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Abstract

Remote sensing has long been recognized as a rapid, inexpensive, nondestructive, and synoptic technique to study rangeland
vegetation and soils. With respect to the worldwide phenomenon of woody plant invasion on many grasslands and rangelands,
there is increasing interest in accurate and cost-effective quantification of woody plant cover and distribution over large land
areas. Our objectives were to 1) investigate the relationship between ground-measured and image-classified honey mesquite
(Prosopis glandulosa Torr.) canopy cover at three sites in north Texas using high spatial resolution (0.67-m) aerial images, and
2) examine the suitability of aerial images with different spatial resolutions (0.67-m, 1-m, and 2-m) for accurate estimation of
mesquite canopy cover. The line intercept method and supervised maximum likelihood classifier were used to measure mesquite
cover on the ground and on images, respectively. Images all were taken in September when mesquite foliage was
photosynthetically active and most herbaceous vegetation was dormant. The results indicated that there were robust agreements
between classified and ground-measured mesquite cover at all three sites with the coefficients of determination (r2) $ 0.95.
Accuracy of lower spatial resolution images ranged from r2 5 0.89–0.93, with the 2-m spatial resolution image on one of the
sites at r2 5 0.89. For all sites, the overall, producer’s, and user’s accuracies, and kappa statistics were 92% and 97%, 91% and
99%, 85% and 96%, and 0.82 and 0.95 for 2-m and 0.67-m spatial resolution images, respectively. Results showed that images
at all three spatial resolution levels were effective for estimating mesquite cover over large and remote or inaccessible areas.

Resumen

La técnica de sensores remotos ha sido reconocida como una técnica rápida, económica, no destructiva, y sinóptica para el
estudio de la vegetación de los pastizales y suelos. Con respecto al fenómeno mundial de invasión de plantas leñosas praderas y
pastizales, existe un creciente de interés en la cuantificación precisa y efectiva en costo, del alcance y distribución de las plantas
leñosas en grandes extensiones de tierra. Nuestros objetivos fueron: 1) investigar la relación entre la medición en tierra y la
clasificación de imágenes de la cobertura del mezquite (Prosopis glandulosa Torr), en tres sitios al norte de Texas, usando
imágenes de alta resolución espacial (0.67-m), y 2) examinando las imágenes aéreas más apropiadas con diferentes resoluciones
espaciales (0.67-m, 1-m y 2-m) para una exacta estimación de la cobertura del mezquite. Se usaron el método de la lı́nea de
intercepción y el clasificador de máxima probabilidad para medir la cubierta del mezquite en el suelo en las imágenes
respectivamente. Todas las imágenes se tomaron en Septiembre cuando el follaje del mezquite estaba fotosintéticamente activo y
la mayorı́a de la vegetación herbácea perennes estaba inactiva. Los resultados indicaron que hubo sólidos coincidencias entre las
medidas clasificadas y las del suelo en la medida de cobertura del mezquite en todos los sitios con coeficientes de determinación
(r2) $ 0.95. La precisión de las imágenes espaciales de menor resolución, varı́an entre r2 5 0.89–0.93, con 2-m de resolución
espacial de imagen en uno de los sitios a r2 5 0.89. En todos los sitios, en general, las cifras de precisión de los productores y
usuarios y las estadı́sticas de kappa fueron 92% y 97%, 91% y 99%, 85% y 96%, y 0.82 y 0.95 para 2-m y 0.67-m en imágenes
de resolución espacial, respectivamente. Los resultados mostraron que las imágenes en los tres niveles de resolución espacial
fueron efectivas en la estimación de la cobertura del mezquite en áreas grandes, remotas o inaccesibles.
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INTRODUCTION

It is important to quantify areas occupied by invasive woody
plants on rangelands in order to determine the ecological and
economic impacts of the invasion as well as the feasibility of
management activities designed to reduce woody plant cover. The
general distribution of the invasive legume, mesquite (Prosopis
spp.) has been documented in many regions of the world,
including the southwestern United States (Smith and Rechenthin

