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Abstract

Ranchers and range managers need a decision support tool that provides a reasonably accurate prediction of forage growth
potential early in the season to help users make destocking decisions. Erroneous stocking rate decisions can have dire economic
and environmental consequences, particularly when forage production is low. Predictions must be based on information that is
easily obtained and relevant to the particular range. Our goal was to evaluate monthly precipitation in spring months as a
potential predictor of forage production compared to annual and growing-season precipitation. We analyzed the relationships
between grazed and ungrazed peak standing crop (PSC) and precipitation using nonlinear regression and a plateau model,
Akaike’s information criterion for model selection, and data from three locations: Streeter, North Dakota; Miles City, Montana;
and Cheyenne, Wyoming. The plateau model included a linear segment, representing precipitation limiting production, and a
plateau, an estimate of average production when precipitation is no longer the limiting factor. Both the response and predictor
variables were rescaled so variability in production from average production was related to variability in precipitation from the
long-term average. We found that grazing did not affect the relationship between PSC and precipitation, nor were annual or
growing-season precipitation good predictor variables. The best predictor variable was total precipitation in April and May for
Montana, May and June for North Dakota, and April, May, and June for Wyoming, with r2 ranging from 0.74 to 0.79 for
precipitation less than long-term average. These results indicate that spring precipitation provides useful information for
destocking decisions and can potentially be used to develop a decision support tool, and the results will guide our choice of
possible predictor models for the tool.

Resumen

Los ganaderos y los manejadores de pastizales necesitan una herramienta de apoyo para hacer una predicción razonable y
precisa del potencial de crecimiento del forraje al inicio de la estación para ayudar a los usuarios a tomar decisiones en reducir el
número de animales. Las decisiones erróneas de la carga animal pueden tener graves consecuencias económicas y ambientales,
especialmente cuando la producción de forraje es baja. Las predicciones deben basarse en información que se obtenga fácilmente
y sea adecuada al pastizal en particular. Nuestro objetivo fue el evaluar la precipitación mensual durante la primavera como un
predictor potencial de la producción de forraje en comparación con la precipitación anual y de la época de crecimiento.
Analizamos la relación entre áreas pastoreadas y no pastoreadas con la producción de forraje (PSC) al final de la época de
crecimiento y también con la precipitación utilizando modelos de regresión no linear y utilizando el criterio de la información de
Akaike para la selección de un modelo, y datos provenientes de tres localidades: Streeter, ND, Miles City, MT, and Cheyenne,
WY. En el modelo de regresión usó un segmento linear, representando la precipitación que limita la producción, y la regresión
con una estimación de la producción promedio cuando la precipitación ya no es el factor limitante. Ambas respuestas y las
variables de predicción se modificaron a una escala de manera que la variabilidad de la media de producción se relacionara con
la variabilidad en la precipitación promedio a largo plazo. Encontramos que el pastoreo no afectó en la relación entre PSC y la
precipitación, tampoco la precipitación anual o de la época de crecimiento fueron buenas variables de predicción. La mejor
variable de predicción fue la precipitación total en Abril y Mayo para MT, Mayo y Junio para ND y Abril, Mayo y Junio para
WY, con rango en r2 de 0.74 a 0.79 para la precipitación menor que la del promedio a largo plazo. Estos resultados indican que
la precipitación de primavera es una información útil para tomar decisiones sobre el desalojamiento del ganado y puede ayudar
a la toma de decisiones, y los resultados deben guiar la opción de los modelos posibles de predicción como herramienta.
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INTRODUCTION

Ranchers and range managers need a decision support tool that
provides the user with a reasonably accurate prediction of
forage growth potential as early as possible in the coming
growing/grazing season (Smoliak 1986). Stocking or destocking
decisions need to be made before the final forage production
level is known, and erroneous stocking rate decisions can have
dire economic and environmental consequences. A major
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problem faced by grazing managers is annual variation in forage
production due to climate (Vallentine 2001). To help managers
with stocking decisions, the tool will need a climate variable that
has a sound scientific relationship with forage growth and is
easily obtained and relevant to the particular range.

