. The largest standard deviation was 0.03 for January,

March, and June.

Figure 2. Variability in FGP for CO, ND, and WY. Box plots show the
distributions of annual values of FGP (see caption for Fig. 1). FGP indicates
forage growth potential; CO, Colorado; ND, North Dakota; WY, Wyoming.

Table 1. Model weights for each predictor month that represent the relative significance of precipitation in forage growth potential. Data sets of 19, 21, and
25 yr were used for calibration and cross validation at CO, ND, and WY locations, respectively.1

Location Months

Model parameters

Calibration

Cross validation

Mean 6 SD Minimum Maximum

CO January 0.158 0.153 6 0.031 0.023 0.189

February 0.000 0.001 6 0.004 0.000 0.020

March 0.138 0.141 6 0.028 0.093 0.246

April 0.398 0.400 6 0.018 0.361 0.473

May 0.212 0.209 6 0.023 0.143 0.272

June 0.094 0.096 6 0.033 0.000 0.195

ND January 0.044 0.042 6 0.018 0.000 0.097

February 0.065 0.063 6 0.016 0.013 0.085

March 0.131 0.129 6 0.033 0.000 0.166

April 0.157 0.160 6 0.017 0.130 0.206

May 0.085 0.077 6 0.030 0.000 0.129

June 0.519 0.528 6 0.050 0.400 0.673

WY January 0.000 0.002 6 0.005 0.000 0.017

February 0.010 0.011 6 0.010 0.000 0.040

March 0.029 0.028 6 0.010 0.003 0.047

April 0.365 0.364 6 0.013 0.321 0.383

May 0.339 0.337 6 0.010 0.322 0.368

June 0.259 0.258 6 0.010 0.235 0.277
1SD indicates standard deviation; CO, Colorado; ND, North Dakota; and WY, Wyoming.
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Prediction of Forage Production
Predicted and observed FGP values generated with weights
from the model calibration are shown in Figures 3 and 4, and
results of cross validation are shown in Table 1. Some measures
were calculated separately for observed classes of FGP because
knowing whether FGP will be reduced by drought is useful
information for a manager. If FGP will not be reduced, the
decision will likely be to maintain the existing herd (‘‘do
nothing’’ or no destocking). Predicting the extent to which FGP
exceeds one is not a goal of the DC, but such conditions may
provide opportunities for temporary herd expansion (Torell et
al. 2010). Error statistics were also computed for all
observations (Fig. 3 and Table 2) because these statistics
indicate how accurately the model predicts forage growth
overall as well as any bias toward over- or underprediction.

The accuracy of classifying FGP as below or above average
was measured with the true skill statistic (TSS) in Equation 3. If
drought occurs, knowing how much FGP will be reduced is
even more useful information. RMSE in Equation 5 quantifies
the agreement between observed and predicted values of FGP.
RMSE was calculated for observations of FGP , 1 as well as all
observations (FGP�1) to emphasize how well the model
describes the relationship between reduced FGP and precipita-
tion compared to the overall relationship between FGP and
precipitation (Table 3).

For ND, the overall RMSE was 0.22 for prediction with
precipitation in all months and the TSS is small (0.17) yet
indicates that prediction of years with FGP , 1 would be better
than guessing predicted values overall. For below-average
observations, the calculated RMSE (0.07) indicates good

agreement between observed and predicted values. These
contrasting results arise from the skewed distribution of
observed FGP for ND. Many observations are close to one,
and these observations can be misclassified as above average
with a small error in prediction. In fact, the MB for FGPobs , 1
was �0.01, and the accuracy of predicting that FGP , 1
(producer’s accuracy) was 67%. In contrast to ND, the model
for WY classified (TSS¼0.42) and predicted FGP well
(RMSE¼0.30 and 0.09). The producer’s accuracy for WY
(82%) shows that WY predicted FGP , 1 more accurately than
the model for ND. Like the model for ND, the effect of reduced
precipitation on FGP was underestimated. The MB for WY was
�0.04 (Table 3). The overall RMSE for CO was 0.28 and for
FGPobs , 1, RMSE was 0.12. Although this value indicates
more error than the ND model, the producer’s accuracy was
better than the other sites at 83%. Like WY, the CO model
predicted only two below-average years as above average.
Additionally, the mean bias for CO for all observations as well
as FGPobs , 1 was 0.00, indicating that it did not tend toward
overestimation or underestimation.