1964; Martin and Turner 1977; Browning et al. 2008), South
America (Cabral et al. 2003), Australia (van Klinken and
Campbell 2001; Robinson et al. 2008), southern Africa (Mac-
Donald 1989), and India (Sharma and Dakshini 1991). Land area
covered by honey mesquite (Prosopis glandulosa Torr.) is
estimated to exceed 21 million ha in Texas alone (SCS 1988).
However, the specific spatial distribution and degree of coverage
of this and other invasive shrubs over large land areas is not well
quantified. Much of the existing information includes either
surveys in which mesquite stands are placed into generalized cover
classes (e.g., 1–10%; Smith and Rechenthin 1964; SCS 1988), or
summaries of areas either occupied (at any density or cover) or not
occupied by mesquite (Buffington and Herbel 1965). Some studies
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have quantified changes in mesquite cover for specific sites
(Archer et al. 1988; Warren et al. 1996; Browning et al. 2008;
Ansley et al. 2001, 2010).

Determining the distribution and spread of woody plant
populations on rangelands is often difficult with ground
surveys because of the extensive land area involved, time and
labor required, and inaccessibility of many areas (Andersen
2006; Marsett et al. 2006). Therefore, remote sensing has
received considerable attention in rangeland ecology and
management as a rapid, inexpensive, and nondestructive
method for assessing vegetation distribution, especially on
inaccessible and complex geographic terrains. It is a tool that
provides several advantages, including a synoptic view, cost
effectiveness, multitemporal coverage, and multispectral and
hyperspectral data (Joshi et al. 2004).

A wide range of sensor systems, including aerial photo-
graphs, airborne and satellite multispectral and hyperspectral
sensors, ground-based instruments, and other spatial informa-
tion technologies, have been successful for mapping distribu-
tion of certain species (Byers et al. 2002; Joshi et al. 2004).
Successful discrimination is linked to differences in reflectance
properties among species, which often are due to differences in
phenological characteristics at certain time periods (Anderson
et al. 1996; Medlin et al. 2000; van Klinken et al. 2007; Yang et
al. 2009). For example, mesquite growing in grasslands often
can be separated from surrounding vegetation in the late
summer when grasses are dormant and mesquite is still green
(Ansley et al. 2001). There is a need to determine accuracy of
remotely sensed determination of woody plant cover on
rangelands with ground-measured data.

Most methods used for the verification of classified images
involve determining whether or not a particular point or pixel
is classified correctly (Everitt et al. 2007; Yang et al. 2009;
Mirik et al. 2011). This involves either physically locating a
point in the field or locating a point on an image, visually
determining what the classification should be at that point, and
then comparing it to what the classification process has
determined. With respect to verification data for classified
image variables that are not point-specific, such as percent
canopy cover, the ground and classified image can be compared

through a regression model. Because it is nearly impossible to
determine in the field the exact percent canopy cover of large

masses of vegetation (i.e., shrubs and trees) over any land area
more than a few square meters, methods of subsampling such

as the line intercept method by Canfield (1941) have been

employed to provide a plot-level field estimate of canopy cover
(e.g., Davies et al. 2010). Few studies have used this method of

determining canopy cover in the field as verification for
classified images of canopy cover through regression analysis

(Kadmon and Harari-Kremer 1999). In addition, the resulting

regression model also will allow for an inexpensive and
accurate prediction of cover with minimal labor requirements

for the future needs. Our objectives were to 1) investigate the

relationship between ground-measured and aerial image-
classified honey mesquite canopy cover at three sites in north

Texas using high spatial resolution (0.67-m) images, and 2)
examine the suitability of aerial images with different spatial
resolutions (0.67-m, 1-m, and 2-m) for accurate estimation of
mesquite canopy cover.