Precipitation is a climate variable that meets these three
criteria as a predictor in decision tools. Precipitation values can
be found in newspapers, on television, or on the Internet.
Precipitation data can be easily collected by individuals to
ensure the data is closely associated with the range in question.
A sound scientific relationship between forage growth and
precipitation has long been established (Dahl 1963; Currie and
Peterson 1966; Lauenroth and Whitman 1977; Sims and Singh
1978; Smoliak 1986; Lauenroth and Sala 1992; Briggs and
Knapp 1995; Epstein et al. 1996; Frank et al. 1996; Oesterheld
et al. 2001; Heitschmidt et al. 2005; Schwinning et al. 2005). In
this study, we investigated the potential to predict forage
growth potential for stocking and destocking decisions from
this readily available climate variable.

More than just precipitation is involved in forage growth.
Grazing management, prolonged drought, and soil type also
can have profound effects on the forage growth in any
particular year (Lauenroth and Whitman 1977; Briggs and
Knapp 1995; Frank et al. 1996; Gillen and Sims 2006; Marques
da Silva et al. 2008). Temperature highs and lows play a large
role in forage growth (Briggs and Knapp 1995; Epstein et al.
1996; Frank et al. 1996; Bartholomew and Williams 2005).
Although some studies have shown that less than 50%
(r2, 0.50) of annual variability in forage production is due
to precipitation (Briggs and Knapp 1995; Oesterheld et al.
2001; Smart et al. 2007), other studies have found the
relationship to account for greater than 50% of variability
(Dahl 1963; Currie and Peterson 1966; Smoliak 1986; Derner
and Hart 2007; Smart et al. 2007).

Although annual precipitation is a convenient measure for
studies relating forage production and precipitation, it ignores
the reality that some of the annual precipitation falls when the
forage plant is senescing, dormant, or becoming dormant, or
when the ground on which the precipitation falls is frozen or
already covered with snow or ice. For this reason, many
researchers have narrowed their evaluation of the effects of
precipitation on forage production to precipitation that falls
either during the entire growing season or just during spring
months (Smoliak 1986; Lauenroth and Sala 1992; Heitschmidt
et al. 2005; Schwinning et al. 2005; Derner and Hart 2007;
Smart et al. 2007). This indicates the potential to predict forage
growth from precipitation data collected before stocking rate
decisions must be made.

These studies have shown good relationships between
precipitation and forage production, but even when using
monthly precipitation totals during the growing season, there
are limits to correlation with forage growth. The sum total of
monthly precipitation indicates nothing about the distribution
or intensity of the precipitation within the month. Daily
precipitation records provide a finer resolution of measurement
of intensity and duration than monthly records. However, more
detailed precipitation data are potentially no better than a
monthly total unless related to infiltration potential of soil.
Further, entry of daily rather than monthly precipitation data is
more time consuming for the user. For these reasons, we began

our search for a precipitation-based predictor of forage growth
for a decision tool by investigating the relationship between
monthly precipitation and forage growth.

The objective of this study was to identify the best predictor
variables, based on monthly spring precipitation, and the best
functional form for a model to estimate mixed-grass prairie
peak standing crop (PSC). The models specified either a linear
or nonlinear relationship between precipitation and forage
production, and the candidate predictor variables were the sum
of precipitation during 2 or 3 mo early in the growing season.
We hypothesized average precipitation would result in average
production and the best predictor variable comprised of
monthly spring precipitation would vary with location and
intensity of grazing, and we investigated whether total monthly
precipitation in early spring is a better predictor than is total
growing-season precipitation.

METHODS

In this study, the relationship between precipitation and forage
production was investigated with PSC and precipitation data
from three locations. Models of the relationships were compared
using an information-theoretic approach for model selection.

Data
Three locations, with data sets including ungrazed and grazed
treatments covering 8 yr to 17 yr, were chosen for analysis
(Table 1). The Central Grasslands Extension Research Center
(CGERC) near Streeter, North Dakota, is at an elevation of
around 607 m and has an average annual precipitation rate of
43.4 cm, 80% of which falls between 1 April and 30 September
(NDAWN 2008). The native range at the research center is
described as a mixed-grass prairie with Poa pratensis L.,
Agropyron smithii Rydb., Stipa viridula Trin., Carex heliophia
Mack., and Carex obtusata Lilj. as the dominant grasses
(Biondini et al. 1998). Biondini et al. (1998) provide a detailed

Table 1. Forage production and precipitation at the three locations of
the study. Precipitation is described in terms of predictor variables of
regression models.

