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Abstract

Monitoring rangeland ecosystem dynamics, production, and performance is valuable for researchers and land managers.
However, ecosystem monitoring studies can be difficult to interpret and apply appropriately if management decisions and
disturbances are inseparable from the ecosystem’s climate signal. This study separates seasonal weather influences from
influences caused by disturbances and management decisions, making interannual time-series analysis more consistent and
interpretable. We compared the actual ecosystem performance (AEP) of five rangeland vegetation types in the Owyhee Uplands
for 9 yr to their expected ecosystem performance (EEP). Integrated growing season Normalized Difference Vegetation Index
data for each of the nine growing seasons served as a proxy for annual AEP. Regression-tree models used long-term site
potential, seasonal weather, and land cover data sets to generate annual EEP, an estimate of ecosystem performance
incorporating annual weather variations. The difference between AEP and EEP provided a performance measure for each pixel
in the study area. Ecosystem performance anomalies occurred when the ecosystem performed significantly better or worse than
the model predicted. About 14% of the Owyhee Uplands showed a trend of significant underperformance or overperformance
(P , 0.10). Land managers can use results from weather-based rangeland ecosystem performance models to help support
adaptive management strategies.

Resumen

El monitoreo del desempeño, producción y dinámica de los ecosistema de pastizal es valioso para investigadores y manejadores
de tierras. Sin embargo, los estudios de monitoreo del ecosistema pueden ser difı́ciles de interpretar y aplicar apropiadamente, si
las decisiones de manejo y disturbios son inseparables de la señal climática del ecosistema. Este estudio separa las influencias
estacionales del clima de influencias causadas por alteraciones y decisiones de manejo, haciendo el análisis de series de tiempo
interanual más consistente y interpretable. Comparamos el rendimiento actual del ecosistema (AEP) de cinco tipos de vegetación
de pastizales del las tierras altas de Owyhee por nueve años con su rendimiento esperado del ecosistema (EEP). Datos de Índice
Diferencial de Vegetación Normalizado de temporada de crecimiento integrado para cada una de las nueve temporadas de
crecimiento sirvieron como una aproximación del AEP anual. Modelos de árbol de regresión usaron conjuntos de datos de
potencial del sitio a largo plazo, clima estacional y cobertura del suelo para generar EEP anual, una estimación del desempeño
del ecosistema que incorporando variaciones anuales del clima. La diferencia entre AEP y EEP proporcionó una medida de
desempeño para cada pı́xel en el área de estudio. Anomalı́as de desempeño del ecosistema ocurrieron cuando el ecosistema se
desempeño significativamente mejor o peor de lo que el modelo predijo. Cerca del 14% de las tierras altas de Owyhee
mostraron una tendencia de bajo desempeño o alto desempeño (P , 0.10). Administradores de tierras pueden usar los resultados
de modelos de desempeño del ecosistema de pastizal basados en clima para que ayude a soportar estrategias de manejo adaptivo.
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INTRODUCTION

Monitoring rangeland ecosystem dynamics, production, and
performance is valuable for researchers and land managers
trying to understand, manage, and restore rangeland ecosys-
tems, especially when faced with a changing global climate that

presents new threats to ecosystem stability. Remote sensing
applications, geospatial analyses, and spatial modeling efforts
can collectively assist in guiding restoration efforts of Great
Basin ecosystems (Fleishman et al. 2009); however, ecosystem
performance studies that use these technologies and proce-
dures may prove to be difficult to interpret and put into an
appropriate context if management decisions and disturbances
that affect these ecosystems are inseparable from the ecosys-
tem’s climate signal (Archer 2004; Evans and Geerken 2004;
Wylie et al. 2008). This is especially true in semiarid and arid
environments that experience high interannual variability in
precipitation. The analysis in this study used remote sensing
archive data, geophysical and biophysical data, and regression-
tree modeling techniques to separate seasonal weather influ-
ences from those of disturbances and management, making
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interannual time-series analysis (trends and persistence) of
ecosystem performance more consistent and interpretable.

The arid and semiarid parts of the western United States are
especially vulnerable to ecosystem threats; the Great Basin is
described as one of the most endangered ecoregions in the United
States (Pellant et al. 2004; Chambers and Wisdom 2009).
Threats include a changed climate, increased human populations
and water demands, non-native species invasion, reduced
biological diversity, and increased fire frequency, size, and
severity (Pellant et al. 2004; Chambers and Wisdom 2009). As
early as the late 1800s, evidence linked overgrazing to soil
erosion and steep declines in forage production in the Great
Basin (Pellant et al. 2004). Non-native annual grass invasions,
most commonly cheatgrass (Bromus tectorum L.), increased fine
fuel amounts that, in turn, increased fire spread rates, causing
fire return intervals to be greatly reduced (Whisenant 1990; Link
et al. 2006). The ensuing grass–fire cycle created a feedback
where, in places, cheatgrass, with its exceptional seed-producing
and reproductive characteristics, outcompeted native species and
became the dominant land cover. This cheatgrass dominance
results in shorter fire return intervals and larger, more
contiguous fires within many rangeland communities.