METHODS

The study was conducted on three sites in Wilbarger County in
north Texas (Site 1: North Walker Pasture, lat 34u039N, long
99u249W, elevation: 355 m; Site 2: Gin Pasture, lat 33u539N,
long 99u219W, elevation: 380 m; Site 3: Ninemile Pasture, lat
33u859N, long 99u429W, elevation: 378 m; Table 1). Areas
were 793, 651, and 197 ha for Sites 1–3, respectively. Annual
total precipitation at the sites is 660 mm, bimodally distributed
with peak months in May and September. Average annual air
temperature is 24uC with peak summer temperatures of 40uC
to 42uC and low winter temperatures of 210uC to 212uC.
Each site is dominated by a honey mesquite woody overstory
with a second woody species, lotebush (Ziziphus obtusifolia
var. obtusifolia [Hook. ex. T. & A. Gray] A. Gray) occurring
infrequently (, 1% canopy cover). Herbaceous species at all
three sites consist of a mixture of C3 perennial midgrasses and
C4 mid- and short grasses. Tulip pricklypear (Opuntia
phaeacantha Engelm.) and tasajillo (Opuntia leptocaulis DC.)
are common at the sites. Soils at Site 1 are fine, mixed,
superactive, thermic Typic Paleustalfs of the Wichita series,
which are very deep, well-drained, moderately slowly perme-
able soils with 0–5% slopes. Soils at Site 3 are fine, mixed,
superactive, thermic Vertic Paleustolls of the Tillman series,
which are very deep, well-drained, slowly permeable soils with
0–1% slopes. Soils at Site 2 are a mixture of Wichita and
Tilman soils.

Images used to classified mesquite coverage for Objective 1
were color infrared aerial photos taken at a nominal scale of
1:5 000 on 29 September 2002 for Site 1 and 3 September 2000
for Sites 2 and 3 with a Piper Aztec twin-engine N4699P
airplane at a flight altitude 760 m from the ground level
(Table 1). Aerial photos were acquired using a Leica RC30
aerial film camera equipped with a Leica Universal Aviogon for
second generation (UAG/4S) lens (Leica Geosystems Inc,
Norcross, GA). Eastman Kodak 2443 color infrared–false
color reversal and 1443 color infrared films were used in 2000
and 2002, respectively. The aerial photos were scanned into
images using an EPSON Expression 1600 scanner (Seiko Epson
Corporation, Long Beach, CA) and yielded a 0.67-m spatial
resolution (hereafter 0.67-m image) with a file size below 13
megabytes scanner setting.

For objective 2, two county-level color infrared aerial images
of Wilbarger County were downloaded from the National
Agricultural Imagery Program (NAIP) provided by the Natural
Resources Conservation Service Geospatial Data Gateway1 and
compared to the 0.67-m aerial image. The NAIP images
included a four-band digital aerial photographic image with a
spatial resolution of 1-m (hereafter 1-m image) taken on 27
September 2008, and a three-band digital ortho-image with a
spatial resolution of 2-m (hereafter 2-m image) taken on 13
September 2006 (Table 1). The NAIP images were acquired
with a Leica airborne digital sensor ADS40-II SH52 that was
flown with a Cessna Conquest-II turboprop airplane. The flight
altitudes from the ground level were about 7.6 km and 9 km for
1-m and for 2-m images, respectively (S. McIff, USDA, personal
communication, August 2011). Both NAIP images were
projected to the Universal Transverse Mercator North

1http://datagateway.nrcs.usda.gov/
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American Datum 1983 Zone 14 North by the provider. The
0.67-m aerial images were georeferenced to the 1-m NAIP
aerial image using easily identifiable locations (e.g., trees, road
corners, water ponds) on the images by employing an image-to-
image registration method in Environment for Visualizing
Images software (ENVI; ITT Visual Information Solution,
Boulder, CO).

Mesquite cover was measured on the ground using the line
intercept method (Canfield 1941). Thirty-one, 24, and 24 plots
were established at Sites 1, 2, and 3, respectively, to quantify
mesquite canopy cover as part of other studies (Ansley et al.
2003; Ansley and Castellano 2006). Each plot consisted of 2
or 3 parallel line transects, with each line 20 m, 30 m, or 60 m
in length and 5–20 m apart. Mesquite percent cover was
measured along each line at Site 1 in 2006, at Site 2 in 1999–
2001, and at Site 3 in 2002. Plot percent cover was the average
of all lines per each plot. Because of differences in some of the
dates between when ground cover was measured and when
aerial images were taken, ground cover values on some data
sets were adjusted up or down by 1 percent per year, based on
previously determined annual rates of mesquite canopy cover
increases for the region (Ansley et al. 2001). At Site 2, small-
scale wildfires burned two plots in 2006 and three additional
plots in 2007. Therefore, a total of 24, 22, and 19 plots at this
site were used for the 0.67-m, 2-m, and 1-m aerial images,
respectively. All but four plots were prescribed burned at Site 3
after 2002 as part of another experiment and therefore this site
was not used for Objective 2.