Location

Montana
(8 yr)

North Dakota
(17 yr)

Wyoming
(15 yr)

------------------------ Mean (SD) ------------------------

PSC (kg ? ha21)

Ungrazed 1 700 (208) 2 687 (126) 1 500 (159)

Grazed 1 583 (294) 2 810 (159) 1 193 (118)

Precipitation (cm)

Annual (January through

December) 31.92 (2.23) 47.00 (2.66) 39.10 (2.85)

Growing season (April

through October) 26.73 (2.19) 40.93 (2.46) 32.37 (2.87)

January–June 17.67 (1.45) 22.28 (1.58) 21.50 (1.88)

April–May 8.11 (1.02) 9.80 (1.24) 10.71 (1.50)

April–May–June 14.04 (1.30) 18.62 (1.51) 17.06 (1.94)

May–June 10.68 (1.66) 15.52 (1.57) 12.57 (1.73)
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description of the topography, soil morphology, climate, and
range. Since a single source of monthly precipitation values for
these forage data was not available, we constructed a
precipitation data set with information from three sources:
CGERC, the North Dakota Agricultural Weather Network
(NDAWN 2008), and the Western Regional Climate Center
(WRCC 2008). Long-term precipitation data were from the
NDAWN 2008 source.

The Keogh Livestock and Range Research Laboratory is near
Miles City, Montana. Miles City has an elevation of
approximately 722 m and a long-term annual precipitation
total of 34.0 cm, 60–70% of which falls between mid-April
and mid-September (Eneboe et al. 2002). The dominant native
grasses on this mixed-grass prairie are described by Eneboe
et al. (2002) as a ‘‘grama–needlegass–wheatgrass (Bouteloua,
Stipa, Agropyron) mix.’’ Eneboe et al. (2002) provide a detailed
description of the study location including experimental design
of the research location, soils, and climate. The precipitation
data for this location, both monthly for the study period and
long-term averages, are from the WRCC (2008).

The High Plains Grassland Research Station is near
Cheyenne, Wyoming. The elevation of Cheyenne is 1 850 m.
The long-term average annual precipitation is 38.1 cm, 80% of
which falls between 1 April and 30 September (WRCC 2008).
According to Derner and Hart (2007), the dominant native
grasses on this mixed-grass prairie are western wheatgrass
(Agropyron smithii), needle-and-thread (Stipa comata), prairie
junegrass (Koeleria macranatha [Ledeb.] J.A. Schultes), and
blue grama (Bouteloua gracilis [H.B.K.] Lag. ex Griffiths). The
data used in this study were also used by Derner and Hart
(2007). Their detailed description of the study location and
data collection technique are not repeated here. All precipita-
tion data, both monthly and long-term, were collected at the
research station.

Models
It is desirable to develop a decision support tool for ranchers
and range managers that is readily transferable to different
parts of the Great Plains and to the many associated
ecosystems. However, the amount of production per unit of
precipitation varies with differences in average production and
average precipitation among locations. Consequently, our
analysis differs from much previous research relating forage
growth and precipitation in that we rescaled both the response
variable and the predictor variables. With rescaling, the
variability of forage production from average production is
related to the variability of precipitation from long-term
average precipitation

PSCR~f PRð Þ [1]

where PSCR is rescaled PSC and PR is rescaled total
precipitation for some period.

We rescaled precipitation (PR) by dividing the total
precipitation for some period (PP) for a location by the long-
term average precipitation (Pmean) for that location

PR~
PP

Pmean
[2]

We did not have similar long-term averages for PSC, so PSC for

a location was rescaled by dividing each data value by the mean

of the data set:

PSCR~
PSC

PSCmean
[3]

Underlying this rescaling is our hypothesis that average
precipitation (PR51) will result in average PSC (PSCR5 1).

Assuming that stocking decisions would be made before July,
the potential predictor variables for representing early growing-
season precipitation were rescaled total precipitation from four
different time periods within the period from January to June.
These were January through June (PJanJun), April through May
(PAprMay), April through June (PAprMayJun), and May through
June (PMayJun) (Table 1). We also evaluated annual (PAnnual)
and growing-season (PGrow) precipitation as predictor vari-
ables. Growing season for all three mixed-grass prairie
locations was considered to be April through September. All
of our data sets included ungrazed and grazed treatments so we
included an indicator variable for grazing in some models to
evaluate whether the best predictor variable differed with the
intensity of grazing.