Big sagebrush (Artemisia tridentata Nutt.) is an important land
cover in the Owyhee Uplands. Prevéy et al. (2010) found that
in the sagebrush steppe environment of southern Idaho, big
sagebrush served as a foundation species that helped exclude
exotic plants and enhance the presence of native forbs. Big
sagebrush also provided integral habitat necessary for greater sage
grouse (Centrocercus urophasianus) survival, a bird species that
experienced declining reproductive numbers because of contract-
ing big sagebrush extents (Hockett 2002; Connelly et al. 2003).
Estimates showed this land cover contracted about 50% in the
West since pre-settlement, and more contraction is likely in the
near future (Dusek et al. 2002; Suring et al. 2005). The ability to
monitor the performance of big sagebrush, as well as other
rangeland vegetation types, may help develop adaptive manage-
ment strategies for the Owyhee Uplands. Land managers engaged
in developing adaptive management strategies need modeled and
predictive results that account for interannual variations in
weather that can help inform planning and restoration plans at
local and regional scales. These models must remain flexible and
relatively easy to adapt to changing conditions.

The primary objective of this study was to develop annual
ecosystem performance models and associated maps for 2000 to
2008 at 250-m resolution for selected rangeland associations in
the Owyhee Uplands, identifying areas where the expected
ecosystem performance (EEP) was significantly different than
the actual ecosystem performance (AEP), defined as ecosystem
performance anomalies (EPAs). Secondary objectives included
using the ecosystem performance time-series data to develop 1) a
performance trend map that shows the trend of each pixel through
the study period and 2) a persistent anomaly map that identifies
areas of consistent underperformance and overperformance.

METHODS

Study Area
The Owyhee Uplands are located in the northern part of the
Great Basin, covering 4.1 million ha in parts of three states

including southwestern Idaho, northern Nevada, and south-
eastern Oregon (Fig. 1). Most of the area is managed by the US
Bureau of Land Management (BLM). Predominant land cover
consists of sagebrush shrub and grass, with sagebrush
consisting of low sagebrush (Artemisia arbuscula Nutt.) and
black sagebrush (A. nova A. Nelson) and a big sagebrush
complex that includes Basin big sagebrush (A. tridentata Nutt.
ssp. tridentata), Wyoming big sagebrush (A. tridentata Nutt.
ssp. wyomingensis), and Mountain big sagebrush (A. tridentata
Nutt. ssp. vaseyana). Bitterbrush (Purshia tridentata [Pursh]
DC ) occupies a small area in the southern part of the
landscape, and grass species include annual invasive grasses
such as cheatgrass (Bromus tectorum L.) and native perennial
grasses such as bluebunch wheatgrass (Pseudoroegneria spicata
[Pursh] A. Löve), Sandberg bluegrass (Poa secunda J. Presl),
and Idaho fescue (Festuca idahoensis Elmer). An evergreen
forest is made up primarily of western juniper (Juniperus
occidentalis Hook) (Vander Schaaf 1996; Shock 2011). Small
areas of cultivated crop, other shrubs, and barren land make up
the remainder of the land cover (Homer et al. 2004). The
topography ranges from areas of little relief to mountainous
terrain and steep canyons in the north, east central, and
southern sections. The Owyhee Uplands receive modest
precipitation amounts (200 to 400 mm annually), experience
high evapotranspiration, host several waterways including the
Owyhee and Bruneau Rivers, serve as a center for recreational
activities, include dry land and irrigated agriculture, and
provide grazing for livestock (USDA Forest Service 2010).

Figure 1. Owyhee Uplands boundary over 2001 National Land
Cover Database.
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Vegetation Class Development
The rangeland classes focused on in this study were the big
sagebrush complex, a general classification of low sagebrush
from the Natural Resources Conservation Service’s (NRCS)
Soil Survey Geographic database (SSURGO) ecological site
information, bitterbrush from SSURGO ecological site infor-
mation, grass derived from the 2001 National Land Cover
Database (NLCD), and a catch-all ‘‘other rangeland vegeta-
tion’’ class that refers generally to shrubs not classified with the
big sagebrush complex, bitterbrush, or low sagebrush. Grass, as
a general land cover class, was identified as dominant in certain
parts of the Owyhee Uplands because grazing, range interven-
tions (spraying, seeding, chaining, etc.), and fire disturbances
have altered the historically sagebrush steppe environment so
that now grass dominates an expanding portion of the
landscape. The SSURGO ecological site data set was not
available for about one-third of the study area. To remedy this
spatial gap in the central part of the study area and to mitigate
county and state boundaries evident in the SSURGO coverage,
a boosted decision tree (RuleQuest Research 2008b; De’ath and
Fabricius 2000; DeFries and Chan 2000) estimated the selected
ecological site vegetation from temporally static variables. We
generated 13 252 random points in ERDAS Imagine 9.3 to train
the model, and the model had an accuracy of 82%. The
variables used to estimate land cover classes were the following:

1) 1971 to 2000 PRISM climate data (PRISM Climate Group,
Oregon State University1). A total of 12 climate variables
were used including average precipitation and average tem-
perature minimums/maximums partitioned into four season-
al periods and defined as winter (November–February),

spring (March–April), early summer (May–June), and
summer (July).

