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Abstract

Remotely sensed observations of rangelands provide a synoptic view of vegetation condition unavailable from other means.
Multiple satellite platforms in operation today (e.g. Landsat, moderate-resolution imaging spectroradiometer [MODIS]) offer
opportunities for regional monitoring of rangelands. However, the spatial and temporal variability of rangelands pose
challenges to consistent and accurate mapping of vegetation condition. For instance, soil properties can have a large impact on
the reflectance registered at the satellite sensor. Additionally, senescent vegetation, which is often abundant on rangeland, is
dynamic and its physical and photochemical properties can change rapidly along with moisture availability. Remote sensing has
been successfully used to map local rangeland conditions. However, regional and frequently updated maps of vegetation cover in
rangelands are not currently available. In this research, we compare ground measurements of total vegetation cover, including
both green and senescent cover, to reflectance observed by the satellite and develop a robust method for estimating total
vegetation canopy cover over diverse regions of the western United States. We test the effects of scaling from ground
observations up to the Landsat 30-m scale, then to the MODIS 500-m scale, and quantify sources of noise. The soil-adjusted
total vegetation index (SATVI) captures 55% of the variability in ground measured total vegetation cover from diverse sites in
New Mexico, Arizona, Wyoming, and Nevada. Scaling from the Landsat to MODIS scale introduces noise and loss of spatial
detail, but offers inexpensive and frequent observations and the ability to track trends in cover over large regions.

Resumen

Observaciones de pastizales con sensores remotos proporcionan una vista sinóptica de la condición de la vegetación que no
está disponible usando otros medios. Múltiples plataformas satelitales en operación hoy en dı́a (e.g. Landsat, MODIS)
proporcionan oportunidades para un monitoreo regional de los pastizales. Sin embargo, la variabilidad espacial y temporal de
los pastizales posee retos relacionados con el mapeo de la condición de la vegetación. Por ejemplo, las propiedades del suelo
pueden tener gran impacto en la reflectancia registrada por el sensor del satélite. Adicionalmente, la vegetación senescente, la
cual es a menudo abundante en los pastizales, es dinámica y sus propiedades fı́sicas y fotoquı́micas pueden cambiar
rápidamente debido al contenido de humedad disponible. Los sensores remotos han sido utilizados con éxito para mapear las
condiciones locales de los pastizales. Sin embargo, mapas regionales y frecuentemente actualizados de la cobertura de la
vegetación en pastizales no están disponibles en la actualidad. En esta investigación, se compararon medidas del suelo del
total de la cobertura, incluyendo ambas coberturas la verde y la senescente, contra la observada por el satélite para desarrollar
un método robusto con la finalidad de estimar el total de la cobertura de la copa de la vegetación sobre la diversa región del
Oeste de estado Unidos. Se evaluaron los efectos de escala desde observaciones al ras de suelo hasta aquellas usando Landsat a
una escala de 30 m, entonces a la escala de 500 m en MODIS y se cuantificaron las fuentes de variación. El ı́ndice ajustado
total de vegetación (SATV) captura 55% de la variabilidad en la estimación del total de la cobertura vegetal de diversos sitios
en Nuevo México, Arizona, Wyoming, y Nevada. La conversión de escala de Landsat a MODIS introduce cierto margen de
error y pérdida de detalle espacial, pero ofrece observaciones baratas y frecuentes ası́ como la capacidad de rastrear las
tendencias en cobertura sobre extensas regiones.
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INTRODUCTION

Rangelands in the lower 48 states contain over 276 million

hectares of grasslands and shrublands, or about 36% of the

total land area in the contiguous United States (John Heinz III

Center for Science, Economics and the Environment 2002).

Van Tassell et al. (2001) note that the Bureau of Land

Management (BLM) and US Forest Service (USFS) are the

largest land managers in the 11 western states with 42% of the

land, that 85% of federal lands are grazed by domestic
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livestock, and that more than half of the beef cattle operations
in those western states hold grazing permits from the BLM and
USFS. Other federal and state agencies also manage large areas
of rangeland, and the Natural Resources Conservation Service
(NRCS) provides technical support and conservation funding
on private land, so there is a strong public interest in rangeland
management across the West. Unfortunately, resources for
agency rangeland vegetation monitoring efforts are inadequate.
Fernandez-Gimenez et al. (2005) state:

. . . [R]angeland monitoring simply does not happen as often
or as well as it must to meet stewardship aspirations...
Shortfalls in agency monitoring are, in large measure, the
result of insufficient human and financial resources. In other
words, rangeland monitoring is an unfunded mandate. (p.
345)

In the years since that comment was written, agency funding
has declined further. At a time of inadequate and shrinking
budgets, new ways to meet existing obligations at lower cost
need to be explored. One long-recognized and potentially
lower-cost option for rangeland monitoring is remote sensing.
Rangeland conditions across a very large area can be
monitored, often with frequent repeat observations; this
breadth of coverage is not possible from a strictly ground-
based monitoring approach. Improvements in the ability to
manage large data sets and to access free raw imagery increase
the feasibility of applying remotely sensed imagery for
rangeland monitoring across areas as large as states and
countries. Landsat Thematic Mapper (TM) scenes are available
back to 1984. Products from the moderate-resolution imaging
spectroradiometer (MODIS), with lower spatial resolution than
Landsat, permit continuous analysis of large regions extending
back to the year 2000.

Several recent studies have used Landsat-scale imagery to
identify spatial or temporal patterns in rangeland vegetation
using innovative techniques (e.g. Blanco et al. 2009; Karl 2010;
Paudel and Andersen 2010; Brinkmann et al. 2011; Munyati et
al. 2011) that show the ability of remote sensing to characterize
the landscape. At the regional scale, time series of the National
Oceanic and Atmospheric Administration’s advanced very high
resolution radiometer (AVHRR) and MODIS observations
have been used to examine rangeland vegetation phenology
and issues associated with degradation (e.g., Stellmes et al.
2010). A standard MODIS vegetation cover product has been
produced under the name vegetation continuous fields (VCF;
Hansen et al. 2003), and while the tree cover products are
produced annually, the herbaceous cover products are available
for a single year only (2001). These studies and products
highlight the potential of remote sensing as a tool to assist
rangeland management.

Quantitative comparisons of satellite-derived estimates of
cover in rangelands have been infrequent. Baugh and Groene-
veld (2006) compared 14 Landsat-derived vegetation indices
over a sparsely vegetated region in Colorado and determined
that derivatives of the normalized difference vegetation index
(NDVI) performed the best. Amiri and Tabatabaie (2009)
compared more than 25 indices derived from the advanced
spaceborne thermal emission and reflection radiometer
(ASTER) in a semiarid region of Iran and found NDVI to

perform the best. These studies focus on regions of limited size
and require calibration within these limited regions. Addition-
ally, these approaches are limited by NDVI’s lack of sensitivity
to senescent vegetation, which plays an important role in
rangelands.