Image classifications were performed using the Maximum
Likelihood Classifier (MLC), which is a type of supervised
classification technique in ENVI. Supervised classification is
a procedure for identifying spectrally similar areas on an image

in which the user defines known cover types as ‘‘training
samples,’’ and then the MLC extrapolates those spectral
characteristics to other areas for class identifications (Richards
and Jia 2006; Lu and Weng 2007; Castillejo-González et al.
2009; Short 2011). The MLC is based on the assumption that
members of each class are normally distributed in an image.
Implementation of the MLC involves the estimation of class
mean vectors and covariance matrices using training samples of
each particular class (Pal and Mather 2004; Richards and Jia
2006). If the assumption of a normal distribution for each class
is correct, then the classification has a minimum overall
probability of error and the MLC is the optimum choice
(Swain and Davis 1978). Therefore, the MLC has been widely
used to classify images by the remote sensing community (Short
2011). Training samples consist of groups of individual pixels,
polygons, or individual spectra (Richards and Jia 2006; Lu and
Weng 2007).

For the classification in this study, 5–20 polygons (depending
on the amount of ground cover by each cover type in the
images) were arbitrarily selected and manually digitized on the
aerial images as the training samples (regions of interest) to
represent each respective classes. Each polygon consisted of 10
pixels from easily identifiable cover types on the aerial images:
mesquite, grass, water, shadow, bare ground, and cropland;
however, the last five classes (grass, water, shadow, bare
ground, and cropland) were combined into a nonmesquite class
as the final maps (Fig. 1). Image collection started at
1130 hours and ended at 1300 hours with local time for the
0.67-m images and collection time was around 1200 hours for
the 1-m NAIP images; therefore, canopy shadow was minimal
in these images. We could not obtain image collection time for
2-m NAIP image, but canopy shading appeared comparable to

Table 1. Summary of field-measured and image-classified mesquite canopy cover (%), site, and image characteristics used in this study.
Information for the 1-m and 2-m National Agricultural Imagery Program (NAIP) images was provided by S. McIff, USDA, in August 2011.1

Site 1 Site 2 Site 3

Image used2

0.67-m 1-m 2-m 0.67-m 1-m 2-m 0.67-m

Mean (field % cover) 53.4 55.44 55.44 36.4 44.17 44.42 46.5

Mean (image % cover) 51.2 57.49 58.77 37.68 48.35 47.15 47.12

SE (field) 4.5 4.4 4.4 4.01 4.57 4.19 3.16

SE (image) 3.9 4.7 5.12 3.5 4.85 3.14 3.36

N 31 35 35 24 19 22 24

Latitude 34u039N 33u539N 33u859N

Longitude 99u249W 99u219W 99u429W

Elevation (m) 355 380 378

Image characteristic

Acquisition date 29 September

2002

27 September

2008

13 September

2006

3 September

2000

27 September

2008

13 September

2006

3 September

2000

Number of band 3 4 3 3 4 3 3

Flight height (m) 760 7 600 9 000 760 7 600 9 000 760

Camera/Sensor RC30 ADS40-II SH52 ADS40-II SH52 RC30 ADS40-II SH52 ADS40-II SH52 RC30

Lens UAG/4S UAG/4S UAG/4S

Film 1443-CIR 2443-CIR 2443-CIR
1SE indicates standard error; N, number of samples.
20.67-m, 1-m, 2-m indicate 0.67-m, 1-m, and 2 meter spatial resolution images, respectively.
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Figure 1. a, Color infrared aerial image with 1-m spatial resolution acquired over Site 1(North Walker Pasture located about 21 km south of Vernon,
TX), which was b, classified using the supervised Maximum Likelihood Classifier (MLC) for honey mesquite distribution shown with green color.
Black dots show the 308 locations of validation data points used for accuracy assessment.
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the 1-m images. For the accuracy assessment, 308 ground
verification (reference) points were randomly generated using
ArcMap (Fig. 1). The verification points were loaded into a
real-time differential Global Positioning System: Trimble
GeoXH hand-held computer (Trimble Navigation Ltd,
Sunnyvale, CA) equipped with the ArcPad (ESRI, Inc, Redland,
CA) software package, and a 4-m external antenna that
provides submeter horizontal accuracy (10 cm; Trimble
Navigation Ltd) and were then located on the ground.