2) Elevation data (calculated from 30-m DEMs).

3) Slope and aspect to identify steep slopes (. 8.5%) and south
and north facing aspects (south 5 between 135u and 225u;
north 5 between 315u and 45u [where north equals 0u]).

4) A compound topographic index that serves as a wetness
index and is a function of both slope and upstream
contributing area (Beven and Kirkby 1979; Chaplot and
Walter 2003).

Ecosystem Performance Anomaly Development
Remote sensing technologies can help identify and quantify
vegetation greenness during a growing season, providing
valuable information on vegetation performance. The tech-
nique employed in this study enhances that information’s value
by separating the weather effects in an ecosystem from
disturbance and management effects. This makes the analysis
of ecosystem performance more informative because the
vegetation performance variance that occurs because of annual
weather changes is isolated, allowing the variance caused by
disturbances and management to be more evident. The
modeling approach used in this study was outlined in detail
in Wylie et al. (2008). In this study, however, the computation
of each pixel’s EEP was calculated based on the removal of
burn disturbances that occurred within 5 yr before the modeled
year as opposed to 25 yr in Wylie et al. (2008). The Wylie et al.
(2008) study occurred in a boreal forest, and we expected a
potentially faster fire recovery in rangelands. Several steps of
this modeling process used rule-based piecewise regression
techniques to improve the precision of the modeling and to
better understand the mechanisms that control the relationships

Figure 2. Data inputs and the processes used to create the AEP, EEP, and EPA datasets. Adapted from Gu et al. (2011).

1http://www.prismclimate.org
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between the independent and dependent variables. Piecewise
regression models are ‘‘broken-stick’’ models that have been
used to better understand discrete and nonlinear biological
problems through time, helping identify causal relationship
between independent and dependent variables (Toms and
Lesperance 2003; Wylie et al. 2007). More details on this
piecewise regression technique are available in Wylie et al.
(2008).

We developed the annual ecosystem performance maps in the
Owyhee Uplands in four main steps. First, we developed a
proxy for AEP. Second, we modeled a site potential data set
that served as long-term AEP. Third, we modeled the EEP. And,
fourth, we used the difference between AEP and EEP to identify
EPAs (Fig. 2). This modeling process used multiple data sets,
and each data set is described below.

AEP Data. We define actual ecosystem performance as the
integrated vegetation dynamics that occur during a growing
season in a specific ecosystem (Tieszen 1997; Wylie 2008).
Wylie et al. (2003) demonstrated that the Normalized
Difference Vegetation Index (NDVI) correlates to CO2 fluxes
in a sagebrush steppe environment, and Tucker et al. (1985) did
the same with photosynthetically active vegetation. Therefore,
we used the expedited Moderate Resolution Imaging Spectro-
radiometer (eMODIS) NDVI at 250-m resolution (Jenkerson
et al. 2010) that had been temporally smoothed (Swets et al.
2000) to estimate AEP for the Owyhee Uplands. Additional
error components would be induced by converting NDVI to
estimates of biomass, leaf area index (LAI), fraction of
photosynthetic active radiation (FPAR), gross primary produc-
tion, or net primary production. For example, MODIS LAI
accuracy is an RMSE of 0.5 LAI units for non-broadleaf forest
land covers, FPAR RMSE is 0.12,2 and MODIS biomass
estimates for winter wheat had a RMSE of 65 g ? m22 (Bao et
al. 2009). Many of these MODIS biophysical parameters are
produced at 1 km and 500 m resolutions. We used an
integrated growing season NDVI (GSN), which is produced
relatively consistently through time and space, directly as a
synoptic proxy for AEP (Wylie et al. 2008) at a resolution of
250 m. We defined the growing season as April through July
for each year, 2000 to 2008. The eMODIS data were mapped
from swath data directly to a conterminous US Lambert
Azimuthal projection. The eMODIS data are 7-d composites
based on an algorithm that selected the best pixel for the
composite period by filtering through input surface reflectance
layers that flag clouds, snow cover, or low view angles. A
baseline value of 0.10 that is associated with bare soil and
dormant vegetation was subsequently subtracted from the
eMODIS NDVI with the remainder summed for the time
period defined above. The annual GSNs were aggregated into
an all-year GSN and used as the dependent variable in the
development of the site potential data set.