As of 2012, there remains a large gap between the potential
and actual application of remotely sensed data on rangelands.
While there have been numerous limited-scale applications of
remote sensing to rangeland management, remote sensing has
not yet become a widely used operational tool. As Hunt et al.
(2003) ask:

So why isn’t remote sensing currently applied for rangeland
management? Since the beginning of remote sensing as a
discipline, scientists have been studying potential applica-
tions [. . .T]here is a mismatch between the information
wanted by range managers and the information provided by
remote sensing. [. . .]The challenge remains to define cost-
effective indicators and methods for rangeland assessment
and monitoring. (p. 676–677)

Products typically derived from optical remote sensing data,
such as NDVI, fractional photosynthetically active radiation
(FPAR), and leaf area index (LAI), while conveying useful
information about land cover and vegetation, do not corre-
spond directly to any of the monitoring metrics normally
collected in the field by rangeland managers, such as total
vegetation fractional cover (TVFC). Additionally, the opera-
tional adoption of remote sensing tools is limited because
remote sensing studies to date overwhelmingly offer methods
and products that are calibrated to small regions.

In this study, we address one priority metric, total (green and
senescent) vegetation cover, often collected on rangelands,
though not in all monitoring protocols. Herrick et al. (2009)
recommend the line point intercept procedure, which can be
used to calculate the total vegetation cover, as a core long-term
rangeland monitoring method. Booth and Tueller (2003)
highlight the importance of cover for soil conservation and
stability and recommend the application of remotely sensed
estimates of cover to address soil conservation as the first
priority ecological concern. Vegetation cover protects the soil
by reducing erosion and thereby sustaining productivity over
time and reducing sediment delivered to rivers and streams.
Both green and senescent vegetation provide forage for cattle,
though green feed offers higher nutritional and caloric content.
In areas with seasonal precipitation, monitoring changes in
senescent vegetation can be useful for understanding grazing
distribution. By monitoring total green and senescent vegeta-
tion cover, one can capture the state of rangeland vegetation
over time.

We present a robust method for scaling ground observations
of TVFC (i.e., canopy cover of green and senescent vegetation)
to the 30-m resolution of Landsat observations, and then up to
the 500-m MODIS surface reflectance scale. By using informa-
tion from across the western United States together with
satellite observations from dozens of overpasses, we ensure that
our approach is robust and applicable across seasons and
ecosystems. By scaling to MODIS, this approach allows us to
produce total vegetation cover estimates over regional to
continental scales every 8 days. By using the 30-m data
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(approximately one-tenth of a hectare per pixel), we can relate
ground scale measurements, typically acquired for transects
and plots representing less than 2 ha, to the MODIS scale (25-
ha pixel size). Without the intermediate 30-m Landsat data, it
would be difficult to make the leap in scales from 1 ha to 25 ha.
Landsat and MODIS sensors acquire imagery of the Earth’s
surface in similar regions of the electromagnetic spectrum (i.e.,
spectral bands), and therefore are a natural pair for conducting
regional to global scaling. Here we use field-based estimates of
vegetation cover to compare with common vegetation indices
and identify the most useful index for monitoring rangeland
vegetation. We then present an independent validation of our
approach to estimating total vegetation cover over wide regions
and within the context of an analysis of cattle grazing.

METHODS

Data
The analysis conducted here combines information from 11
data sets that are categorized as field-based measurements,
remotely sensed observations, and other (Table 1).

Field-Based Measurements. Ground measurements of total
vegetation cover used for identifying and calibrating an optimal
model came from two sources, the US Geological Survey
(USGS) Digital Spectral Library 06 (Clark et al. 2007) and data
collected by Robert Marsett (Marsett et al. 2006). These data
were acquired across a range of seasons, conditions, and
vegetation communities in four different western US states (Fig.
1). An additional ground-based data set of ocular estimates of
cover from the Southwest Regional Gap Analysis Project
(SWReGAP) in Arizona was used for independent validation.

USGS Digital Spectral Library and Ground Observations of Cover. As
part of the USGS Joint Fire Sciences Program, Clark et al.
(2007) assembled a digital reflectance spectral library of a wide
range of minerals, soils, plants, and vegetation communities. In
addition to ground-measured reflectance spectra, this data set
provides a thorough characterization of each sample. For the
current study, we extracted 90 samples measured in the
rangelands near Left Hand Creek, Wyoming (lat 43857.60N,
long 108848.6 0W) and Catnip Mountain, Nevada (lat
41851.60N, long 119822.80W). The rangeland observations

were collected on circular plots 15.2 m in diameter. According
to Clark et al. (2007):

Within these plots, four subplots of 0.5 meter diameter were
established 5 meters from the center at the four cardinal
directions (north, east, south and west). Within these
subplots, grass and forb species were identified and
associated percent cover of each were visually estimated.
Litter cover and the percent area of bare ground were also
visually estimated. For each shrub in the larger plot, the
species was identified, the lateral dimensions were measured,
and the height was measured. The cover of trees, shrubs,
grasses, forbs, litter and bare ground were calculated from
the full plot and subplot measurements.

Table 1. Summary of data sets used in this research.

Data set1 Category Use

USGS vegetation cover Field-based cover measurements Model calibration

USGS spectral library reflectances Field-based spectral measurements Scaling and uncertainty estimation

Marsett vegetation cover Field-based cover measurements Model calibration

SWReGAP vegetation cover Field-based cover ocular estimate Validation

Landsat reflectances (TM & ETMþ) Remote sensing 30-m scale maps

MODIS reflectances (MCD43A4) Remote sensing 500-m scale maps

MODIS VCF cover product Remote sensing Comparison

Arizona ownership polygons polygon/vector Scaling and uncertainty estimation

TNC grasslands map polygon/vector Scaling and uncertainty estimation

SRTM elevation data raster elevation data Scaling and uncertainty estimation

SRER cattle grazing tables polygon/vector Validation
1USGS indicates US Geological Survey; SWReGAP, Southwest Regional Gap Analysis Project; TM, Thematic Mapper; ETMþ, Enhanced Thematic Mapper Plus; MODIS, moderate-resolution imaging

spectroradiometer; VCF, vegetation continuous fields; TNC, The Nature Conservancy; SRTM, Shuttle Radar Topography Mission; SRER, Santa Rita Experimental Range.

Figure 1. The field observations of total vegetation cover come from two
sources: the US Geological Survey Joint Fire Sciences program with field
campaigns conducted in Nevada and Wyoming (grey squares) and Robin
Marsett, with field campaigns conducted in Arizona and New Mexico (black
circles).
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We use the ground measurements of vegetation cover, in

combination with the Marsett measurements, to relate ground

observations of cover to satellite measurements, while we use
the ground measured reflectance spectra as part of our study on

scaling between satellite platforms.