Coordinates of starting and ending points of each transect
line were taken with a Trimble GeoXH hand-held computer
equipped with the ArcPad software package. In ArcMap,
circles with the diameters equal to the transect line lengths were
created and centered over each plot (Fig. 2). Percentage
mesquite cover within each of these bands was calculated by
dividing canopy area by total circular area within each band.
Regression models were employed to determine the relation-
ship between ground-measured and image-estimated mesquite
cover (SigmaStat Software, Inc, Rochester, MN). Classified
mesquite cover was set as the independent variable and ground-
measured mesquite cover was set as the dependent variable.

Accuracy assessment for classification was made by con-
structing the confusion matrix - error matrix or contingency

table (Congalton 1991; Lillesand and Kiefer 1994; Congalton
and Green 2009). A confusion matrix compares, on a group-
by-group basis, the relationship between known actual
(reference) categories as verified on the ground and corre-
sponding categories of a classification (Congalton 1991;
Lillesand and Kiefer 1994; Congalton and Green 2009). A
confusion matrix is a square, with the number of columns and
rows being equal to the numbers of categories whose
classification accuracy is being evaluated (Lillesand and Kiefer
1994). The overall, user’s, and producer’s accuracies, and
kappa statistics were calculated from the confusion matrix
(Congalton 1991; Lillesand and Kiefer 1994; Congalton and
Green 2009). The overall accuracy was calculated by dividing
the total number of correctly classified pixels (the sum of the
elements along the major diagonal—running from upper left to
lower right) by total number of reference pixels (Congalton
1991; Lillesand and Kiefer 1994; Congalton and Green 2009).
The user’s accuracy was calculated by dividing the number of
correctly classified pixels in each category by the total number
of pixels that were classified in that category (the row total),
indicating the probability that a pixel classified into a given
category actually represents that category on the ground
(Congalton 1991; Lillesand and Kiefer 1994; Congalton and

Figure 2. An example of color infrared a, 0.67-m, b, 1-m, and c, 2-m spatial resolution images and classified honey mesquite cover of d, 0.67-m,
e, 1-m, and f, 2-m spatial resolution maps with a circle representing one of the study plots. Measurements of mesquite canopy cover in the circle
plot were 68%, 62%, 69%, and 76% for the line intercept, 0.67-m, 1-m, and 2-m spatial resolution images, respectively.
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Green 2009). The producer’s accuracy was calculated by
dividing the number of correctly classified pixels in each
category (on the major diagonal) by number of training set
pixels used for that category (the column total), indicating how
well training-set pixels of the given cover types are classified
(Congalton 1991; Lillesand and Kiefer 1994; Congalton and
Green 2009).

The kappa statistic is a measure of the difference between the
actual agreement between classification and reference data and
the chance agreement between the classification and reference
data. The kappa statistic is an indicator of the extent to which
the percentage correct values of an error matrix is due to true
agreement versus chance agreement. As true agreement
(observed) approaches 1 and chance agreement approaches 0,
the kappa statistic approaches 1, indicating ideal case (Con-
galton 1991; Lillesand and Kiefer 1994; Congalton and Green
2009).

RESULTS

Objective 1
Image-classified mesquite canopy cover values ranged from 8–
100% at Site 1, 10–70% at Site 2, and 20–85% at Site 3
(Table 1). Classified cover on the high-resolution (0.67-m)
images predicted ground-measured cover at all three sites with
linear regressions (r2 . 0.95; Fig. 3). The strongest linear
relationship between ground-measured and classified mesquite
cover was found at Site 3 (r2 5 0.97). This model also had the
lowest standard error of estimate (SEE 5 2.86). Slopes of each
relationship were maintained near the 1:1 line, indicating a
high degree of accuracy throughout the range of cover values in
addition to the strong regression relationship.