Site Potential Data. Site potential accounted for regional long-
term spatial variation in ecosystem performance. Nine different
data sets, including long-term GSN as the dependent variable,
were used to create the site potential data set. Where necessary,
coarse resolution data were resampled to 250-m resolution
using bilinear interpolation to match eMODIS NDVI data set

geographic extents. The independent variable data sets used to
create site potential are the four datasets described in
Vegetation Class Development section and the following four
datasets:

1) 2001 NLCD land cover.3

2) NRCS’s SSURGO Database soils range productivity for a
normal year4; and ecological site dominant species data
sets used to determine land cover in the study area in
conjunction with the 2001 National Land Cover Data-
base land cover.

3) LANDFIRE environmental site potential type used as a
categorical variable to provide further vegetation delin-
eation.5

4) NRCS Major Land Resource Area,6 also used as a
categorical variable to delineate vegetation types.

Site potential maps of the five vegetation classes in this
sagebrush steppe study were developed by mapping long-term
GSN from topographic data, soils data, SSURGO production
for a normal year, land cover data, and climate data. Modeling
of site potential was done to minimize potential effects on long-
term GSN in rangelands that might have been degraded for a
long time. Piecewise regression models (using Cubist software;
RuleQuest Research 2008a) were derived from stratified
random locations within each respective rangeland land cover
type. The data points varied roughly with the respective areas
of each of the rangeland land classes and ranged from 5 385 for
the big sagebrush complex to 384 for grass. A separate site
potential model was developed for each of the vegetation class.

EEP Data. The creation of the EEP model included the
following three data layers: 1) seasonally averaged weather
from the PRISM Climate Group partitioned into identical
seasonal periods as climate data, 2) land cover data sets
LANDFIRE and NRCS Major Land Resource Area used for
stratification purposes, and 3) results from the site potential
model. This modeling approach allowed site potential to
account for regional long-term variations in AEP associated
with elevation and site environmental conditions, and seasonal
weather to focus on interannual variations in productivity.

A rule-based, piecewise regression technique was used to
develop the EEP models (Wylie et al. 2008). The EEP models
used annual GSN from 2000 to 2008 as the dependent
variables. We trained the model on a set of stratified (high,
medium, low site potential) random locations within each
target rangeland class to predict GSN from site potential,
weather, and other information. The training databases for all
five vegetation types comprised 15 independent variables
including the seasonally integrated weather data from each
year, 2000 to 2008, the LANDFIRE and Major Lands
Resources Area (MLRA) data, and the respective site potential
model for the particular modeled vegetation class. EEP data are
used with the AEP data to generate the ecosystem performance
anomaly data set.

6http://soils.usda.gov/survey/geography/mlra

3http://www.mrlc.gov
4http://soils.usda.gov/survey/geography/ssurgo
5http://www.landfire.gov

2http://landval.gsfc.nasa.gov/ProductStatus.php?ProductID5MOD15
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Ecosystem Performance Anomalies (EPAs). The influence of
weather variability is captured with EEP. AEP captures
variations associated with weather, disturbances, and manage-
ment actions. The difference between these two variables, i.e.,
EPAs, isolates disturbance and management effects from
weather. We separate these effects by incorporating weather
variations into the modeling process and removing known
disturbances like fire from EEP model development. Manage-
ment and disturbance effects are averaged out or not accounted
for when we model EEP, forcing management and disturbance
effects into the EEP model error term and model residuals
which are mapped as the EPA data sets.

In Figure 3, EEP is plotted against AEP for the big sagebrush
vegetation class, and the vertical distances for respective points
from the linear regression line represents the EPA. The unfilled
squares above the regression line represent overperforming
anomalies, black squares below the regression line represent
underperforming anomalies, and the gray squares that occupy
the spaces around the regression line represent normally
performing pixels that occur within the model’s 90% confi-
dence intervals. While some performance anomalies’ pixels are
assumed to represent model error, the confidence interval
should capture most of these pixels, and they should represent
only a small part of the overall performance anomaly
information. The 90% confidence intervals apply to the AEP
regressed on the EEP regression line and not the 1:1 line. This
means that the confidence interval thresholds for anomalous
responses to weather do not apply to simple difference maps
(AEP-EEP) but rather to the AEP difference from estimates of
the regression (EEP*; AEP regressed on EEP), which accounts
for minor EEP estimation biases. EPA is thus modified to be
EPA 5 AEP2EEP*, where EEP* is the regression-estimated
EEP. Annual anomaly maps were created using the difference
between AEP and EEP* for each year.