Marsett Ground Observations of Cover. As part of National

Aeronautics and Space Administration (NASA)–funded re-
search projects, ground measurements of total vegetation cover

were taken in Arizona and New Mexico. About half of the field

study sites were delineated as 903150 m rectangles to
accommodate 15 30-m Landsat pixels. This assured at least

three pixels were uncorrupted by edge effects. Sites were chosen

to maximize within-site homogeneity and to represent between-
site heterogeneity in both vegetation and land use. The other

field study sites were collected along 150-m transects. Identical
measurement techniques were used in the plots and transects.

The ground sites, located in eastern Arizona and western New

Mexico, consist of 71 unique sites and a total of 92
observations, with some plots revisited two or three times over

the course of 10 yr. These sites were chosen to represent a mix

of biotic communities across western North America including
semiarid desert grasslands, mixed grass grassland, subalpine

parks, shortgrass prairie, open park woodlands, and Madrean

woodland. Study sites included plots that were grazed and
ungrazed, and contained native and nonnative vegetation, as

well as riparian sites dominated by Sacaton (Sporobolus
wrightii Munro ex Scribn). No ground-level reflectance spectra
were collected at these sites.

SWReGAP Ground Observations of Cover. The SWReGAP (USGS

National Gap Analysis Program, 2004; Lowry et al. 2007)

involved the mapping and assessment of biodiversity and was
coordinated by the USGS. As part of this effort, collaborators
observed and reported ocular estimates of vegetation cover.
These observations were collected in the SWReGAP training
site database. Here, we used the training site database for the
state of Arizona and select only the sites marked as representing
greater than 25 ha (n¼141).

Remotely Sensed Observations. We used remote sensing data
from three sources.

Landsat Data. We acquired and processed all available Landsat
5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic
Mapper Plus (ETMþ) images that were free of cloud/cloud
shadow near the field sites and were imaged less than 50 d
before or after the field visit (Table 2; 46 total images). The
images were downloaded from the USGS Earth Resources
Observation and Science Center and were provided as terrain-
corrected digital numbers (L1T). We converted the digital
numbers to radiance using gains and offsets obtained from the
metadata for each image and subsequently to reflectance at the
top of the atmosphere using mean exoatmospheric solar
irradiance values for each band from Chander et al. (2009).
For Landsat ETMþ data acquired after May 2003 when the
scan line corrector failed, we used the data for a site only if
more than 80% of the site’s pixels were not missing. For
comparisons to MODIS observations, we reprojected the
Landsat imagery to the sinusoidal projection.

MODIS Reflectance Data. Nadir-corrected surface reflectance
observations from Aqua and Terra (MCD43A4) were down-
loaded from the NASA data pool. Images from two tiles
(h08v05 and h09v05) were acquired to coincide with a subset

Table 2. Summary of the field campaigns and Landsat data used in scaling from ground measurements of vegetation cover to the Landsat scale. The table
lists field data source, field visit year, field visit dates in ordinal day of year, number of field sites associated with the field visit, Landsat path row covering
the location of the field visit, and number of minimal cloud Landsat scenes available within the 6 50-d window for the field campaign. A total of 43 Landsat
scenes were used in this analysis.

Field data Landsat

Source Visit year Visit DOY1 No. of sites Path/row No. of scenes

Marsett 2000 101–117 8 035/038 4

Marsett 2000 254–257 7 035/038 4

Marsett 2001 129–157 8 035/038 1

Marsett 2001 247–270 5 035/038 2

Marsett 2002 204 3 035/038 2

Marsett 2002 259–269 3 035/038 2

Marsett 2007 272 6 035/038 3

Marsett 2010 308 4 035/038 1

Marsett 2010 297–299 15 036/036 2

Marsett 2008 114 9 035/036 1

Marsett 2010 154 16 033/037 3

Marsett 2001 283–284 2 033/037 3

Marsett 2002 257–258 3 033/037 2

Marsett 2001 282 1 034/038 3

Marsett 2002 255–256 2 034/038 2

USGS 2003 167–173 20 043/031 2

USGS 2004 165–169 8 043/031 1

USGS 2002 185–192 11 037/029 3

USGS 2004 182–183 1 037/029 2
1DOY indicates ordinal day of year; USGS, US Geological Survey.
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of Landsat overpasses for use in the scaling analysis.
Additionally, images from the same two tiles were processed
for Arizona as part of the independent validation. These data
were screened for cloud, cloud shadow, and sensor anomalies
and used in the original sinusoidal projection.

MODIS Vegetation Continuous Fields Data. The Global Land
Cover Facility processed MODIS surface reflectance observa-
tions to produce a VCF product (MOD44B) that is available
via an ftp server (ftp://ftp.glcf.umd.edu; Hansen et al. 2003).
The data used in this study were extracted from the North
America 2001 product and include estimates of tree, herba-
ceous, and bare ground cover at a spatial resolution of 500 m.

Other Data Products. We used four additional products to
preprocess and subset the above data sets for analysis.

Arizona Ownership Polygons. Ranchers and land managers
require information on rangelands at the pasture or ranch scale.
We utilized parcel boundary vectors (i.e., polygons) for grazed
lands overseen by the USFS, by tribes, and by the State of
Arizona. The polygons used were from the Arizona State Land
Department, USFS, BLM, NRCS, and Arizona Geographic
Information Council. Overlapping polygons were checked for
spatial consistency and each polygon was reviewed against
aerial photography for parcel accuracy. We used grazing district
boundaries to subdivide very large land units with no internal
ranch boundaries, or where not available, we used eight-digit
Hydrologic Unit Code watersheds. All information used here is
publicly available. There are 2 885 ownership allotments across
Arizona that range in size from 4 ha to 604 275 ha; 90% of
these are between 120 ha and 33 000 ha, with a median size of
2 872 ha.

The Nature Conservancy Grasslands Map. In 2003, The Nature
Conservancy published a map that identified six primary
grassland condition types in Arizona (Gori and Enquist
2003). The purpose of the study was to characterize the extent
of the vegetation changes to grasslands and to identify the
remaining native grasslands and restorable grasslands for
conservation planning. We used this map to isolate grassland
for use in our scaling analysis.

Shuttle Radar Topography Mission (SRTM) Elevation Data. The
SRTM digital elevation data are publically available through
the USGS (USGS 2004). Using a topography model, we
estimated slope at the MODIS scale (500 m) and selected only
those pixels with low slope (i.e., less than 88) for use in our
scaling analysis to minimize the influence of shadows from the
landscape on our results.

Santa Rita Experimental Range (SRER) Cattle Grazing Data. The
SRER is a research ranch administered by the University of
Arizona’s College of Agriculture. Pasture boundaries and a
table containing livestock grazing schedule are available online
(http://ag.arizona.edu/srer/). In this study, these data were used
to examine the sensitivity of satellite-based estimates of cover
to the effects of grazing.