Predictive performance earlier in the season was relatively
consistent with the weights of the months for WY; most
measures indicated poorer prediction with fewer months of
precipitation as predictors. Values of TSS tended to decrease
with fewer months, although the January–May value (0.52)
was slightly higher than January–June (0.42), and the
January–February and January-only values were actually
higher than January–March. RMSE increased steadily for all
observations as well as for FGPobs , 1 as months were

Figure 3. Predicted versus observed values of forage growth potential for
CO, ND, and WY. Values greater than one are included here. CO indicates
Colorado; ND, North Dakota; WY, Wyoming.

Figure 4. Predicted versus observed values of FGP when observed FGP , 1
for CO, ND, and WY. Linear regressions show deviations from the 1:1 line.
FGP indicates forage growth potential; CO, Colorado; ND, North Dakota;
WY, Wyoming.
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removed from the cross validation. The producer’s accuracy

for FGPobs , 1 decreased from 82% to 55% without April,

May, and June precipitation. CO showed some variation in

predictive performance throughout the season. The TSS

consistently declined as months were removed until only

January was used, and it matched the January–June value of

0.53. This may be an isolated effect of spurious correlation in

the CO data, which is neither expected nor consistent with the

other locations.

Producer’s accuracy for FGPobs , 1 also declined from 83%

using January–June to 42% using January–February, then

increased with only January back to 83%. However, RMSE

increased consistently as months were removed both for all

observations and for FGPobs , 1. Measures of predictive

performance for ND with fewer months of precipitation did

not consistently decline. The variability in the measures is likely

the result of both skewed distribution of observations and

correlations among monthly precipitation.

Table 2. Predictive accuracy of forage growth potential (FGP) using different periods of monthly precipitation data from January through June. Results were
evaluated with ‘‘leave-one-out’’ cross validation. Measures of accuracy are the True Skill Statistic (TSS [Eq. 3]) for general classification, mean bias (MB
[Eq. 4]), root mean square error (RMSE [Eq. 5]), producer’s accuracy (the accuracy of predicting the observed class of FGP), and user’s accuracy (the
accuracy of the observation matching the predicted class of FGP).1

Location

All observations Observed FGP , 1 Predicted FGP , 1

Precipitation used

for prediction MB RMSE TSS

Mean value

of FGP , 1 MB RMSE

Producer’s

accuracy (%) User’s accuracy (%)

Calibration

ND January–June 0.04 0.22 0.17 0.84 �0.01 0.07 67 55

WY January–June �0.03 0.30 0.42 0.67 �0.04 0.09 82 69

CO January–June 0.00 0.28 0.53 0.69 0.00 0.12 83 71

Cross validation

ND January–June 0.01 0.26 0.06 — �0.03 0.13 56 55

January–May �0.03 0.40 0.07 — �0.09 0.27 67 50

January–April 0.02 0.39 0.04 — �0.06 0.25 44 50

January–March �0.06 0.47 0.38 — �0.17 0.33 78 64

January–February �0.05 0.56 0.18 — �0.18 0.31 78 54

January �0.03 0.69 �2.56 — �0.23 0.40 44 36

WY January–June �0.04 0.32 0.42 — 0.01 0.10 82 69

January–May �0.07 0.39 0.52 — �0.03 0.14 82 75

January–April �0.07 0.50 0.32 — �0.04 0.22 82 64

January–March �0.19 0.68 �0.25 — �0.14 0.35 55 43

January–February �0.16 0.69 �0.06 — �0.13 0.35 64 50

January �0.11 0.91 0.05 — �0.23 0.47 55 55

CO January–June �0.02 0.33 0.53 — �0.02 0.17 83 71

January–May �0.01 0.33 0.53 — �0.02 0.15 83 71

January–April �0.02 0.39 0.29 — �0.03 0.20 75 60

January–March �0.01 0.59 0.21 — �0.03 0.30 67 57

January–February �0.01 0.60 0.03 — �0.04 0.35 42 50

January �0.00 0.68 0.53 — 0.15 0.66 83 72
1Values of predicted FGP . 1 set to equal 1. ND indicates North Dakota; WY, Wyoming; and CO, Colorado.