Validation
We validated model data using three sources: 1) LANDFIRE
vegetation composition data from LANDFIRE zones 9 and 18
that used extensive field-referenced data from multiple sources
ranging from a 20-to-50-m transect (Connelly et al. 2003) to
two 50-m transects, 2) the BLM’s Jarbidge District Ecological

Site Inventory (ESI) vegetation composition and cover data
recorded based on three 91-m line intercept transects radiating
from a center point, and 3) stocking rates that were obtained by
the Idaho Department of Lands and the BLM for selected areas
in and around the 2007 Murphy Complex Fire (Launchbaugh
et al. 2008). The ESI and stocking rate data were limited
geographically to the southeast portion of the Owyhee
Uplands. The ESI data were gathered in 2006, and the stocking
rate data were calculated for 2006 and 2007. Much of the
southeast portion of the Owyhee Uplands burned as part of the
Murphy Complex Fire from 16 July 2007 to 2 August 2007.

RESULTS

Site Potential
Table 1 shows the structure for each vegetation type’s long-
term site potential model, how often the models used the
individual variables for stratification and prediction purposes,
and their R2 values. The training R2 for the five models ranged
from 0.64 to 0.83, with the low sage model providing the best
fit. R2 values for the test data ranged from 0.62 to 0.81, with
the grass model providing the best fit. The other shrub category
received the lowest R2 values.

Expected Ecosystem Performance
The structure for each vegetation type’s model, how often the
models used the individual variables for stratification and
prediction purposes, their R2 values, and mean-squared errors
are shown in Table 2. Each vegetation type’s EEP model
independent data sets were seasonal weather (precipitation,
temperature minimums/maximums), land cover, and site
potential. The dependent variable was the annual GSN. The
training R2 values for the five models ranged from 0.71 to 0.90,
with the grass model providing the best fit. R2 values for the
test data were similar to the training data, ranging from 0.71 to
0.88, with the other shrub category receiving the lowest R2

values at 0.71 for both the test and training data sets (Table 2).
The training and test data were stratified by three land-cover–
specific production levels and then randomly partitioned for
each land cover type.

Site potential was the dominant driver in the development of
all five vegetation models. The dominant climatic driver was
seasonal precipitation (ppt) for all five vegetation types, with
summer ppt and early summer ppt each being used twice. Land
cover variables from MLRA and LANDFIRE were used to
stratify the models, but they were not used in the predictive
analysis (Table 2).

Ecosystem Performance Anomalies
EPA maps for five rangeland vegetation types for 2000 to 2008
are shown in Figure 4. Using the Monitoring Trends in Burn
Severity (MTBS) data7 we determined that negative values for
performance anomalies sometimes indicate areas that have
burned recently. They may also represent areas that were
intensively grazed that year (Launchbaugh et al. 2008). Areas
that have not recently burned but still underperformed for three
or more years are potential subjects for further investigation

Figure 3. Actual ecosystem performance (AEP) regressed on expected
ecosystem performance (EEP) showing the regression line and the 90%
confidence limits used to determine significant model anomalies. Pixels
unburned during the previous 5 yr were randomly selected for each of
the five vegetation types.

7http://mtbs.gov
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because they could be areas where the level of grazing activity
exceeds the land’s capacity to regenerate itself under that time
period’s environmental conditions. Figure 5 shows the 2008
performance anomaly map for a portion of the southeast
section of the Owyhee Uplands that experienced wildfire in
2007. The modeled performance anomaly responded as
expected with large areas of underperforming and low normal
performing pixels dominating the area. Many areas near the
perimeter of the fire boundary that did not underperform are
areas where the MTBS categorized the severity of the fire as

unburned to low. Most areas of overperforming pixels shown
on the map are located outside of the burn area except in a
northeastern portion of the fire, where fire intensities were
lower and the vegetation, dominated by Idaho fescue,
recovered quickly after the fire.

Validation
Bare soil field data were obtained from the LANDFIRE pooled
collaborative database (2003) and BLM ESI data (2006). Site
potential values for each of five vegetation types were

Table 1. Driving variables for site potential showing model usage for stratification (boldface numerals) and prediction (lightface numerals) by land
cover type. Dashes indicate variable not used.

Land cover

Big sage Grass Low sage Other shrub Bitterbrush

Driving variable

SSURGO 89 81 12 12 29 39 36 38 28 51

Precipitation 89 83 84 75 98 84 56 80 27 89

Temp min 85 80 100 91 64 96 52 80 44 75

Elevation 61 91 — 49 48 99 64 90 79 67

Temp max 37 91 — 91 6 78 77 89 57 89

North slope 32 71 — — — 90 5 69 — 15

MLRA 27 — — — — — 4 — — —

LANDFIRE 21 — — — 32 — 53 — 41 —

CTI — 25 — 75 — 7 — 28 — 11

South slope — 24 — — — 91 — 38 30 35

Model structure --- 40 rules, simple model--- ---- 5 rules, simple model --- --- 12 rules, simple model--- -- 18 rules, committee of 5-- -- 12 rules, committee of 3--

Train R2 0.72 0.77 0.83 0.64 0.77

Test R2 0.64 0.81 0.74 0.62 0.62

Table 2. Driving variables for EEP showing model usage for stratification (boldface numerals) and prediction (lightface numerals) by land cover
types. Dashes indicate variable not used.