Analytical Approach
Our objective is to identify a simple and robust combination of
reflectance bands that is both sensitive to green and senescent
vegetation and scalable to MODIS, and therefore useful for
monitoring fractional total vegetation cover in rangelands
across large regions. We recognize that the strength of the

relationship between ground-measured cover and remotely
sensed observations will be reduced as more diverse regions of
grassland and rangeland are incorporated into a simple
analysis. This effect is expected for several reasons. Most
importantly, residual atmospheric contamination in imagery
acquired from different times is expected, the spectral
properties of plant communities vary between regions, and
ground estimates of cover have inherent inaccuracies that are
not always consistent. However, by identifying a relationship
between the satellite observations and the ground measure-
ments of cover across a variety of seasons and ecosystem types,
we increase our chances of establishing a robust, operational
approach to monitoring rangelands.

Scaling From Ground Measurements to Landsat. We combined
field observations of total vegetation cover from two collec-
tions, the USGS Digital Spectral Library and the Marsett data
set, with our Landsat observations. Depending on the size and
shape, field plots were represented in the Landsat data by
between 2 and 14 30-m pixels. The mean, standard deviation,
and coefficient of variation (cv) of each spectral band was
calculated for every field site for each date. The cv was used to
identify potential problems in the reflectance data or the
geometric registration, as each field site was selected to be
relatively homogeneous. To reduce residual noise from remote
sensing artifacts in the data (e.g., geometric registration
uncertainties, residual effects of sun-sensor geometry changes
from scene to scene, etc.), we averaged the mean plot
reflectance from all relevant dates for the sites with corre-
sponding Landsat imagery from multiple dates within the
temporal window. The USGS plots are less than one-quarter the
size of a Landsat pixel and are occasionally situated in areas
with considerable topographical heterogeneity. We selected a
subset of sites from the USGS database for use in our study
based on the similarity between ground-measured reflectance
and Landsat-measured reflectance. After this screening process,
our data set consisted of 40 observations from the USGS Digital
Spectral Library and 92 observations from the Marsett
database for a total 132 observations of field-measured total
cover and associated Landsat reflectance data.

We examined the relationship between field-measured total
vegetation cover and 37 Landsat-derived spectral bands, simple
band ratios, and indices. These included seven original spectral
bands (i.e., blue, green, red, near-infrared, the two shortwave-
infrared bands, and a thermal band), the simple ratio between
each of the original spectral bands, and nine vegetation indices
(Table 3). The nine vegetation indices tested here come from a
wide range of applications. NDVI and the enhanced vegetation
index have been applied and tested for sensitivity to green
vegetation cover (Tucker 1979; Huete et al. 2002). The other
seven indices have been used to map land surface properties
such as crop residue cover and senescent vegetation. The soil-
adjusted total vegetation index (SATVI) was developed and
tested more recently for grassland applications (Qi et al. 2002;
Marsett et al. 2006; Lebed et al. 2008). We also tested four
indices developed and typically applied in the monitoring of
tillage practice, because crop residue cover and senescent
vegetation found in rangelands share common properties.
Daughtry et al. (2006) tested the normalized difference tillage
index (NDTI) and the normalized difference senescent vegeta-
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tion index (NDSVI) for sensitivity to residue cover. Sullivan et
al. (2008) applied three indices: the crop residue cover index
(CRC), a modified CRC index, and the simple tillage index
(STI) to map crop residue cover. SATVI, STI, and NDTI include
the second shortwave infrared (SWIR) band that is onboard the
Landsat and MODIS platforms, but is not available on other
often-used satellites such as the Advanced Wide Field Sensor
(AWiFS) or Système Pour l’Observation de la Terre (SPOT).
Also, we included the Landsat thermal bands in the analysis but
recognize that many commonly used sensors don’t have a
thermal band.

Scaling to MODIS. Ultimately, we are interested in identifying
an effective method of estimating fractional cover of vegetation
over large spatial regions at frequent time intervals. With
currently available technology, this is likely best accomplished
using observations of reflectance from MODIS. A great deal of
information is available in the high temporal frequency of
MODIS observations. At the same time, however, information
is lost when scaling from ground observations to Landsat, and
then to MODIS. When scaling from Landsat to MODIS, noise
can be introduced in several ways. We categorized these sources
of noise into three groups: bandwidth discrepancies, spatial
resolution differences, and other differences in the platform
sensor and processing systems. We estimated the magnitude of
these sources of noise with three separate exercises.

Bandwidth Discrepancies. Using the USGS database of ground-
measured reflectance spectra, which are measured at a fine
spectral resolution, we explored the effects of differences in
Landsat and MODIS spectral band windows. Although Land-
sat and MODIS acquire imagery in the same general bands, the
spectral window of the bands is not identical. Using the USGS
ground-measured spectral reflectance data gathered over
rangelands, we simulated Landsat TM, Landsat ETMþ, and
MODIS observations by aggregating the relatively narrow
ground-measured spectral reflectance into the broader satellite-
based spectral bands. By comparing these simulated reflectance
estimates from each instrument, we estimated the potential
noise introduced when scaling from Landsat to MODIS and
established a translation function to be used in the scaling
process.

Effect of Sensor Spatial Resolution on Cover Estimates at the Ranch

Scale. The rangeland conservationists at NRCS in Arizona

typically assess range conditions at the ranch or pasture scale.
Ranches in Arizona range in size from a few hectares to
thousands of hectares. To examine the effect of image
resolution on the quality of vegetation cover estimates in
Arizona, we used a ranch ownership boundary layer for the
state and two Landsat scenes (path 35 row 38 and path 36 row
39) resampled to simulate sensors with different spatial
resolutions. Using the vegetation index with the best corre-
spondence to ground observations, we resampled the Landsat
scenes to three additional spatial resolutions: 60 m, 240 m, and
480 m, meant to approximate AWiFS, MODIS 250-m, and
MODIS 500-m data. We then examined how the estimated
cover at the ranch scale changes as a function of image
resolution.

Residual Sensor Discrepancies. MODIS 500-m surface reflec-
tance data (product MOD43A4) were extracted to correspond
with nine of the Landsat scenes from Arizona. We focused on
areas identified as grasslands by The Nature Conservancy with
limited terrain variation as calculated from the SRTM data.
The MODIS observations (n¼634 361) were compared to the
aggregated Landsat data acquired over the same time period. A
translation function derived from the bandwidth discrepancies
analysis was first applied to the Landsat observations to
minimize other sources of quantifiable noise.

Error Propagation. Relationships between measured ground
cover and Landsat reflectance, and between Landsat and
MODIS reflectance were defined using linear regression
models. The standard errors in the linear regression coefficients
from both models were then used as two sources of error
estimates to account for uncertainty from the ground measure-
ments up through the MODIS scale. We used a non-parametric
resampling approach called ‘‘bagging,’’ which is based on the
statistical theory of Efron and Tibshirani (1986), to estimate
prediction intervals in cover estimates at the MODIS scale. In
this bagging procedure, we generated replicates of the original
data by randomly drawing, with replacement, residual values
from each of the two regressions. A model was fit to each
replicate data set and then used to predict cover values. This
process was repeated 10 000 times and the distribution of
predictions generated are used to estimate the 90% prediction
intervals. With the bootstrap algorithm, there is no underlying
assumption about the statistical distribution of the data.