Table 3. The accuracy of prediction of forage growth potential (FGP) from the user’s perspective including user’s accuracy, the percent of the predicted
class that correctly classified. See Table 2 for the producer’s accuracies, the accuracy of prediction according to the observed class of FGP.1

Location Months

Predicted FGP , 1 Predicted FGP� 1

User’s

accuracy

(%)

Observed FGP , 1 Observed FGP� 1 User’s

accuracy

(%)

Observed FGP , 1 Observed FGP� 1

Mean bias

(mean 6 SD)

Predicted FGP

(mean 6 SD)

Observed FGP

(mean 6 SD)

Predicted FGP

(mea 6 SD)

Observed FGP

(mean 6 SD)

Observed FGP

(mean 6 SD)

Observed FGP

(mean 6 SD)

WY January–June 69 0.00 0.63 6 0.22 0.63 6 0.25 0.95 6 0.03 1.27 6 0.20 75 0.83 6 0.18 1.45 6 0.34

January–May 75 �0.01 0.61 6 0.26 0.62 6 0.24 0.83 6 0.15 1.18 6 0.06 78 0.88 6 0.11 1.46 6 0.31

January–Apr 62 �0.06 0.56 6 0.33 0.62 6 0.26 0.79 6 0.10 1.25 6 0.13 63 0.81 6 0.13 1.50 6 0.37

CO January–June 71 0.02 0.69 6 0.16 0.67 6 0.22 0.86 6 0.06 1.29 6 0.08 82 0.78 6 0.15 1.29 6 0.24

January–May 71 0.02 0.69 6 0.15 0.62 6 0.24 0.82 6 0.09 1.29 6 0.08 82 0.78 6 0.15 1.29 6 0.24

January–April 63 0.06 0.73 6 0.18 0.67 6 0.22 0.78 6 0.16 1.30 6 0.07 78 0.78 6 0.15 1.28 6 0.28
1SD indicates standard deviation; WY, Wyoming; and CO, Colorado.
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DISCUSSION

Results from all three locations show that the DC generally
predicted reductions in FGP resulting from drought based on
monthly precipitation. Similar to published models (Derner and
Hart 2007), forage production in WY was most sensitive to
drought in April, May, and June. In CO, FGP was most
sensitive to drought in April and May, with secondary
correlation to precipitation in January and March.

Because our interest was a decision model, our research
differs from previous research in that we evaluated predictive
accuracy with cross validation. The WY and CO models
generate useful information, as indicated by TSS values greater
than zero, a measure of how well the model predicts if FGP will
be below or above average, and the model error statistics (MB
and RMSE). For ND the relationship between FGP and
precipitation is not as strong. The model discriminated between
below- and above-average FGP only slightly better than
guessing (TSS¼0.17). Our 19 yr of data included only 2 yr
with less than 88% of average FGP, potentially indicating that
the DC is less useful for the ND site. For these two drought
years, the model predicted FGP of 0.72 and 0.51 and
underestimated with similar error as that of the WY model.
Also similar to the WY model, FGP in ND is sensitive to
drought in May and June.

Earlier prediction of reduced FGP due to drought can help
users make important stocking decisions in order to improve
profitability and rangeland sustainability (Andales et al. 2006).
With our simple model, the weights for precipitation in April,
May, and June are large compared to other months. Conse-
quently, earlier prediction will require reasonably accurate
forecasts of precipitation in April, May, and June. Some western
states are dominated by the warm season rather than the cool
season (Torell et al. 2010, 2011). In these locations, PSC may not
occur until September (Pieper et al. 1974). Precipitation for the
previous fall as well as the summer months can be added to
improve predictive accuracy. However, when summer precipita-
tion drives forage production, it will be difficult to use this tool
to make stocking decisions earlier in the season.

Because the DC uses linear regression, two different
distributions of monthly precipitation may (incorrectly) predict
the same FGP. That is, the model is nonunique. For example, if
the weights were 0.24 for April and 0.26 for May, the same
FGP would be predicted with no precipitation in April and
precipitation of 0.92 in May as with precipitation of 1.0 in
April and none in May. The linear model does not allow severe
drought in a previous month to limit a plant’s ability to use
above-average precipitation in a following month. Such model
responses would require a penalty function for precipitation
below established thresholds. However, such complex models
would need to be calibrated using more data, which typically
are not available. Prediction also may be improved using
effective precipitation during a month to account for precip-
itation that is not used for forage growth such as surface runoff
associated with large precipitation events.