The relationship between precipitation and PSC was initially
modeled assuming a typical relationship between plant
productivity and an environmental resource. Plant productivity
increases in proportion to availability of a resource until an
optimum quantity of the resource is reached (Radosevich and
Holt 1984). Beyond that level, more of the resource does not
increase productivity. There are many ways to represent this
relationship. We used a broken-line plateau regression equation
with a linear relationship between the response and predictor
variables until the response reached a plateau:

PSCRi
~ azb:PRi

if PRi
vPRp

PSCRi~p if PRi§PRp

[4]

In this equation, a is the intercept and b is the slope of the linear
segment of the model, p is the plateau and PRp

is the amount of
precipitation at which the plateau is reached.

The amount of precipitation at which the plateau is reached
(PRp

) is related to the parameters of the linear segment of the
regression equation:

PRp
~

p{að Þ
b

[5]

To determine if grazing influenced the relationship between
PSC and precipitation, we used a model with an indicator
variable for grazing (G).

PSCRi~ azG:aGz bzG:bGð Þ:PRi if PRivPRp

PSCRi
~ pzG:pG if PRi

§PRp

[6]

In this equation, G5 1 for PSC under grazing and G50
without grazing. This model allowed the slope and intercept of
the linear segment of the model and the plateau and the amount
of precipitation at which the plateau was reached to be
different with and without grazing.
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The parameters and standard errors of equations 4 and 6
were estimated using Fieller’s method and nonlinear ordinary
least squares regression (Kendall and Stuart 1969). In some
cases, particularly with the data from Montana, difficulty in
fitting the equation indicated the model (equation 4 or 6) had
too many parameters. Consequently, we estimated linear as
well as nonlinear equations for all predictor variables and all
locations:

PSCRi
~azb:PRi

[7]

Or, with the indicator variable,

PSCRi~azG:aGz bzG:bGð Þ:PRi [8]

In all, 12 models were fitted for each location (six precipitation
variables, with and without an indicator variable for grazing).

Model Comparison
We compared the models for a location using a model selection
procedure from information theory. This method is recom-
mended for observational data and has commonly been used to
compare regression equations that represent mechanistic models
of ecological theory (Richards 2005). Moreover, this approach
for evaluating models and selecting predictor variables is the most
appropriate for the ultimate objective of this research, a decision
support tool. Although a reasonably accurate prediction of forage
production is needed for a decision tool, prediction accuracy is
just one characteristic that will guide choice of the information
and model for predicting forage production; trade-offs between
accuracy and other desirable characteristics of a decision tool also
need to be considered. The information theory method allows
ranking of models from best to worst, as well as scaling to
identify models that are similar or very different in fitting the data
(Anderson et al. 2000).

The criterion for selecting and evaluating models is Akaike’s
information criteria (AIC). Readers are referred to Anderson et
al. (2000) and Richards (2005) for detailed description of the
theory on which AIC is based. Briefly, this criterion is based on
Kullback–Leibler information, a measure of the information
lost when approximating reality with a model. A good model
minimizes the loss of information, but, of course, reality is not
known. AIC is an approximation of Kullack–Leibler informa-
tion when using maximum likelihood to estimate a model. This
is a relative measure. An individual value of AIC for a model
and data set has no meaning, but AIC values for a set of models
indicate loss of information compared to reality among the set
of models. That is, AIC values are relative measures of the
support, or evidence, for each model given the data and
consequently, the relative value of the models for inference. The
models may be of different types, but all models must have the
same response variable and be applied to the same data set. The
model with the lowest AIC is the best inference, or hypothesis,
given the set of models and the data.

Our evaluation of models is based on a version of AIC that
includes a correction for bias of AIC when applied to small data
sets (AICc). Although AICc was developed for maximum
likelihood estimation, when using least squares regression with
normally distributed errors, AICc can be calculated as

AICc~n: ln SSE=nð Þz2Kz2K: Kz1ð Þ= n{K{1ð Þ [9]

where n is the number of observations, K is the number of

parameters estimated in fitting the model and SSE is the

estimated sum of squared errors (Anderson et al. 2000). Models

can be ranked from best (lowest) to worst (highest) based on

AICc values, but additional measures must be calculated for a

more quantitative comparison of models. The AIC difference

(D) is the difference between the AIC value of a model and the

minimum AIC value among all of the models for that dataset:

Di~AICci{minimum AICc [10]

An Akaike weight is the ratio of the AIC difference of a
model compared to sum of the AIC differences of all models.
This is a rescaling of AIC differences to a maximum value of 1.
The Akaike weight for model i is calculated as

wi~
exp { 1

2
:Di

� �
PR
r~1

exp { 1
2
:Dr

� � [11]

where R is the number of models in the set. The ratio of
Akaike’s weights of two models (wi/wr) is the evidence ratio.
An evidence ratio of ‘‘x’’ for model i indicates that model i is
‘‘x’’ times more likely than model r to be the best in the set of R
candidate models given the data.