Table 3. Formulas for the vegetation indices used in this analysis and the source for these formulas.1

Index Formula Source

NDVI (NIR�RED)//(NIRþRED) Tucker 1979

EVI 2.5 � (NIR�RED)/(NIRþ 6.0 �RED� 7.5 � BLUþ 1.0) Huete et al. 2002

SATVI 1.1 � (SWIR1�RED)/(SWIR1þREDþ 0.1)� SWIR2/2.0 Marsett et al. 2006

SATVIp 1.1 � (SWIR1�RED)/(SWIR1þREDþ 0.1) Qi et al. 2002

NDSVI (SWIR1�RED)/(SWIR1þRED) Daughtrey et al. 2006

NDTI (SWIR1� SWIR2)/(SWIR1þ SWIR2) Daughtrey et al. 2006

CRC (SWIR1�BLU)/(SWIR1þBLU) Sullivan et al. 2008

CRCm (SWIR1�GRN)/(SWIR1þGRN) Sullivan et al. 2008

STI SWIR1/SWIR2 Sullivan et al. 2008
1NDVI indicates normalized difference vegetation index; NIR, near infrared; RED, red; EVI, enhanced vegetation index; BLU, blue; SATVI, soil-adjusted total vegetation index prime; SWIR, shortwave

infrared; SATVIp; NDSVI, normalized difference senescent vegetation index; NDTI, normalized difference tillage index; CRC, crop residue cover index; CRCm, modified crop residue cover index;
GRN, green; STI, simple tillage index.
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Additionally, the approach allows us to quantify and account
for the heteroskedastisity, or non-constant variance, within the
prediction intervals (Hagen et al. 2006).

Comparison of Cover Estimates With Independent Sources.
Direct comparisons between remotely sensed and ground-
based measurements of cover at the MODIS scale (approxi-
mately 25 ha) are not feasible due to the costly and time-
consuming logistics associated with direct measurement of such
a large area. Therefore, validation of cover estimates at the
500-m MODIS scale relies on visual estimates and indirect
observations.

Using the SWReGAP database (USGS National Gap Analysis
Program 2004), we extracted ground cover estimates for the
largest sites (greater than 25 ha) in Arizona and compared them
with our MODIS-based cover estimates, providing an indepen-
dent evaluation of our approach. We further tested our
approach against the current, best available product, the
MODIS VCF cover estimates. Although the same source sensor
was used, our cover products differ from the VCF cover
estimates in that our estimates are produced every 8 d between
2000 and today, whereas the VCF products are available only
as an annual average for 2001. To perform this test, we
compared the same ground-observed cover estimates from
SWReGAP product to the MODIS VCF herbaceous-plus-tree
cover estimates. Results from this comparison gave a measure
of the level of improvement our products provide, if any, over
the current, existing product.

Pasture maps and grazing plans from the SRER were used
together with satellite-based estimates of cover from MODIS to
evaluate whether grazing effects are detectible in satellite
observations (Table 4). According the SRER records, one large
herd (approximately 400 animal units) of cattle were moved as
a group between seven pastures starting on 25 August 2010 and
concluding 14 April 2011. We examined six of those pastures
for evidence of grazing (the seventh pasture was occupied
between 4 September 2010 and 4 November 2010, but
boundary information is not available via the SRER website).
To do this, we subtracted the MODIS-based cover after grazing
from the MODIS-based cover before the cattle were turned out
and compared this difference to the difference calculated over
the same time period on ungrazed pastures. The pastures range
in size from 25 ha to 300 ha and are represented by a minimum
of 20 MODIS pixels. Because grazing and the associated effects
are not uniform over the entire pasture, we analyzed the

distribution of cover within these pastures in the form of

density plots. To minimize changes in cover associated with

seasonal weather, we normalized these density plots by

subtracting the mean change in the MODIS-based cover in

ungrazed pastures from the measured changes in all pastures

during that time period. We then compared each grazed pasture

to the simultaneously ungrazed pastures using a Student’s t-test.

RESULTS

Scaling From Ground Measurements to Landsat
The data from USGS and Marsett are from very different

locations and ecosystem types and have a different distribution

of vegetation cover (Fig. 2). These data sets were selected in

part because a model that fits data from a wide range of

vegetation communities is more likely to be widely applicable

across the Western rangelands.

Our full examination of Landsat bands, band ratios, and

indices and the relationship of each with ground-measured

cover identified three combinations that are better than all

others, all with R2 values over 0.5. SATVI has the highest R2

(0.55) and lowest root mean square error (RMSE¼11.1; Fig.

3). NDSVI and the simple ratio of SWIR (SWIR1) to red

reflectance perform nearly as well (R2¼0.52 and 0.50 and

RMSE¼11.5 and 11.7, respectively) and don’t require the

Table 4. The Santa Rita pasture grazing schedule and the corresponding moderate-resolution imaging spectroradiometer (MODIS) imagery used in the
analysis. The table lists the pasture name (corresponds with Fig. 7), size of the herd turned out on the pasture, date of cattle turn-out to and removal from
pasture, date of MODIS composite used to represent pre- and postcattle conditions, and number of MODIS pixels covering the pasture.

Cattle turn-out dates MODIS composite, first day1

Pasture name Herd size Start End Before After Pixels

6A 460 25 August 2010 3 September 2010 5 August 2010 6 September 2010 52

6E 420 5 November 2010 18 November 2010 24 October 2010 25 November 2010 17

2N 402 19 November 2010 5 January 2011 1 November 2010 9 January 2011 86

2S 396 6 January 2011 26 January 2011 19 December 2010 25 January 2011 25

3 441 27 January 2011 3 March 2011 1 January 2011 6 March 2011 79

5S 440 4 March 2011 14 April 2011 18 February 2011 23 April 2011 76
1The MCD43A4 surface reflectance composites used here are created from observations over a 16-d window. The date given here is the first day of the 16-d window.
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Figure 2. The two sources of field-measured cover come from areas with
appreciably different cover distributions. The field sites measured by the US
Geological Survey (USGS) in Nevada and Wyoming (solid line) have higher
total vegetation cover than the plots measured by Marsett (dashed line) in
Arizona and New Mexico. The USGS field sites have higher forb and shrub
cover, as well.
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second SWIR band that is available on Landsat, making these
measurements appropriate for use with data from AWiFS and
SPOT. The red and SWIR1 spectral bands are the only bands
that appear in each of the top three performing indices and
ratios, suggesting these bands are the most sensitive to total
vegetation cover in rangelands.