Land cover

Big sage Grass Low sage Other shrub Bitterbrush

Driving variable

Early summer precipitation (ppt) 75 71 27 80 54 77 69 60 47 71

Site potential 73 98 71 89 96 96 60 98 68 95

Spring ppt 64 70 28 82 38 72 16 75 30 77

Winter temp maximum (tmax) 54 70 6 47 26 55 4 54 3 55

Winter ppt 43 61 69 74 26 60 32 63 11 56

LANDFIRE 39 — 22 — 17 — 38 — 24 —

Winter temp minimum (tmin) 32 57 1 37 9 51 28 67 — 76

Summer ppt 31 52 24 71 5 64 46 57 47 73

Spring tmax 28 60 18 77 27 59 24 69 25 67

Early summer tmin 28 54 — 66 21 62 26 67 6 62

Early summer tmax 20 61 13 74 32 67 33 66 37 85

Summer tmin 19 56 13 60 5 57 19 62 7 39

Spring tmin 17 60 26 38 12 64 25 71 14 69

Summer tmax 13 60 — 40 6 59 6 58 14 73

MLRA 5 — — — 4 — 2 — — —

Model structure -100 rules, committee of 3- -- 7 rules, committee of 3 -- - 31 rules, committee of 3 --108 rules, committee of 5 20 rules, committee of 5

Train R2 0.83 0.9 0.81 0.79 0.71

Test R2 0.81 0.88 0.76 0.74 0.71

Training MSE 15.93 7.85 10.99 12.67 14.43
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Figure 4. Rangeland ecosystem performance for five vegetation types in the Owyhee Uplands, 2000–2008. Areas colored magenta to red represent
underperforming pixels (lower actual production than expected given the weather and site potential), areas colored dark brown to tan represent
normal performing pixels (within the error range of the EEP model), and areas colored yellow to green represent overperforming pixels (more
productive than expected given the weather and site potential). Training data were selected from the study area, so areas outside the study area
should be interpreted with caution.
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compared to the percent of bare soil. The spatial resolution of
the field plots ranged from 183 to 30 m2. Pastures that had
multiple year overperforming anomalies the year of and two
years prior to the plot data collection may have experienced
lower stocking rates, or could have been rested one or both
years. Other disturbances, like fire, were also used to explain
some mean anomaly values that were lower than what pasture
usage would indicate.

Percent bare soil is often used as a relative indicator of range
condition (de Soyza et al. 2000; Gadzia and Graham 2009).
Figure 6 shows a log-linear relationship between the percent of
bare soil from the field plots and site potential modeled for
normal performing areas in this study for big sagebrush, other
shrub, and low sage land covers. The determination of the
performance anomaly for a data point, i.e., normal, over, or
under, was based on the modeled ecosystem performance from
2000 to 2008. Given the spatial resolution differences between
MODIS and the field plots, and that the field data came from
multiple years, the general relationships with normal perform-
ing pixels corroborated the site potential maps. There was a
general log-linear consistency across both the LANDFIRE and
ESI data, but with ESI data generally having lower percentages
of bare soil and higher site potential than LANDFIRE data. The
few field plots with underperforming EPAs were ESI plots, and
all were plotted above the regression line. The further above the
regression line the underperforming field sites were indicates
higher certainty in a greater-than-expected percent bare soil
and a lower range condition.

Figure 7 shows the relationship between 2006 stocking rates
and the difference between the 2006 and 2007 modeled
ecosystem performance that corresponds to those pastures.
The figure also shows the relationship between 2007 stocking
rates and the difference between the 2007 and 2008 modeled
ecosystem performance for those same pastures. We con-
strained this analysis to pastures where land cover equaled
75% grass or greater because grass productivity is more tightly
linked to grazing than are perennial shrub systems. The

Figure 5. The 2008 performance anomaly map of the five vegetation
types in the southeast Owyhee Uplands with large areas that
underperformed in response to the Murphy Complex Fires.

Figure 6. Validation of Big Sagebrush (A), Other Shrub (B), and Low
Sage (C) site potentials in the Owyhee Uplands using 2003 LANDFIRE
and 2006 ESI data. LANDFIRE normal performance points are gray
diamonds, ESI normal performance points are black, and ESI under-
performance points are triangles.
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modeled ecosystem performance values for individual pastures
were derived from an average of the pixels within the specific
pasture.

The comparison of 2006 stocking rates to change in
ecosystem performance from 2006 to 2007 displays how our
ecosystem performance analysis can show that grazing intensity
affects pasture performance during the next growing season.
During 2007, each of the five pastures displayed below the x
axis in Figure 7 burned, at least partially, in the Murphy
Complex Fire; consequently, the comparison of 2007 stocking
rates to change in ecosystem performance from 2007 to 2008
demonstrates how our ecosystem performance analysis can
show how a fire disturbance affects pasture performance during
the next growing season. Based on a limited sample size, a
strong negative linear relationship exists and indicates the less
intense the grazing, the greater the increase in ecosystem
performance between the 2006 and 2007 ecosystem perfor-
mance. (One pasture burned during 2005 and was not grazed in
2006, so that pasture was removed from the regression cal-
culation.) A modest positive relationship exists between grazing
intensity and performance and indicates the more intense the
grazing the smaller the fire-related reduction between the 2007
and 2008 ecosystem performance.