Predictive accuracy as shown in Tables 2 and 3 is just one
component of the value of a model as a decision support tool.
Decision makers consider that some errors in prediction are
more costly than others. For example, the cost of buying
unnecessary feed as a result of an erroneous prediction of low

FGP may be less costly than low animal weight and damage to
rangeland as a result of the model mistakenly not predicting low
FPG. There are three types of errors in decision making based on
prediction with this tool: mitigating for drought when there will
not be a drought (FGPpred , 1, FGPobs .1), not mitigating for
drought when there will be a drought (FGPpred�1, FGPobs , 1),
or too little or too much mitigation (FGPpred , 1, FGPobs , 1).
The likelihoods and severity of these errors are shown for WY
and CO in Table 3. Actual values of above-average yields
(FGPobs . 1) were used in constructing the table rather than
assuming a maximum value of one. This was done to show that
FGP is expected to be correctly predicted to be above average in
the years with the highest production (FGP . 1).

Table 3 emphasizes the decision maker’s perspective. For
example, with precipitation for January through June as
predictors, the WY model correctly predicted FGP , 1 in 82%
of the years with reduced FGP (producer’s accuracy), and the
CO model correctly predicted FGP , 1 for 83% of the years on
record. However, a decision maker may be more interested in the
user’s accuracy—how often actual FGP�1 when FGP , 1 is
predicted (Table 3). In the WY model, a prediction of FGP , 1 is
often correct (user’s accuracy¼69%). In correctly predicted
drought years, the WY model neither overestimates nor
underestimates FGP (MB¼0.00). In nondrought years that the
WY model incorrectly predicts as drought, FGPpred¼
0.95 6 0.03. In CO, the user’s accuracy when predicted FGP , 1
is 71%, and mean bias is 0.02, indicating that the CO model
overestimates production by 2%. The user’s accuracy for a
prediction of FGP�1 is 75% for WY, but these results indicate
that FGP averages 0.83 in the few years when FGP�1 is
mistakenly predicted. The user’s accuracy for CO when
predicted FGP . 1 is 82%. In the 2 yr when FGP . 1 was
mistakenly predicted (misclassified), the average actual FGP was
0.78.

IMPLICATIONS

Reduced FGP as a result of drought can be predicted beginning
in May at some locations, generally dominated by cool-season
grasses, with a weighted average of monthly total precipitation.
Accuracy of predictions earlier in the season than May will
depend on the accuracy of forecasting precipitation. Model
utility may also be limited by the dominance of warm-season
grasses, as these sites respond to summer and fall precipitation,
making earlier predictions more difficult.

The model is simple and quick to use, which are essential
characteristics of any decision tool. It is incorporated in a
simple software program with the guidance of rangeland
managers. Predictions are easily interpreted as FGP relative to
average production at a location, and the monthly precipitation
is readily available and can be automatically acquired by the
spreadsheet from weather station data available on the
Internet. The TSS (Eq. 3) results indicate that the tool is useful
for discriminating drought effects on FGP classification being
above or below the long-term average, which is a basis for
stocking decisions. Furthermore, the producer’s accuracy for
drought years based on cross validation shows that the decision
tool is more accurate than simply assuming the long-term mean
of those below-average years, which implies that it provides a
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quantitative advantage to producers for their stocking decisions
in drought years. Use of this decision tool is most likely limited
by the available data used to determine the weights of monthly
precipitation for prediction of FGP. The quantitative measures
of model accuracy computed here provide potential users with
useful information for applying the DC at other locations.
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APPENDIX 1

Drought Calculator Availability
The Drought Calculator (DC) is available as a spreadsheet or

a stand-alone program that can be downloaded to the user’s
computer from the USDA-ARS software page (http://
arsagsoftware.ars.usda.gov). Calibrated DCs for 11 western
states are available online. Users are required to set up a free
account and provide their name and email address. Monthly
weights are calculated using our optimization model using data
from each state, and in some cases of warm-season grasses,
summer months and previous fall months are included in the
analysis. Long-term average precipitation data are available
online by state but comes preloaded in the DC for many
locations. Monthly precipitation data by year and month from
weather stations can be acquired from several sources (e.g.,
newspapers, television, and personally collected). Users have
the option to input their own long-term average and current
precipitation in addition to using the data available on the
program. The DC also includes links to various Web sites,
enabling users to locate appropriate precipitation data effi-
ciently. For example, the National Oceanic and Atmospheric
Administration’s National Climatic Data Center links to a
database searchable by location and product. After the
precipitation data are entered, the DC calculates the most
likely percentage of average forage production for the coming
year. This can be useful information for ranchers who would
like to make stocking decisions earlier in the season.

578 Rangeland Ecology & Management


	The Drought Calculator: Decision Support Tool for Predicting Forage Growth During Drought
	Abstract
	Key Words
	Introduction
	Methods
	Results
	Discussion
	Implications
	Literature Cited
	Appendix 1