We fit three types of models to identify the optimal
relationship between SATVI and TVFC: linear, locally estimat-
ed smoothing (loess; Cleveland, 1979), and exponential (Fig.
3). These types of models and the associated goodness-of-fit to
the data are evaluated using the Akaike Information Criteria
(AIC; Akaike 1973). The AIC is useful for model intercompar-
ison and penalizes model complexity (i.e., additional param-
eters). Low AIC indicates better model fit and the AIC is lowest
for the linear fit, indicating a 58% likelihood that it is the best

choice to fit these data. The best model likelihood for loess
based on the AIC is 33%, suggesting it is also an appropriate
model choice. The optimal exponential fit is a distant third best
fit. Vegetation indices are recognized to saturate and become
nonlinear at higher leaf area index levels (Gamon et al. 1995),
which we do not see here, most likely because rangeland areas,
in general, and the sites included in this study, specifically, have
low leaf area index levels relative to most vegetated regions.

Due to the AIC score, as well as its simplicity and the ease of
use for prediction, the linear model is selected as the best fit.
For Landsat data, the optimal SATVI to TVFC linear
relationship is:

TVFC ¼ 6:60 þ 168:65 � SATVILandsat ½1�

Scaling to MODIS

Bandwidth Discrepancies. There are small but significant
differences in the spectral bands measured by the Landsat
(TM and ETMþ) and MODIS sensors. These differences can be
minimized by applying a linear translation function (Table 5) to
correct for any biases caused by the difference in sensor
bandwidth. Using our SATVI to TVFC relationship (Equation
1) and the reflectance spectra available at the USGS rangeland
sites, we examined the effect of changing from the Landsat to
MODIS sensor on our cover estimates. If these translation
functions are not applied, one could expect systematic
overestimation of cover by approximately 0.25% at the low
end (SATVI¼0.0) and 1.8% on the high end (SATVI¼0.3).
Based on these results, correcting for bandwidth discrepancies
between Landsat and MODIS is not a critical step in this
scaling application.

Effect of Sensor Spatial Resolution on Cover Estimates at the
Ranch Scale. By degrading Landsat reflectance data from 30 m
to 60 m, 240 m, and 480 m and examining mean SATVI for
each ranch, we isolated the effect of sensor spatial resolution on
cover estimates. Our results show that imaging the region at 60
m, 240 m, and 480 m typically introduces errors to SATVI of
0.0005 (less than 1% of average SATVI), 0.002 (1%), and
0.005 (3%), respectively. In other words, our areas of interest

Table 5. Linear translation functions and the effect of spectral bandwidth differences across rangeland sites in the US Geological Survey database.

Response Predictor Band RMSE1 R2 Intercept Slope

TM MODIS RED 0.0007 0.9994 �0.0008 1.0289

TM MODIS SWIR1 0.0021 0.9977 0.0046 0.9978

TM MODIS SWIR2 0.0022 0.9973 0.0081 0.9322

ETMþ MODIS RED 0.0008 0.9992 �0.0011 1.0339

ETMþ MODIS SWIR1 0.0021 0.9977 �0.0055 0.9953

ETMþ MODIS SWIR2 0.0018 0.9982 0.0060 0.9449

TM ETMþ RED 0.0001 1.0000 �0.0003 1.0049

TM ETMþ SWIR1 0.0004 0.9999 �0.0010 0.9974

TM ETMþ SWIR2 0.0005 0.9999 �0.0021 1.0131

TM MODIS SATVI 0.0029 0.9967 �0.0017 0.9649

ETMþ MODIS SATVI 0.0027 0.9973 �0.0064 0.9686

TM ETMþ SATVI 0.0007 0.9998 0.0046 0.9963
1RMSE indicates root mean square error; TM, Landsat Thematic Mapper; MODIS, moderate-resolution imaging spectroradiometer; RED, red; SWIR, shortwave infrared; ETMþ, Landsat Enhanced

Thematic Mapper Plus; SATVI, soil-adjusted total vegetation index.

Figure 3. After the soil-adjusted total vegetation index (SATVI) was
identified as the best candidate, three model frameworks were tested to find
the best fit between SATVI and ground-measured total cover (%). The
Akaike Information Criterion indicated that simple linear regression (dotted)
was the best model. The loess regression (solid black) and the exponential
regression (solid grey) were not as good fits to the data. Each of these three
models behaves differently at high SATVI levels, indicating lower certainty
at high levels.
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(i.e., ranches) are typically large enough and landscape variance
is low enough that moving from 30 m to 60 m, 240 m, and 480
m introduces only modest additional error when estimating
TVFC with remote observations. In areas with more landscape
heterogeneity and smaller ranches, these scaling errors will be
larger.

Residual Sensor Discrepancies. A linear comparison between
MODIS- and Landsat-derived SATVI at the MODIS scale
(500 m) shows high correlation (R2¼0.90) and a significant
slope (Fig. 4). The 634 361 pixels from the nine Landsat
scenes in Arizona show this relationship:

SATVILandsat ¼ 0:0021 þ 0:7605 � SATVIMODIS ½2�

Although the bandwidth and scale differences between the
sensors are the source of a small amount of error (less than
5%), residual sensor differences are the source of consider-
able noise. The high level of correlation indicates these
differences are consistent across the domain studied here
and, therefore, an additional linear translation function can
be applied. The significant slope identified in the relationship
between Landsat and MODIS SATVI is likely driven by
fundamental differences in the MODIS and Landsat sensors,
as well as differences in early stage data processing
techniques applied at the data-providing agencies. Using
the translation functions derived to account for bandwidth
discrepancies (Table 5) combined with this scaling equation
(Equation 2), we can produce a relationship between TVFC

and MODIS-observed SATVI:

TVFC ¼ 6:65 þ 123:76 � SATVIMODIS ½3�

Error Propagation
The residuals from the best fit model are heteroskedastic,

showing an increased variance as SATVI (and TVFC)

increase. For this reason, we used a bagging approach to

estimate the prediction intervals on MODIS-based estimates

of TVFC. The 90% confidence limits derived from our

bagging approach reflect the heteroskedasticity found in the

relationship between the ground measurements of cover and

the remotely sensed vegetation index (Fig. 5). At low SATVI

levels, the 90% prediction limits around cover are typically

Figure 5. Using a bootstrapping approach to account for the hetero-
skedasticity, we estimate the uncertainty in the form of 90% prediction
limits (dashed lines) for the linear relationship between soil-adjusted total
vegetation index and total cover (%; solid line).

Figure 4. A density scatter plot of more than 600 000 soil-adjusted total
vegetation index observations measured at two separate satellite platforms,
moderate-resolution imaging spectroradiometer (MODIS) and Landsat,
across nine Landsat scenes in Arizona shows high correlation (r¼0.95;
contours show density quartiles with the least dense region representing
the 0.1 percentile through the 25th percentile). There is also a significant
gain (0.76) that needs to be applied when scaling from Landsat to MODIS
(dashed line is best fit; solid line is one-to-one line).

Figure 6. Comparison between the independent Southwest Regional Gap
Analysis Project ground measurements of cover and moderate-resolution
imaging spectroradiometer (MODIS)-based predictions of total cover (using
the soil-adjusted total vegetation index [SATVI] relationship) and MODIS
vegetation continuous fields (VCF) tree and herbaceous cover. The
approach presented here using SATVI has a better relationship to ground
observations of cover than the MODIS VCF cover product, which is the only
other wide-area cover product available for comparison.
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6 10% cover. At high SATVI levels, our 90% prediction
limits increase to 6 25% cover.