We calculated two measures of model fit, r2 and d, for the
highest AIC-ranked model for each location. The coefficient of
determination, calculated as the square of the correlation of the
observed and predicted values, is an estimate of the proportion
of the variation in observations that is explained by the model.
The index of agreement (d), proposed by Willmott (1981) was
also calculated from the observed and predicted values:

d~1{

Pn
i~1

pi{oið Þ2

Pn
i~1

p0
i

�� ��z o0
i

�� ��� �2

2
664

3
775 0ƒdƒ1 [12]

where pi is predicted value, oi is observed value, p9i5 pi 2 ō,
o9i5 oi 2 ō, and ō is the mean of observed values.

This index of agreement is a measure of the how well
observed values are predicted. If predicted values are plotted
against the observed values, d is a measure of how close the
points are to a 1:1 line. The value of d is equal to 1 for perfect
agreement (all points falling on the 1:1 line). Because the
plateau of the nonlinear model indicates that additional
precipitation does not influence production, we calculated
values of r2 and d for the linear segment of the model as well as
for the entire regression model.

RESULTS AND DISCUSSION

Ranking of Models
Comparison of the models based on AIC are shown in Table 2
with only the best-fitting form of the model (linear or nonlinear)
shown for each predictor variable. The lowest value of AIC for a
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location indicates the best model. Our comparison of models
indicates that the plateau model describes the relationship
between precipitation and PSC better than a linear model;
grazing does not influence this relationship; and precipitation
during 2 or 3 mo in the spring is a superior predictor of PSC
compared to annual or growing-season precipitation (Table 2).

We expected to find that the relationship between rescaled PSC
and precipitation followed the typical relationship between plant
productivity and resource levels—productivity increases with the
resource (water) up to a plateau that begins when the resource in
question is no longer the factor limiting productivity. Models
with a plateau could be fit for most predictor variables for the
North Dakota and Wyoming data sets, but could be fit for only

one predictor variable for the Montana data set (Table 2). A
plateau model had the lowest AIC for all locations and evidence
ratios indicate the plateau model was much better than any linear
model for a location. An evidence ratio for a model indicates how
much more likely the best model is compared to that particular
model. Smaller values indicate stronger support for a model
(Anderson et al. 2000). The smallest evidence ratio for a top-
ranked linear model was for Montana, yet in this case, the single
model with the plateau is at least 17 times more likely than any of
the linear models in the set.

Our results indicate that the relationship between production
and precipitation is not influenced by grazing in these studies.
The AIC criterion for selecting a model favors models with

Table 2. Ranking of the models of the relationship between forage production and annual, growing season or spring precipitation. Reported values
are the number of model parameters (K) and corrected Akaike’s information criterion (AICc), Akaike differences (Di) and weights (wi), and the ratio of
the maximum wi for the set of models over wi (evidence ratio). The models are listed from ‘‘best’’ to ‘‘worse’’ by AIC.