Objective 2
Percent mesquite canopy coverage was well-predicted by the
classification method at all three aerial image resolution levels
for Sites 1 and 2 (r2 $ 0.89; Figs. 3 and 4). The lowest variation
(about 89% with a SEE of 4.9) in cover was explained by
classified cover for Site 2 using the 2-m aerial image, whereas
classified covers accounted for 93% and 95% of the variability
in cover with a SEE of 5.43 and 3.66 using 0.67-m and 1-m
aerial images, respectively. About 96% and 93% of the
variation in cover with an SEE of 4.92 and 6.47 was explained
by classified cover using both 0.67-m and 1-m aerial images,
respectively, whereas classified cover accounted for 93% of the
variability in cover with a SEE of 6.71 for the Site 1 using the
2-m aerial image.

Overall accuracies for Site 1 were 95%, 96%, and 92% with
kappa values of 0.89, 0.91, and 0.82 using the 0.67-m, 1-m, and 2-
m images, respectively (Tables 2 and 3). The producer’s accuracies
for Site 1 were 94%, 93%, and 91% for mesquite and 96, 98, and
93 for nonmesquite, whereas the user’s accuracies were 93%, 95%,
and 87% for mesquite and 97%, 96%, and 95% for nonmesquite
using the 0.67-m, 1-m, and 2-m images, respectively. The overall
accuracies for Site 2 were 97%, 96%, and 93% with kappa values
of 0.95, 0.92, and 0.85 using the 0.67-m, 1-m, and 2-m images,
respectively. The producer’s accuracies for Site 2 were 99%, 97%,
and 94% for mesquite and 96%, 95%, and 91% for nonmesquite,
whereas the user’s accuracies were 96%, 95%, and 91% for

Figure 3. Field measurement of honey mesquite canopy cover plotted
against classified canopy cover from aerial images with 0.67-m spatial
resolution for a, Site 1, b, Site 2, and c, Site 3.
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mesquite and 99%, 97%, and 94% for nonmesquite using the
0.67-m, 1-m, and 2-m images, respectively. The overall accuracy
for Site 3 was 95% with a kappa value of 0.88 using the 0.67-m
image. The producer’s accuracies for Site 3 were 96% for mesquite
and 94% for nonmesquite, whereas the user’s accuracies were 91%
for mesquite and 97% for nonmesquite using the 0.67-m image.

DISCUSSION

The major contribution presented in this article is the
development of robust simple linear regression models to
predict mesquite cover through image classification. The
relationships between the classified and ground-measured
mesquite cover found here are comparable with other studies
for the same or different species (r2 5 0.94, Ansley et al. 2003;
r2 5 0.91, Asner et al. 2003; r2 5 0.91, Laliberte et al. 2007;
r2 5 0.98, Robinson et al. 2008), but were greater than found in
other studies (r2 5 0.80, Kadmon and Harari-Kremer 1999;
r2 5 0.64, Sharp and Bowman 2004). In addition to high
classification accuracies, the low SEE found between ground-
measured and classified mesquite cover is further evidence that

remotely sensed images could effectively map mesquite
populations in the region.

Regarding Objective 2, we found that aerial images with
0.67-m, 1-m, and 2-m spatial resolutions could be used to
accurately estimate mesquite cover. Accuracy of the 2-m aerial
image was slightly less than those of the 0.67-m and 1-m
images. These differences can be attributable to the pixel sizes
of the images. For instance, mesquite with canopy area , 4 m2

might not be detected in the 2-m aerial image due to the
different canopies being mixed within a pixel or among pixels.
Similarly, interstitial nonmesquite space between mesquite trees
less than 4 m2 in size might be classified as mesquite (as seen in
Fig. 2). Proper or insufficient spatial resolution of remotely
sensed images depending on the size of individual plants or
canopy patch under investigation is well-known and addressed
elsewhere (Ansley et al. 2001; Goslee et al. 2003; Heaton et al.
2003; Laliberte et al. 2007; Browning et al. 2008, 2009). These
studies found that the correlation between estimates of woody
plant cover from image classification and ground-based
measurements depends strongly on the image resolution and
the size of the plants under surveillance. Laliberte et al. (2007)
found that only 29% of shrubs with canopy areas , 2 m2 in

Figure 4. Field measurement of honey mesquite canopy cover plotted against classified canopy cover from aerial images with 1-m spatial
resolutions for a, Site 1 and b, Site 2 and 2-m spatial resolution for c, Site 1 and d, Site 2.
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Table 2. Confusion matrix for the maximum likelihood classifier generated from the reference and classified data using the 0.67-m spatial
resolution image of Sites 1–3 for mesquite and nonmesquite cover components.