In an analysis of grazing intensity and ecosystem perfor-
mance for 30 pastures, regardless of land cover dominance, we
found 17 pastures that experienced a decrease in grazing
intensity between 2006 and 2007 also experienced an increase
in ecosystem performance for the same time period. One
pasture experienced an increase in grazing intensity and a
decrease in ecosystem performance. Four pastures were rested
during both 2006 and 2007, three because they burned in 2005.
The three pastures that burned all experienced an increase in
ecosystem performance from 2006 to 2007. The pasture that

was rested both years but did not experience fire in 2005 saw a
slight decline in its ecosystem performance. We saw an increase
in grazing intensity and an increase in ecosystem performance
in eight pastures. Analysis of ecosystem performances com-
pared to changes in grazing intensity showed that overall 21
(70%) of the pastures met our expectations, i.e., an inverse
relationship existed between a pasture’s ecosystem performance
and grazing intensity from the previous 1–2 yr. In cases where
ecosystem performances did not respond to grazing intensity as
expected, pasture performance could be related to the timing
and amount of grazing and precipitation. With light to
moderate grazing and adequate moisture, tillering can stimu-
late vegetation growth, and grazing in our study area was
generally light.

Ecosystem Performance: Persistent Anomalies and Trends
Figure 8 highlights the persistent underperforming and over-
performing areas over the 9-yr study period. The majority of
the persistently underperforming areas occurred outside of the
Owyhee Uplands. The land cover extents were developed
within the Owyhee boundary and SSURGO extents were
clipped to the boundary, so the EPA maps are less reliable
outside the Owyhee Uplands. Also, the Owyhee Uplands may

Figure 8. Persistent anomaly map with areas that underperformed for
at least 6 of 9 yr, overperformed for at least 6 of 9 yr, or with patterns
shown as normal performance. Training data were selected from the
study area, so areas outside the study area should be interpreted
with caution.

Figure 7. Validation of the southeast Owyhee Uplands grass perfor-
mance anomalies using 2006 and 2007 stocking rate data. The x axis
represents animal unit monthly acre, and the y axis represents the
difference between the performance anomaly for 2006 and 2007 (2006
regression) and 2007 and 2008 (2007 regression). All pastures burned
in the 2007 Murphy Complex Fire.
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be in a more stable condition than surrounding areas. Figure 9
shows the linear trend (slope of EPA versus year) of each pixel
in the study area. Approximately 86% of the area within the
Owyhee Uplands boundary did not show a significant trend
(P , 0.10), and more land area had a negative (8%) than a
positive (5%) trend. The largest areas with a negative trend
were also distributed outside of the Owyhee Uplands area,
where less reliable AEP models were expected, although there is
a portion in the northern area inside the Uplands boundary

with a significant negative trend. Fire disturbances account for
some of these negative trends found within the Uplands
boundary. Significant positive trending areas in the Uplands
are scattered throughout, but large patches exist in the
northwest, central, and southeast areas. Only a very small
portion of overperforming trend areas had experienced fire
since 2005. Cheatgrass, an annual exotic grass, is a very
successful postfire invader in portions of this region, but did not
make up a significant percentage of land cover in areas that
burned from 2005 to 2007. Overall, little land cover (1.4%)
consisted of 70% or more cheatgrass; 18% of the land cover
consisted of more than 30% cheatgrass (Peterson 2007). Most
of the performance trends in these areas were not significant at
the 90% confidence level.

DISCUSSION

To validate our findings, we established that there was a
general productivity relationship between normal performing
pixels and bare soil and between performance anomaly scores
and stocking rates. The relationship between modeled site
potential and percentage of bare soil from LANDFIRE and ESI
datasets was relatively modest (Fig. 6). However, considering
the variations in LANDFIRE and ESI field plot sizes and the
difference in these plot sizes from the site potential 250-m data,
this confirms that site potential captured variations in long-
term site productivity. The relationship between stocking rate
data and the performance anomaly scores (Fig. 7) was negative
and strong in 2006 when the analysis was limited to unburned
pastures dominated by grass. The relationship was positive and
relatively modest in 2007 when the same pastures in the dataset
were all burned in the Murphy Complex Fire. Launchbaugh
et al. (2008) observed variations of burn severity at fence lines
that separated pastures with different grazing regimes in the
area burned by the Murphy Complex Fire and then used the
BEHAVE Plus modeling system to simulate how current year
and residual fuel loads would affect fire behavior in sagebrush
steppe and grassland ecosystems under various conditions.
They determined that, under some environmental conditions,
when grazing reduced fuel loads, less extreme burn severities
could occur.