Location Model1 Predictor variables2 K 3 SSE AICc Di wi Evidence ratio

Montana Plateau April–May 4 0.65 235.2 0 0.826 1

Linear January–June 3 1.22 229.5 5.7 0.048 17

Linear April–May–June 3 1.47 226.7 8.5 0.012 69

Linear May–June 3 1.71 224.4 10.8 0.004 222

Linear G, April–May 5 1.09 222.6 12.6 0.002 527

Linear Annual 3 2.01 221.9 13.3 0.001 745

Linear Growing season 3 2.04 221.8 13.4 0.001 813

Linear G, January–June 5 1.21 221.1 14.1 0.001 1 110

Linear G, April–May–June 5 1.44 218.5 16.7 , 0.001 4 120

Linear G, May–June 5 1.70 216.0 19.2 , 0.001 14 429

Linear G, growing season 5 1.94 214.1 21.1 , 0.001 38 465

Linear G, annual 5 1.95 214.0 21.2 , 0.001 40 175

North Dakota Plateau May–June 4 0.73 2121.4 0 0.639 1

Plateau January–June 4 0.76 2119.7 1.7 0.276 2

Plateau Growing season 4 0.86 2115.7 5.7 0.036 18

Plateau April–May–June 4 0.90 2114.2 7.2 0.017 37

Plateau G, May–June 7 0.70 2113.9 7.5 0.015 44

Plateau Annual 4 0.91 2113.7 7.7 0.013 48

Plateau G, January–June 7 0.76 2110.8 10.6 0.003 200

Linear April–May 3 1.18 2107.5 13.9 0.001 1 044

Plateau G, April–May–June 7 0.90 2105.3 16.1 , 0.001 3 226

Plateau G, Annual 7 0.90 2105.1 16.3 , 0.001 3 530

Linear G, Growing season 5 1.09 2104.9 16.5 , 0.001 3 882

Linear G, April–May 5 1.18 2102.2 19.2 , 0.001 14 995

Wyoming Plateau April–May–June 4 1.51 280.0 0 0.940 1

Plateau April–May 4 1.85 274.0 6 0.045 21

Plateau G, April–May–June 7 1.48 271.1 8.9 0.011 86

Plateau January–June 4 2.30 267.4 12.6 0.002 554

Plateau May–June 4 2.33 267.1 12.9 0.001 646

Plateau Growing season 4 2.45 265.6 14.4 0.001 1 386

Linear G, January–June 5 2.49 262.1 17.9 , 0.001 7 631

Linear G, April–May 5 2.64 260.4 19.6 , 0.001 17 908

Plateau G, May–June 7 2.12 260.4 19.6 , 0.001 18 288

Linear Annual 3 3.36 258.8 21.2 , 0.001 40 946

Plateau G, Growing season 7 2.61 254.1 25.9 , 0.001 421 258

Linear G, Annual 5 3.35 253.2 26.8 , 0.001 659 344
1Plateau indicates the regression model was equation 4 or 6 described in the text.
2Predictor variables based on precipitation are described in Table 1 and G is an indicator variable for a grazing treatment.
3K is equal to the number of parameters in the regression model plus one because the variance of the population is an estimated parameter when calculating AIC for analyses based on least

squares regression.
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fewer parameters (Anderson et al. 2000) and is therefore
potentially biased against including grazing as a predictor in the
model. However, the Akaike weights for models that include
grazing as a predictor were very small compared to those that
did not include grazing as a predictor (Table 2). The Akaike
weight (wi) for a model can be interpreted as the proportion of
times that the model would be selected as ‘‘best’’ if the study
were repeated. Larger values indicate more support for a model
with a theoretical maximum value of 1 (the model would also
be selected as the best model) and minimum value of 0 (the
model would never be selected as best). The largest value of wi

for a model including grazing as a predictor variable was only
0.015 (North Dakota).

The best predictor variable was the total of April and May
precipitation (April–May) for Montana, May and June
precipitation (May–June) for North Dakota, and April, May,
and June (April–May–June) precipitation for Wyoming (Ta-
ble 2). Values of wi for the best models among those we
evaluated was 0.826 for Montana, 0.639 for North Dakota,
and 0.940 for Wyoming. There was little support for all other
models except for the model ranked second for North Dakota.
This model was January through June (January–June) precip-
itation with wi equal to 0.28. All other alternative models, for
all the locations, had values of wi less than 0.05 and were 20
times or more less likely than the best model for a location.
June precipitation was an important component of the
predictor for both Wyoming and North Dakota. The highest-
ranked model without June precipitation for these locations
was April–May for Wyoming. Although this model was ranked
second, the evidence ratio was 21.

Spring precipitation was superior to annual or growing-
season precipitation for predicting PSC in our study (Table 2).
In fact, our results show very little evidence of a relationship
between PSC and annual or growing-season precipitation in the
data sets. The value of wi for a model including annual or
growing-season precipitation was less than 0.04 for North
Dakota and was 0.001 or less for Montana and Wyoming.

Fit of the Best Models
The top-ranked models for Montana and Wyoming, and the
two top-ranked models for North Dakota, are shown with the
observed values in Figures 1, 2, and 3. Parameter estimates and
measures of model fit are shown in Table 3. At least 50% of the
variation in PSC, but no more than 70%, was explained by the
top-ranked models (r2). We also calculated the index of
agreement (d) between the predicted and observed values
because a model that systematically over- or underpredicts may
have r2 close to 1 (Krause et al. 2005). The value of d ranges
from 0 to 1 with a value of 1 indicating perfect agreement
between observed and predicted values. The value of d ranged
from 0.80 (North Dakota, January–June) to 0.90 (Montana,
April–May). The value of d for Wyoming was similar to that of
Montana (April–May–June, 0.89).