Comparison With Other MODIS Products and Publicly
Available Ground Cover Estimates
A comparison of our estimates of TVFC in rangelands to

independent ground estimates of cover collected as part

of the SWReGAP project shows a high correlation (r¼0.75;

Fig. 6a), but also reveals a large intercept and slope

(TVFCSWReGAP¼14.72þ0.95 �TVFCMODIS). In other words,

the remote sensing–based estimates of cover are consistently

lower than the ground estimates of cover in the SWReGAP

data set. Given the independent nature of these observations,

as well as the mismatch in scale, this correlation is

promising. Additionally, the standard MODIS VCF product

is less correlated with the ground observations (r¼0.59; Fig.

6b). These results indicate that the approach presented here

is an improvement over existing methods of estimating

fractional cover of vegetation in rangelands over large areas.

The density plots comparing grazed and ungrazed pastures

show a greater reduction (or smaller increase) in MODIS-

estimated cover within the grazed pastures during all six

time periods examined (Fig. 7). Additionally, when combined

into a single, normalized group, the mean changes in MODIS

cover observed in grazed pastures are significantly greater

than the mean changes measured from ungrazed pastures

(t¼7.3; P, 0.0001). This analysis provides additional

evidence that the MODIS-scale SATVI is sensitive to changes

in rangeland total vegetation cover, and also to changes in

vegetation as affected by grazing at the pasture scale.

DISCUSSION

We detail a robust method of mapping total vegetation cover in
rangelands through time that can be applied to a very large
area, such as the western United States. The approach outlined
here can be used in an operational context and accounts for
uncertainties in the scaling process, allowing users to test for
statistical significance when comparing vegetation changes and
trends. Discussion with rangeland managers in the field
indicates variability in estimates of cover depending on the
monitoring methods used. Consequently, some calibration of
the remotely sensed estimates to field estimates may be needed
for consistency with existing field-monitoring cover estimates.
Nonrangelands (e.g., forests, deserts) and areas with significant
topography were excluded from this analysis, so the opera-
tional application of the outlined methods does not apply to
these areas.

This study confirms the findings of other studies that indicate
the two SWIR bands and the red band provide the most
sensitivity to differences in fractional cover of total vegetation
in rangelands. While the focus here is on SATVI because of its
superior fit to the field data, other combinations of the SWIR
and red spectral bands can be used to achieve effective results.
This is important to note, because many commonly used
remote sensing platforms do not have a second SWIR band.
Additionally, new satellite missions are being planned, such as
the Joint Polar Satellite System, that will have spectral bands
similar but not identical to those of current sensors. The
approach identified here, while tuned to Landsat and MODIS
observations, can be applied to data from a variety of sources.
This research also makes several advances toward operational
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Figure 7. Moderate-resolution imaging spectroradiometer (MODIS) pixels
in grazed pastures (grey) at the Santa Rita Experimental Range show a
reduction in soil-adjusted total vegetation index–based total cover when
compared with pixels from ungrazed pastures (black) in all six grazing
periods, suggesting that MODIS provides useful information for rangeland
management. The identification on each plot indicates the grazed pastures
(from Table 4). The data have been normalized to minimize the effects of
natural changes in cover due to phenology.

Figure 8. Eight-day moderate-resolution imaging spectroradiometer
(MODIS) soil-adjusted total vegetation index (SATVI) measurements can
be used to estimate the long-term average (2000–2010) total vegetation
cover in western rangelands.
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monitoring of public rangelands in the western United States
(Fig. 8). Total vegetation cover products can provide rangeland
managers with long-term annual or seasonal spatially detailed
information (from Landsat), and temporally detailed informa-
tion on vegetation dynamics, even in dry seasons (from
MODIS). Even with those products in hand however,
additional steps will be required for the operational application
of that information on public lands. Rangeland managers will
have to define acceptable error, realistically assess their
institutional capability for monitoring based exclusively on
field data, change official policies and procedures, and fund the
processing of satellite imagery. Perhaps more importantly,
rangeland managers and the remote sensing community
together will have to develop and implement a hybrid
monitoring and assessment approach to build on the comple-
mentary strengths of field observations, remote sensing, and
potentially large scale aerial photography.

There are several applications and additions to the approach
outlined here that would add valuable information needed by
rangeland managers. Additional remotely sensed products that
correspond to field-monitored variables, particularly related to
plant composition, would speed the operational application of
remotely sensed products. By combining this approach of
estimating total vegetation cover with the more commonly
applied green vegetation indices such as NDVI, the potential
exist to examine the timing patterns of senescent and green
vegetation cover (phenology), potentially yielding important
information about species, including brush encroachment and
invasive grasses. Total cover estimates derived from satellite
information over a decade can be used to compare the relative
effectiveness of rangeland management techniques and pro-
grams on a scale not previously possible. This type of
comparison can help management agencies make better
decisions about protecting and conserving rangeland.

IMPLICATIONS

The remotely sensed total canopy cover estimates provided
through this approach can be used to assist public and private
rangeland management. For public rangeland managers, the
application of remotely sensed information on canopy cover is
useful to the core functions of inventory (describing the current
status of rangeland resources), monitoring (detecting change in
rangeland resources, particularly in response to management
and in relation to management objectives), and assessment (the
interpretation of monitoring results in relation to management
objectives and the resulting revision of the management plan).
Operational application of remotely sensed information can
strengthen the adaptive management of the large areas under
public management, as well as the private rangelands getting
technical advice from the NRCS. A particular strength of
landscape-scale remote sensing over field-based methods is the
ability to compare across ownership units with a consistent
observation method that considers all rangeland management
units, including ungrazed areas. Remote sensing–based prod-
ucts are ideal for use in tandem with ground measurements,
where the remote sensing–based products allow for more
efficient use of expensive ground-based measurements. Using
remote sensing–based measurements, land managers can

prioritize rangeland areas in need of further attention with
the more expensive field visits by managers. Remote sensing–
based products can also be used to premap allotments before
site visits, providing information on trends in cover and saving
the land manager time.