Site Classified data

Reference data

Row total User’s accuracy (%)Mesquite Nonmesquite

1 Mesquite 103 8 111 92.79

Nonmesquite 7 190 197 96.45

Column total 110 198 308

Producer’s accuracy (%) 93.64 95.96

Overall accuracy (%) 95.13

Kappa statistic 0.89

2 Mesquite 144 6 150 96.00

Nonmesquite 2 156 158 98.73

Column total 146 162 308

Producer’s accuracy (%) 98.63 96.30

Overall accuracy (%) 97.40

Kappa statistic 0.95

3 Mesquite 114 12 126 90.48

Nonmesquite 5 177 182 97.25

Column total 119 189 308

Producer’s accuracy (%) 95.80 93.65

Overall accuracy (%) 94.48

Kappa statistic 0.88

Table 3. Confusion matrix for the maximum likelihood classifier generated from the reference and classified data using the 1-m and 2-m spatial
resolution aerial images of Sites 1 and 2 for mesquite and nonmesquite cover components.

Site
Image spatial

resolution Classified data

Reference data

Row total User’s accuracy (%)Mesquite Nonmesquite

1 1-m Mesquite 103 5 108 95.37

Nonmesquite 8 192 200 96.00

Column total 111 197 308

Producer’s accuracy (%) 92.79 97.46

Overall accuracy (%) 95.78

Kappa statistics 0.91

2 1-m Mesquite 142 8 150 94.67

Nonmesquite 5 153 158 96.84

Column total 147 161 308

Producer’s accuracy (%) 96.60 95.03

Overall accuracy (%) 95.78

Kappa statistics 0.92

1 2-m Mesquite 96 15 111 86.49

Nonmesquite 10 187 197 94.92

Column total 106 202 308

Producer’s accuracy (%) 90.57 92.57

Overall accuracy (%) 91.88

Kappa statistics 0.82

2 2-m Mesquite 136 14 150 90.67

Nonmesquite 9 149 158 94.30

Column total 145 163 308

Producer’s accuracy (%) 93.79 91.41

Overall accuracy (%) 92.53

Kappa statistics 0.85
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size were classified, whereas 87% of all shrubs with canopies
. 2 m2 were detected using an image with a spatial resolution
0.86-m in southern New Mexico. In contrast, overall classifi-
cation accuracy for velvet mesquite cover derived from a 1-m
spatial resolution image was greater than that from a 0.6-m
resolution image (Browning et al. 2009).

Our ability to utilize aerial images for quantifying trends and
patterns of woody plant cover largely depends upon a variety of
factors (Browning et al. 2009). Spatial, spectral, and radiomet-
ric resolutions along with the image scale, image processing
methods, atmospheric haze, shadow, terrain effects, angle
between the sensor and vegetative layers, relative contrast
between vegetative layers and background, canopy architec-
ture, crown size and height, and plant density clearly influence
detection capabilities of remotely sensed image (Fensham and
Fairfax 2002; Fensham et al. 2002). In cases where canopies of
individuals of the same plants or different plants overlap, it
cannot be reliably determined from top-down perspective
whether a given image object represents one large plant,
multiple plants of the same species, or multiple plants of
different species (Browning et al. 2009).

Unique phenological, structural, and spectral characteristics
of plants species have been sought to separate target species
from the surrounding and mosaic of species using image data
(Turner et al. 2003; Yang et al. 2009). In our study, images
were acquired during the early fall (September) when most of
the grass and forb species were senescent yet mesquite was still
green. Because mesquite was the only important brush species
at the sites, woody species discrimination and identification
was avoided during image classification. In a central Texas
study, reflectance spectra of honey mesquite, senescing grass,
mixed herbaceous plants, and some other woody plants were
recorded in late summer using a hyperspectral handheld field
spectroradiometer (Yang et al. 2009). Mixed herbaceous plants
and senescing grass had considerably higher reflectance than
honey mesquite in the visible and lower in the near infrared
(NIR) portions of the spectrum. The shift from higher to lower
reflectance occurred around 720 nm (Yang et al. 2009).
Similarly, Everitt et al. (2004, 2007) found that reflectance
spectra of honey mesquite measured with a multispectral
handheld field radiometer was significantly different than that
of mixed herbaceous plants including sedges, broad-leaved
herbs, and grasses in the visible spectrum on 15 September
2004 and was insignificant in the NIR region where it was
significant on 17 August and 3 November 2004. These
measurements by Everitt et al. (2004, 2007) and Yang et al.
(2009) support our results that classifications were accurate
using the MLC.