We were most interested in the fit of the models where the
amount of precipitation is predicted to limit forage produc-
tion because our ultimate goal was a decision model to help
decision makers determine if stocking rates should be
reduced. This is the first linear segment of the model; it ends
at the level of precipitation (PRp

) at which the model reaches
the plateau. The value of PRp

was estimated to be 81% to

Figure 1. Model of the relationship between peak standing crop and
total precipitation in April and May for Miles City, Montana. The
regression model is equation 4 in the text.

Figure 2. Model of the relationship between peak standing crop and
total precipitation in May and June and January through June for
Streeter, North Dakota. The regression model is equation 4 in the text.
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109% of the long-term average precipitation. These values
are consistent with our hypothesis that average precipitation
results in average production. The models explained a greater
proportion of variation in the data (62% to 79%), and there
was greater agreement between predicted and observed
values (d5 0.88 to 0.94), where precipitation was less than
PRp

than for the entire model. This is expected because water
is not the factor limiting production where precipitation is
greater than PRp

. For North Dakota, the r2 and d values of
the linear segment were greater with May–June as the
predictor variable compared to January–June, but January–
June may still be an equivalent or better predictor. More low
values of observed PSC were associated with levels of
precipitation greater than PRp

with May–June than with
January–June (Fig. 2).

IMPLICATIONS

These results corroborate and inform our approach for
developing a predictive model for a decision support tool to
help ranchers with stocking and destocking decisions. The
decision tool will require a model to predict the reduction of
forage production due to spring drought. Ranking of models

with AIC supports our intent to develop models to predict
annual variation in forage production from annual variation in
monthly spring precipitation as the models with spring
precipitation as the predictor were better supported by the
data than the models with annual or growing season as the
predictor. Measures based on AIC identify the best among a set
of models so a top-ranked model may merely be best among a
set of poor models. However, we are encouraged because the
top-ranked models explained 62% to 79% of the annual
variation in forage production when precipitation was less than
the long-term average. The predictive value of our final models
must be evaluated with cross-validation, but a decision tool is
valuable if the decision maker makes better decisions with than
without the tool (Wilkerson et al. 2002). Ultimately, adoption
of the decision tool will be the best measure of the predictive
value of the decision tool.

Based on these results, we expect to develop linear models—
models that are easy to implement in a spreadsheet—for the
decision tool. Nonlinear models of the relationship between
variation in production and forage production were better than
linear models in this research, but the relationship was linear
for levels of precipitation less than the long-term average.
Development of appropriate predictive models based on spring
precipitation will be complicated by the need to vary the spring
months comprising the predictive variable by location, but it
will not be necessary to develop a separate model for grazed
and ungrazed prairie. June precipitation will likely be
important for predicting variation in forage production at
some locations. Decision makers who want to make predictions
in early June or before will need to forecast June precipitation,
or they may predict production with different levels of
precipitation in June to see if their decision will depend on
June precipitation. This use of the decision tool will be
instinctive for decision makers because precipitation is ex-
pressed as proportional to the long-term average rather than as
an absolute value.
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Figure 3. Model of the relationship between peak standing crop and
total precipitation in April, May and June for Cheyenne, Wyoming. The
regression model is equation 4 in the text.

Table 3. Best models for the relationship between forage production and precipitation for three locations. The parameters of the model (equation 4)
are intercept (a), slope (b), plateau (p), and value of the predictor variable at which the plateau is reached (PRp).

Location
Predictor
variable

a b p PRp

Linear segment
and plateau

Linear segment
(PR#PRp)

Mean (SE) r2 d r2 d

Montana April–May 20.63 (0.41) 2.33 (0.67) 1.25 (0.09) 0.81 (0.11) 0.69 0.90 0.79 0.94

North Dakota May–June 0.06 (0.19) 1.23 (0.30) 1.06 (0.03) 0.81 (0.08) 0.51 0.82 0.78 0.94

January–June 20.07 (0.24) 1.12 (0.28) 1.08 (0.04) 1.03 (0.08) 0.48 0.80 0.62 0.88

Wyoming April–May–June 20.12 (0.18) 1.23 (0.23) 1.22 (0.06) 1.09 (0.11) 0.66 0.89 0.74 0.92
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