Because public rangeland managers are technically trained
and legally responsible to manage very large areas, they are
likely to be the initial adopters of new remotely sensed
monitoring tools. Professional range conservationists should
be the initial target audience for this type of tool as they are
responsible for a much larger area than individual ranchers,
they will only be able to personally visit a small fraction of the
land to be managed in any given year, and any required training
across an area the size of a state would be limited to dozens of
individual conservationists, rather than hundreds or potentially
thousands of ranchers. While ranchers could also benefit, their
need is not as great: an observant rancher will be able to see, if
not easily document, changes across a ranch-sized area due to
weather, grazing, fire, and invasive species. An additional
advantage of large-area monitoring of rangelands is the
potential to observe processes that occur at continental scales.
Often rangeland regulation is focused at the site or ranch level
and leaves patterns in rangeland condition at the continental
scale largely unexplored. Having large-area monitoring tools
will enable improved assessment of exogenous processes, such
as shifts in phenological timing or fire fuel load resulting from
changing climate patterns. Further, the ability to gauge
rangeland condition over continental scales allows for better
quantification of potential changes or loss in ecosystem services
provided by rangeland ecosystems.
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AND R. VALENTINI. 1995. Relationships between NDVI, canopy structure, and
photosynthesis in three Californian vegetation types. Ecological Applications

5:28–41.
GORI, D. F., AND C. A. F. ENQUIST. 2003. An assessment of the spatial extent and

condition ofgrasslands in central and southern Arizona, southwestern New
Mexico and northern Mexico. Tucson, AZ, USA: The Nature Conservancy, Arizona
Chapter. 28 p.

HAGEN, S. C., B. H. BRASWELL, E. LINDER, S. FROLKING, A. D. RICHARDSON, AND D. Y.
HOLLINGER. 2006. Statistical uncertainty of eddy flux-based estimates of gross
ecosystem carbon exchange at Howland Forest, Maine. Journal of Geophysical

Research 111:D08S03. doi: 10.1029/2005JD006154
HANSEN, M., R. DEFRIES, J. R. TOWNSHEND, M. CARROLL, C. DIMICELI, AND R. SOHLBERG. 2003.

Vegetation continuous fields MOD44B, 2001 percent tree cover, collection 3.
College Park, MD, USA: University of Maryland.

HERRICK, J. E., J. W. VAN ZEE, K. M. HAVSTAD, L. M. BURKETT, AND W. G. WHITFORD. 2009.
Monitoring manual for grassland, shrubland, and savannah ecosystems.
Volume I: quick start. Las Cruces, NM, USA: USDA-ARS Jornada Experimental
Range. 44 p.

HUETE, A., K. DIDAN, T. MIURA, E. P. RODRIGUEZ, X. GAO, AND L. G. FERREIRA. 2002.
Overview of the radiometric and biophysical performance of the MODIS
vegetation indices. Remote Sensing of Environment 83:195–213.

HUNT, E. R., J. H. EVERITT, J. C. RITCHIE, M. S. MORAN, D. T. BOOTH, AND G. L. ANDERSON.
2003. Applications and research using remote sensing for rangeland
management. Photogrametric Engineering and Remote Sensing 69:675–693.

JOHN HEINZ III CENTER FOR SCIENCE, ECONOMICS AND THE ENVIRONMENT. 2002. The state of the
nation’s ecosystems. Cambridge, UK: Cambridge University Press. 270 p.

KARL, J. W. 2010. Spatial predictions of cover attributes of rangeland ecosystems
using regression kriging and remote sensing. Rangeland Ecology & Management

63:335–349.
LEBED, L., J. QI, AND P. HEILMAN. 2008. Monitoring rangeland ecosystems with remote

sensing: an example from Kazakhstan. In: J. Qi and K. T. Evered [EDS.].
Environmental problems of Central Asia and their economic, social and security
impacts. NATO Science for Peace and Security Series C: Environmental Security
I. Dordrecht, The Netherlands: Springer. p. 135–146.

LOWRY, J. H., JR., R. D. RAMSEY, K. A. THOMAS, D. SCHRUPP, W. KEPNER, T. SAJWAJ, J. KIRBY,
E. WALLER, S. SCHRADER, S. FALZARANO, L. LANGS STONER, G. MANIS, C. WALLACE, K.
SCHULZ, P. COMER, K. POHS, W. RIETH, C. VELASQUEZ, B. WOLK. K.G. BOYKIN, L. O’BRIEN,
J. PRIOR-MAGEE, D. BRADFORD, AND B. THOMPSON, 2007. Chapter 2: land cover
classification and mapping. In: J. S. Prior-Magee, et al. [EDS.]. Southwest regional
gap analysis final report.. Moscow, ID, USA: US Geological Survey, Gap Analysis
Program. p. 14–38

MARSETT, R., J. QI, P. HEILMAN, S. BIEDENBENDER, M. WATSON, S. AMER, M. WELTZ, AND D.
GOODRICH. 2006. Remote sensing for grassland management in the arid
southwest. Rangeland Ecology & Management 59:530–540.

MUNYATI, C., P. SHAKER, AND M. PHASHA. 2011. Using remotely sensed imagery to
monitor savanna rangeland deterioration through woody plant proliferation: a
case study from communal and biodiversity conservation rangeland sites in
Mokopane, South Africa. Environmental Monitoring and Assessment 176:293–
311.

PAUDEL, K. P., AND P. ANDERSEN. 2010. Assessing rangeland degradation using multi
temporal satellite images and grazing pressure surface model in Upper Mustang,
Trans Himalaya, Nepal. Remote Sensing of Environment 114:1845–1855.

QI, J., R. MARSETT, P. HEILMAN, S. BIEDENBENDER, M. S. MORAN, AND D. C. GOODRICH. 2002.
RANGES improves satellite-based information and land cover assessments in
Southwest United States. EOS, Transactions, American Geophysical Union

83:601–606.
[USGS] US GEOLOGICAL SURVEY. 2004. Shuttle radar topography mission, 1 arc second

scene SRTM_u03_n008e004, unfilled unfinished 2.0. College Park, MD, USA:
Global Land Cover Facility, University of Maryland.

USGS NATIONAL GAP ANALYSIS PROGRAM. 2004. Southwest Regional Gap Analysis Project
field sample database. Version 1.1. Logan, UT, USA: RS/GIS Laboratory, College
of Natural Resources, Utah State University.

STELLMES, M., T. UDELHOVEN, A. ROEDER, R. SONNENSCHEIN, AND J. HILL. 2010. Dryland
observation at local and regional scale—comparison of Landsat TM/ETM plus
and NOAA AVHRR time series. Remote Sensing of Environment 114:2111–2125.

SULLIVAN, D. G., T. C. STRICKLAND, AND M. H. MASTERS. 2008. Satellite mapping of
conservation tillage adoption in the Little River experimental watershed, Georgia.
Journal of Soil and Water Conservation 63:112–119.

TUCKER, C. J. 1979. Red and photographic infrared linear combinations for monitoring
vegetation. Remote Sensing of Environment 8:127–150.

VAN TASSELL, L. W., L. A. TORRELL, AND N. R. RIMBEY. 2001. Grazing on public lands in
the 21st century. Current issues in rangeland resource economics: symposium
proceedings. Las Cruces, NM, USA: New Mexico State University. Research
Report 737. 11 p.

65(5) September 2012 467


	Mapping Total Vegetation Cover Across Western Rangelands With Moderate-Resolution Imaging Spectroradiometer Data
	INTRODUCTION
	METHODS
	RESULTS
	DISCUSSION
	IMPLICATIONS
	ACKNOWLEDGMENTS
	LITERATURE CITED