Another important finding of this paper is the use of freely
available NAIP images collected by United States Department
of Agriculture–Farm Service Agency–Aerial Photography Field
Office (USDA–FSA–APFO; Salt Lake City, UT). Other recent
studies also have used NAIP imagery to study sinkhole features
(Dinger et al. 2006), land cover change (Zourarakis et al.
2006), rainfall–runoff modeling (Mihalik et al. 2008), estima-
tion of woody browse abundance (Crimmins et al. 2009), playa
wetland mapping (Bowen et al. 2010), estimation of western
juniper (Juniperus occidentalis Hook. subsp. occidentalis) cover
(Davies et al. 2010), and inventory of coastal prairie wetlands
(Enwright et al. 2011). Although we demonstrated that NAIP

images could be used to map mesquite cover, the results
obtained here might not apply to other species, plant com-
munities and/or seasons.

Overall accuracies of mesquite classification were between
92% and 97%, indicating that 92% and 97% of the category
pixels were correctly allocated in the classification maps. The
kappa range of 0.82–0.95 indicates that achieved classification
accuracies were between 82% and 95% better than what
would be expected from a random assignment of pixels to those
categories. The producer’s accuracy (range 91–99%) indicates
the probability of the reference pixels being correctly classified.
The user’s accuracy (range 87–96%) indicates the probability
of the pixels classified actually representing that category on
the ground. For example, accuracy assessment using the 0.67-m
image classification for Site 1 resulted in a producer’s accuracy
of 94% and user’s accuracy of 93% with an overall accuracy of
95%. These results indicate that although we claim that 94%
of the time an area that was mesquite was identified as
mesquite, a user of this classification will find this to be true
only 93% of the time. In other words, 7.21% (100 – user’s
accuracy) of the area classified as mesquite on the classification
map actually belonged to nonmesquite class.

Although there is no set standard for classification accuracy,
Foody (2002) recommended an accuracy target of 85%.
Thomlinson et al. (1999) set an overall accuracy target of
85% with no individual class accuracy less than 70%. Overall
classification accuracies ranging from 86.0% to 93.3% with
the user’s and producer’s accuracies . 84% were reported for
aerial images of velvet mesquite (Prosopis velutina Woot.) in
southeastern Arizona (Browning et al. 2008). Everitt et al.
(2007) reported the overall accuracies between 80% and 92%
for the photographic and QuickBird satellite images, respec-
tively, and producer’s and user’s accuracies . 87% for Ashe
juniper (Juniperus ashei J. Buchholz) in central Texas. Heaton
et al. (2003) reported overall, user’s, and producer’s accuracies
of 89%, 89%, and 85%, respectively, for classified aerial
images of honey mesquite in north Texas.

MANAGEMENT IMPLICATIONS

We found strong relationships between ground-measured and
image-estimated mesquite canopy cover across three image
spatial resolution levels. Image-classified mesquite canopy
cover without any adjustment or correction can be used to
estimate actual mesquite canopy cover in the field through
regression analysis. In other words, there is no need to establish
ground plots to correct image-classified mesquite canopy cover
because image estimates of mesquite canopy cover are
sufficient. These results have important implications for the
monitoring and assessment of mesquite encroachment into
grassland because this species can negatively affect livestock
production and can markedly change the ecosystem dynamics,
species diversity, and nutrient, water, and carbon cycles.

This study demonstrated that aerial images are useful data
sources for mapping honey mesquite. Because 1-m and 2-m
aerial images are freely available at county scales for the United
States, such classification methods would also be helpful in
monitoring larger areas, such as counties and watersheds that
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are not easily mapped by the conventional methods. Therefore,
we suggest that this technology and methodology should be
considered when both fine- and larger-scale maps are needed
for woody plant management and research.
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