While different species respond to environmental conditions
differently, and there can be value in separating the various

Table 3. The ecosystem performance anomalies mean values for the nine largest 2006 fires within the Owyhee Uplands and their mean values and
differences for subsequent years.

Fire name Ignition date 2006 EPA 2007 EPA
2006 to 2007

difference 2008 EPA
2007 to 2008

difference

Jackie’s Butte 3 September 57 11 246 108 97

Jerry Wells 28 July 1 214 215 85 99

Old Wind 30 September 225 102 127 93 29

Taylor 27 July 14 246 260 34 80

Snow Canyon 20 August 21 276 297 25 101

Happy Valley 22 July 22 214 236 28 6

Star Mountain 21 August 235 245 210 28 73

Chubby Spain 21 August 20 232 252 38 70

Winters 25 July 221 246 225 13 59

Figure 9. Trend map with the significance value of the slope coefficient
of EPA regressed on years for each pixel. Training data were selected
from the study area, so areas outside the study area should be
interpreted with caution.
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responses of these species, the approach we employed does not
attempt to partition the relative contribution of shrubs, forbs,
and grasses but rather quantifies if vegetation is responding
to environmental conditions in a similar fashion as other
vegetation in its rangeland type. However, if one of our
objectives had been to explore how different species respond to
disturbance, we could have run multiple land cover predictions
for every pixel before and after a disturbance. We then could
assess if a pixel’s response to weather changed after a dis-
turbance, and if it did so, we could postulate that the
disturbance changed the land cover.

Unburned pastures that underperformed could have been
heavily grazed early in the growing season or even during years
prior to the growing season when underperformance occurred.
We found for pastures in 2006, 70% showed increased
ecosystem performance when grazing intensity decreased or
decreased ecosystem performance when grazing intensity
increased. Holechek et al. (1999) reported that across a variety
of range types, including sagebrush steppe, forage production
was an average of 23% and 36% higher in moderately and
lightly grazed pastures, respectively, than in heavily grazed
pastures, where heavily grazed is defined ‘‘as a degree of
herbage utilization that does not permit desirable forage species
to maintain themselves.’’ If a pasture was rested for a period of
time, or if grazing was light or moderate, the expectation was
that vegetation recovery occurred and that the pasture’s
performance would improve in subsequent years (Holechek
et al. 1999). Our stocking rate validation chart (Fig. 7)
showed that the two pastures with greater than 75% grass
that were rested in 2006 showed significantly improved
performance in 2007 when compared to 2006, especially the
pasture that burned in 2005. This conforms to postfire
ecosystem-expected responses in the big sagebrush ecosystem
with grass recovery occurring in about 1 yr and grass height
returning to normal in about 2 yr (Beck et al. 2009). Postfire
effects within the Owyhee Uplands showed that the EPA
values declined in the year after a fire occurred. A decline in
EPA values is expected the first year after a fire with EPA
increases expected to begin during the second year. For
example, in areas where the nine largest fires occurred within
the Owyhee Uplands boundary during 2006, mean EPA values
decreased in 2007. The 2008 EPA values, however, increased
from the 2007 values (Table 3), except for the Old Wind fire,
which was rated by MTBS as 82% unburned to low severity.
The ignition date for every fire occurred at the tail end of, or
after, the growing season period (1 April to 31 July) used to
develop our GSN. The fires would, if at all, minimally affect
2006 EPA values.

MANAGEMENT IMPLICATIONS

The Great Basin ecosystem is in a constant state of change, and
the ability to monitor that ecosystem change by separating
weather effects from disturbances and management activities
can prove valuable to land managers. Therefore, the ecosystem
performance modeling technique presented in this paper
represents a promising contribution to rangeland management.
Our study demonstrated the capability to reliably separate
climatic influence from past management actions (grazing) and

natural disturbances (fire). Ecosystem performance models can
reliably characterize spatiotemporal conditions and associated
trends in vegetation production across broad regions. Areas
that show significant departure in a negative direction from
normal vegetation responses to weather and site conditions for
a specific year, or, that show a consistent departure in a
negative direction from normal vegetation responses to weather
and site conditions, are spatially identifiable. These areas can
be prioritized for field visits and validation and possibly
additional management actions as they could help identify sites
of decreased functional resiliency or areas approaching a
critical ecological threshold.

Using this technique, we demonstrated that AEP models can
successfully characterize relative estimates of total annual
production and associated annual trends in sagebrush ecosys-
tems. As a result, ecosystem performance monitoring using
remote sensing, geospatial analyses, and modeling technologies
is a valuable tool for examining the influence of climate change
on future rangeland community distribution. Projecting future
productivity of rangeland ecosystems under alternative climate
scenarios could inform land managers on potential ecosystem
trends and support associated adaptive management strategies.
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